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Background: IV Regression

Estimate causal effect in confounded data.

y = 𝑓(x) + u, E(u ∣ x) ≠ 0

OLS is biased: E(y ∣ x) ≠ 𝑓(x)

We may still be able to recover 𝑓, through the use of
instruments. z

x y

u

E(𝑓(x) − y ∣ z) = 0, a.s. [𝑃(𝑑𝑧)] (CMR)
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Background: IV Regression

Examples:

• Social sciences:
• x = education, y = return (e.g., future income), u = family socio-economic status; z:
#siblings, school lottery, etc.

• x = price; y = demand; u = market conditions (e.g., supply of substitute)
• Clinical research:

• x = treatment taken (w/ possible noncompliance); y = outcome;
z = treatment assigned

(CMR) can also emerge in other settings.
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Background: IV Estimation

Estimation⇔ find 𝑓 s.t. E(𝑓(x) − y|z) = 0:
1. Estimate the conditional expectation operator

𝐸 ∶ ℋ → ℐ, ℎ ↦ E(ℎ(x)|z)

for some choices of ℋ, ℐ.
2. Find 𝑓 by minimizing ‖�̂�𝑓 − Ê(y|z)‖ for some choice of ‖ ⋅ ‖.

Example: ℋ ∶= {linear models}, “two stage least squares”
1. Estimating E ∶ ℎ ↦ 𝐸(ℎ(𝑥)|𝑧) = ℎ(𝐿𝑖𝑛𝑅𝑒𝑔(𝑥|𝑧))
2. Minimizing ‖𝐸𝑓 − 𝐸(𝑦|𝑧)‖𝐿2 ≡ ‖𝑓(𝐿𝑖𝑛𝑅𝑒𝑔(𝑥|𝑧)) − 𝑦‖2 ⇒ 𝐿𝑖𝑛𝑅𝑒𝑔(𝑦 | 𝐿𝑖𝑛𝑅𝑒𝑔(𝑥|𝑧))
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Background: Nonlinear IV Estimation

For nonlinear 𝑓 estimation is a lot harder
• We don’t generally have 𝐸(𝑓(𝑥)|𝑧) = 𝑓(𝐸(𝑥|𝑧))

Kernelize: use RKHS for ℋ, ℐ, and ridge regression to define the estimator �̂�

Dual/minimax formulation: uses ‖ ⋅ ‖ ∶= ‖ ⋅ ‖2𝐿2(�̂�(𝑑𝑧)) + �̄�‖ ⋅ ‖
2
ℐ.

Two-stage estimation becomes minimax optimization

min
𝑓∈ℋ

max
𝑔∈ℐ

1
𝑛

𝑛
∑
𝑖=1
(2(𝑓(𝑥𝑖) − 𝑦𝑖 − 𝑔(𝑧𝑖))𝑔(𝑧𝑖) − 𝑔

2(𝑧𝑖)) − �̄�‖𝑔‖
2
ℐ + �̄�‖𝑓‖

2
ℋ

(Singh et al., 2019; Muandet et al., 2020; Dikkala et al., 2020; Liao et al., 2020)
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Nonlinear IV: Uncertainty Quantification?

NPIV is an ill-posed inverse problem. With less informative instruments convergence can
be extremely slow (Horowitz, 2011)

Uncertainty quantification for IV?
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Bayesian IV?

Requires knowledge of the full data generating process. Not in (CMR)

For the additive error model

x = 𝑔(z) + u𝑥, y = 𝑓(x) + u𝑦,

you can assume a Bayesian generative model on (u𝑥, u𝑦), and place priors on 𝑓, 𝑔. But
this is

• Expensive and difficult to scale (BNP) /
Expensive, prone to approx. inference error & misspecification (DGM)

• Additive error is restrictive

6



Quasi-Bayesian Inference

Uses the Gibbs distribution

𝑝𝜆(𝑑𝑓) ∝ 𝜋(𝑑𝑓) exp(− 𝑛
2𝜆‖�̂�𝑓 − �̂�(𝑦|𝑧)‖

2)

to quantify uncertainty. Trades off evidence and prior belief:

𝑝𝜆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜌∫𝑛‖�̂�𝑓 − �̂�(𝑦|𝑧)‖2𝜌(𝑑𝑓) + 𝜆𝐾𝐿[𝜌‖𝜋].

But
• Quasi-posterior depends on �̂�𝑓. Evaluating �̂�𝑓 requires solving an optimization
problem, gradient computation will be harder

• Behavior of 𝑝𝜆 unclear, due to estimation error in �̂�

(Chernozhukov and Hong, 2003; Zhang, 2004; Kato, 2013)
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Quasi-Bayesian Dual IV

Use 𝒢𝒫(0, 𝑘𝑥) as the prior 𝛱. Plug in the choice of ‖�̂�𝑓 − �̂�(𝑦|𝑧)‖2 from kernelized dual IV.

