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Instrumental Variables

find 𝑓0 ∶ 𝒳 → R s.t.

𝔼(𝑓0(x) − y ∣ z) = 0 𝑎.𝑠.

x – treatment, y – outcome; z – instruments Z X Y

U

Causal inference with confounded data: 𝔼(y ∣ x = ⋅) ≠ 𝑓0

Wright (1928); Newey and Powell (2003)
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NPIV Estimation

Minimax estimator:

�̂�𝑛 ∶= argmin
𝑓∈ℋ

max
𝑔∈ℐ

1
𝑛

𝑛
∑
𝑖=1

2(𝑓(𝑥𝑖) − 𝑦𝑖 − 𝑔(𝑧𝑖))𝑔(𝑧𝑖) − 𝜈𝑛‖𝑔‖
2
ℐ + 𝜆𝑛‖𝑓‖

2
ℋ.

Inner loop: estimates the average violation of

𝔼(𝔼(𝑓(x) − y ∣ z)2) = ‖𝐸(𝑓 − 𝑓0)‖
2
𝐿2(𝑃𝑧)

Cannot have a closed form unless ℐ is an RKHS.
• ⇒ Cannot do uncertainty quantification or model selection

Cannot prescribe a good RKHS ℐ given high-dim z.
• Even though we only care about certain informative latent instruments

Dikkala et al (2020); Liao et al (2020); Muandet et al (2020)
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Optimal Instrument Kernel for an RKHSℋ

When x has moderate dimensions, and we have an RKHS ℋ / kernel 𝑘𝑥 –

There exists an “optimal instrument kernel” (𝑘𝑧 , ℐ) s.t.

𝑓 ∼ 𝒢𝒫(0, 𝑘𝑥) ⇒ 𝔼(𝑓(x) ∣ z = ⋅) ∼ [𝒢𝒫(0, 𝑘𝑧)]∼
But 𝑘𝑧 involves 𝐸 and must be learned from data

We can draw samples from 𝒢𝒫(0, 𝑘𝑥), approximate 𝔼(𝑓(x) ∣ z = ⋅) with a
regression oracle, and get “noisy samples” from 𝒢𝒫(0, 𝑘𝑧)
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From Noisy GP Samples to a Learned Kernel

And given noisy samples from 𝒢𝒫(0, 𝑘𝑧), we can efficiently learn 𝑘𝑧

Algorithm: implicitly construct �̃�𝑧 ≈ 𝑘𝑧
1. Estimate �̂�𝑗,𝑛1 ← Regress({(�̃�𝑖 , 𝑔𝑗(�̃�𝑖) + �̃�𝑖𝑗)}

𝑛1
𝑖=1) ≈ 𝑔𝑗 (noisy GP samples)

2. Return 𝑘𝑧(𝑧, 𝑧
′) ∶= 1

2𝑚 ∑2𝑚𝑗=1 �̂�𝑗,𝑛1(𝑧)�̂�𝑗,𝑛1(𝑧
′),

Theorem (“test-time” approximation). Suppose the oracle satisfies

𝔼𝑔∼𝒢𝒫(0,𝑘𝑧)𝔼𝐷(𝑛1)1
‖𝑔 − �̂�𝑛1‖

2
2 =∶ 𝜉

2
𝑛1
.

Then, for 𝑚 ≳ 𝑚0 ≪ 𝑛1/(�̄�+1), on an 𝐷
(𝑛1)
1 -measurable event w.p.a. 1, we can have,

for any 𝑔∗ ∈ ℐ0, ∃�̃� ∈ ℐ s.t. ‖�̃� − 𝑔∗‖2 = �̃�(𝜉𝑛1 + 𝑛
−�̄�/2(�̄�+1)
1 ).

(Briefly, we don’t need to worry about the complexity of ℐ.)

Idea: we learned enough about the leading Mercer eigenfunctions.
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From Noisy GP Samples to a Learned Kernel

And given noisy samples from 𝒢𝒫(0, 𝑘𝑧), we can efficiently learn 𝑘𝑧

Algorithm: implicitly construct �̃�𝑧 ≈ 𝑘𝑧
1. Estimate �̂�𝑗,𝑛1 ← Regress({(�̃�𝑖 , 𝑔𝑗(�̃�𝑖) + �̃�𝑖𝑗)}

𝑛1
𝑖=1) ≈ 𝑔𝑗 (noisy GP samples)

2. Return 𝑘𝑧(𝑧, 𝑧
′) ∶= 1

2𝑚 ∑2𝑚𝑗=1 �̂�𝑗,𝑛1(𝑧)�̂�𝑗,𝑛1(𝑧
′),

Theorem (“test-time” approximation). Suppose the oracle satisfies

𝔼𝑔∼𝒢𝒫(0,𝑘𝑧)𝔼𝐷(𝑛1)1
‖𝑔 − �̂�𝑛1‖

2
2 =∶ 𝜉

2
𝑛1
.

Then, for 𝑚 ≳ 𝑚0 ≪ 𝑛1/(�̄�+1), on an 𝐷
(𝑛1)
1 -measurable event w.p.a. 1, we can have,

for any 𝑔∗ ∈ ℐ0, ∃�̃� ∈ ℐ s.t. ‖�̃� − 𝑔∗‖2 = �̃�(𝜉𝑛1 + 𝑛
−�̄�/2(�̄�+1)
1 ).

(Briefly, we don’t need to worry about the complexity of ℐ.)

Also models multi-task learning, where {𝑔𝑗} / 𝑔∗ are training / test-time tasks1
1Improves over (Tripuraneni et al, 2020; Du et al, 2021) for GP models
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NPIV Estimation Results Illustrated

A concrete high-dimensional example:

• The feature extractor 𝛷0 ∈ 𝒞𝛽1(ℝ𝑑1 → ℝ𝑑2), where 𝑑1
𝑑2
= dim𝑧

dim �̄� ≫ 1, and 𝛽1
𝑑1
≳ 1.2

• True latent-space �̄�0𝑧 is equivalent to Matérn-𝛽2, where �̄� = 2𝛽2/𝑑2 ≳ 1.

choice for ℐ fixed-form learned 𝑘𝑧 (unusable)

Polynomial rate 𝛽1
2𝛽1+𝑑1

∧ �̄�
2(�̄�+𝑑1/𝑑2)

( 𝛽1
2𝛽1+𝑑1

∧ �̄�
2(�̄�+3) )

�̄�
�̄�+1

�̄�
2(�̄�+1)

Table: Convergence rates for ‖�̂�𝑛 − 𝑓0‖2 w.r.t. 𝑛 = 𝑛1 + 𝑛2.

Learned kernel avoids the curse of dimensionality.

2To simplify notations; we can compare the other side as well.
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Simulation: Low-dim Setup

Setup: optionally extends Bennett et al (2019) with high-dim instruments

Baselines: fixed-form kernels (-RBF), flexible models (-Tree, -NN)

2.5

2.0

1.5

1.0

0.5

lo
g

(M
SE

)

step sin sigmoid linear abs 3dpoly

D 
= 

2

2dpoly

500 2500 5000
2.5

2.0

1.5

1.0

0.5

lo
g

(M
SE

)

500 2500 5000 500 2500 5000 500 2500 5000 500 2500 5000 500 2500 5000 500 2500 5000

D 
= 

10
0

AGMM-Tree AGMM-NN AGMM-RBF Proposed

Figure: Test MSE across all settings.

Method AGMM-Tree AGMM-NN Proposed

Runtime / s 1374 ± 418 303 ± 16 25.9 ± 5.6
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Simulation: Uncertainty Quantification

Method 𝑛1 = 𝑛2 Test MSE 90% CB. Rad. 90% CB. Cvg. 90% CI. Cvg.

RBF ℐ
500 .431 ±.192 .240 ±.036 .187 [.147, .235] .640 ±.191
2500 .176 ±.089 .175 ±.023 .517 [.460, .573] .822 ±.136
5000 .126 ±.072 .156 ±.019 .660 [.605, .711] .855 ±.143

Proposed
500 .097 ±.065 .201 ±.025 .923 [.888, .948] .915 ±.123
2500 .035 ±.024 .074 ±.008 .917 [.880, .943] .908 ±.127
5000 .024 ±.016 .049 ±.004 .920 [.884, .946] .905 ±.134

Table: Test MSE, radius and coverage rate of the 90% 𝐿2 credible ball (CB) / pointwise CI,
for 𝑓0 ∼ 𝒢𝒫, 𝐷 = 100.

Learned ℐ leads to reliable credible sets which are also more informative.
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Extension for High-dimensional Exogenous Covariates

Idea: learns optimal3 tensor product kernels for ℋ and ℐ

Experiment on the demand data (Hartford et al, 2017)

𝑛 DeepIV DeepGMM AGMM-RBF AGMM-NN Proposed

Low-dimensional setting

1000 3.76 [3.74, 3.77] 3.97 [3.94, 3.99] 3.75 [3.71, 3.79] 3.42 [3.06, 3.99] 2.94 [2.85, 3.06]
5000 3.14 [3.10, 3.21] 3.94 [3.91, 3.96] 3.50 [3.46, 3.52] 2.74 [2.66, 2.76] 2.39 [2.30, 2.47]

Image setting

5000 3.96 [3.93, 4.01] 4.41 [4.38, 4.45] 4.03 [4.02, 4.05] 4.20 [4.10, 4.33] 3.87 [3.85, 3.92]

Table: Log test MSE vs the total sample size (𝑛 = 𝑛1 + 𝑛2).

3In the sense of minimizing ‖𝐸(�̂�𝑛 − 𝑓0)‖2 ; no estimation theory established
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Thanks!

Paper: https://arxiv.org/abs/2205.10772

Code: https://github.com/meta-inf/fil
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