𝑑𝛱(⋅ ∣ 𝒟(𝑛))
𝛱(⋅) (𝑓) ∝ exp(−𝑛𝜆 ℓ𝑛(𝑓))

where

ℓ𝑛(𝑓) ∶= max𝑔∈ℐ
1
𝑛

𝑛
∑
𝑖=1
(2(𝑓(𝑥𝑖) − 𝑦𝑖 − 𝑔(𝑧𝑖))𝑔(𝑧𝑖) − 𝑔

2(𝑧𝑖)) − �̄�‖𝑔‖
2
ℐ + �̄�‖𝑓‖

2
ℋ.
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Computation: Closed-form Quasi-Posterior

𝛱(𝑓(𝑥∗) ∣ 𝒟(𝑛)) = 𝒩(𝐾∗𝑥(𝜆 + 𝐿𝐾𝑥𝑥)−1𝐿𝑌, 𝐾∗∗ − 𝐾∗𝑥𝐿(𝜆𝐼 + 𝐾𝑥𝑥𝐿)−1𝐾𝑥∗)
𝐿 = 𝐾𝑧𝑧(𝐾𝑧𝑧 + 𝜈𝐼)

−1

Interpretations:

• 𝐿𝑓(𝑋) = (�̂�𝑓)(𝑍) projects functions of 𝑥.
• If 𝑧 is uninformative and 𝐾𝑧𝑧 ∶= 𝑘𝑧(𝑍train, 𝑍train) is low-rank, the variance explainable by
data will also have low rank.

• Marginal variance as a certain worst-case prediction error
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Computation & Heuristic Application to NN Models

Proposition (“randomized prior trick”1): The stochastic optima of

min
𝑓∈ℋ

max
𝑔∈ℐ

1
𝑛

𝑛
∑
𝑖=1
(2(𝑓(𝑥𝑖) − 𝑦𝑖 − �̃�𝑖 − 𝑔(𝑧𝑖))𝑔(𝑧𝑖) − 𝑔

2(𝑧𝑖)) − �̄�‖𝑔 − �̃�0‖
2
ℐ + �̄�‖𝑓 − �̃�0‖

2
ℋ,

where �̃�𝑖 ∼ 𝒩(0, 𝜆), �̃�0 ∼ 𝒢𝒫(0, 𝑘𝑥), �̃�0 ∼ 𝒢𝒫(0, 𝜆𝜈−1𝑘𝑧), distributes as the quasi-posterior.

Perturb the MAP estimator to draw posterior samples

Adaptable to wide neural networks, with time cost comparable to ensemble training

1(Osband et al., 2018; Pearce et al., 2020; He et al., 2020)
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Theory

Two intuitive criteria: credible sets should not be

1. too large
2. too small

Assume 𝑓0 can be approximated by 𝒢𝒫(0, 𝑘𝑥), ℐ approximates 𝐸𝑓 for 𝑓 ∈ ℋ well, and 𝑘𝑥, 𝑘𝑧
are nice kernels. Then

1. Contraction in the ‖𝐸(⋅)‖2 semi-norm: functions violating (CMR) have vanishing
posterior mass

𝑃𝒟(𝑛)𝛱(‖𝐸(𝑓 − 𝑓0)‖𝐿2(𝑃(𝑑𝑧)) > 𝛿𝑛 ∣ 𝒟(𝑛)) → 0, 𝑤ℎ𝑒𝑟𝑒 𝛿𝑛 → 0.

2. Function(s) with similar complexity satisfying (CMR) will eventually have similar
“density”.
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Theory: in extended arXiv version

Under additional assumptions comparable to the classical NPIV literature,
• Mildly ill-posed problem: 𝜆𝑖(𝐸

∗𝐸) ≍ 𝑖−2𝑝; Mercer basis of ℋ satisfies link conditions
• Additional regularity conditions satisfied by Matérn kernels

we have, in 𝐿2 and interpolation space (e.g., Sobolev) norms,

1. Posterior contracts at asymptotically optimal rates:

𝑃𝒟(𝑛)𝛱(‖𝑓 − 𝑓0‖
2
[𝐿2(𝑃(𝑑𝑥)),ℋ]𝛼,2 > 𝑀𝑛

− (1−𝛼)𝑏𝑏+2𝑝+1 | 𝒟(𝑛)) → 0, ∀𝛼 ∈ [0, 𝑏
𝑏 + 1)

2. Radii of the quasi-Bayesian credible balls have the correct order of magnitude.

Also implies the first minimax optimal rates for the kernelized IV estimator.
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Simulation: 1D

Quasi-posterior using fixed-form kernels:
• Uncertainty estimates correctly reflect information available in data, and appears
valid in the pre-asymptotic regime

• Reliable in the weak instrument setting

(a) QB, 𝑁 = 2000 (b) QB, 𝑁 = 200 (c) QB, weak IV (d) NP Bootstrap, weak IV
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Simulation: Run Time

𝑁 103 2 × 103 104

Proposed 0.07 0.16 0.43
BayesIV 650 N/A N/A

Table 1: Average run time in seconds. N/A: does not converge after 20min. Tested on Tesla P100 /
i9-9900k.

BayesIV also relies on noise additivity, and due to misspecification produces invalid
credible sets in this setting
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Simulation: Airline Demand

A hard setting studied in recent work; IVR with observed confounders

𝑧 = (ConsumerType, Time, FuelCost),
𝑥 = (ConsumerType, Time,Price),

Price = 𝑔(𝑧) + 𝑢1,
Demand = 𝑓(𝑥) + 𝑢2.

E(𝑓(𝑥) − 𝑦 ∣ 𝑧) = 0 still holds. (a) low-dim 𝑥/𝑧, 𝑛 = 1k (b) image 𝑥/𝑧, 𝑛 = 50k

(Hartford et al., 2017)
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Thanks for Listening!

Extended version: https://arxiv.org/pdf/2106.08750

Code: https://github.com/meta-inf/qbdiv

2Conference version is titled “Scalable Quasi-Bayesian Instrumental Variable Regression”.
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