Fast Instrument Learning with Faster Rates

Ziyu Wang, Yuhao Zhou, Jun Zhu

Tsinghua University

find $f_0 : \mathcal{X} \to \mathbb{R}$ s.t. $\mathbb{E}(f_0(\mathbf{x}) - \mathbf{y} \mid \mathbf{z}) = 0 \quad a.s.$ x - treatment, y - outcome; z - *instruments*

Causal inference with confounded data: $\mathbb{E}(y \mid x = \cdot) \neq f_0$

NPIV Estimation

Minimax estimator:

$$\hat{f}_{n} := \operatorname*{arg\,min}_{f \in \mathcal{H}} \max_{g \in \mathcal{I}} \frac{1}{n} \sum_{i=1}^{n} 2(f(x_{i}) - y_{i} - g(z_{i}))g(z_{i}) - v_{n} \|g\|_{\mathcal{I}}^{2} + \lambda_{n} \|f\|_{\mathcal{H}}^{2}.$$

Inner loop: estimates the average violation of

$$\mathbb{E}(\mathbb{E}(f(x) - y \mid z)^2) = \|E(f - f_0)\|_{L_2(P_z)}^2$$

Cannot have a closed form unless $\ensuremath{\mathbb{I}}$ is an RKHS.

 $* \Rightarrow$ Cannot do uncertainty quantification or model selection

Cannot prescribe a **good RKHS** $\ensuremath{\mathfrak{I}}$ given high-dim z.

• Even though we only care about certain informative latent instruments

Dikkala et al (2020); Liao et al (2020); Muandet et al (2020)

When x has moderate dimensions, and we have an RKHS ${\mathcal H}$ / kernel $k_{\rm x}$ –

There exists an "optimal instrument kernel" (k_z, J) s.t.

$$f \sim \mathcal{GP}(0, k_x) \Rightarrow \mathbb{E}(f(x) \mid z = \cdot) \sim [\mathcal{GP}(0, k_z)]_{\sim}$$

But k_z involves E and must be *learned* from data

We can draw samples from $\mathcal{GP}(0, k_x)$, approximate $\mathbb{E}(f(x) | z = \cdot)$ with a regression oracle, and get "noisy samples" from $\mathcal{GP}(0, k_z)$

From Noisy GP Samples to a Learned Kernel

And given noisy samples from $\mathcal{GP}(0, k_z)$, we can efficiently learn k_z

Algorithm: implicitly construct $\tilde{k}_{z} \approx k_{z}$ 1. Estimate $\hat{g}_{i,n} \leftarrow \text{Regress}(\{(\tilde{z}_i, g_i(\tilde{z}_i) + \tilde{e}_{ii})\}_{i=1}^{n_1}) \approx g_i \text{ (noisy GP samples)}$ 2. Return $k_z(z, z') := \frac{1}{2m} \sum_{i=1}^{2m} \hat{g}_{i,n_z}(z) \hat{g}_{i,n_z}(z')$, Theorem ("test-time" approximation). Suppose the oracle satisfies $\mathbb{E}_{g \sim \mathfrak{GP}(0,R_{2})} \mathbb{E}_{D_{1}^{(n_{1})}} \|g - \hat{g}_{n_{1}}\|_{2}^{2} =: \xi_{n_{2}}^{2}.$ Then, for $m \ge m_0 \ll n^{1/(\tilde{b}+1)}$, on an $D_1^{(n_1)}$ -measurable event w.p.a. 1, we can have, for any $g_* \in \mathcal{I}_0$, $\exists \tilde{g} \in \mathcal{I}$ s.t. $\|\tilde{g} - g_*\|_2 = \tilde{O}(\xi_{n_*} + n_1^{-\tilde{b}/2(\tilde{b}+1)})$. (Briefly, we don't need to worry about the complexity of \mathcal{I} .)

Idea: we learned enough about the leading Mercer eigenfunctions.

From Noisy GP Samples to a Learned Kernel

And given noisy samples from $\mathcal{GP}(0, k_z)$, we can efficiently learn k_z

Algorithm: implicitly construct $\tilde{k}_{z} \approx k_{z}$ 1. Estimate $\hat{g}_{i,n_i} \leftarrow \text{Regress}(\{(\tilde{z}_i, g_i(\tilde{z}_i) + \tilde{e}_{ij})\}_{i=1}^{n_1}) \approx g_i \text{ (noisy GP samples)}$ 2. Return $k_z(z, z') := \frac{1}{2m} \sum_{i=1}^{2m} \hat{g}_{i,n_1}(z) \hat{g}_{i,n_2}(z')$, Theorem ("test-time" approximation). Suppose the oracle satisfies $\mathbb{E}_{q \sim \mathfrak{GP}(0,k_{-})} \mathbb{E}_{p_{1}^{(n_{1})}} \|g - \hat{g}_{n_{1}}\|_{2}^{2} =: \xi_{n_{1}}^{2}.$ Then, for $m \ge m_0 \ll n^{1/(\tilde{b}+1)}$, on an $D_1^{(n_1)}$ -measurable event w.p.a. 1, we can have. for any $g_* \in \mathcal{I}_0$, $\exists \tilde{g} \in \mathcal{I}$ s.t. $\|\tilde{g} - g_*\|_2 = \tilde{O}(\xi_{n_*} + n_1^{-\tilde{b}/2(\tilde{b}+1)})$. (Briefly, we don't need to worry about the complexity of \mathcal{I} .)

Also models **multi-task learning**, where $\{g_j\} / g_*$ are training / test-time tasks¹ ¹Improves over (Tripuraneni et al, 2020; Du et al, 2021) for GP models

NPIV Estimation Results Illustrated

A concrete high-dimensional example:

- The feature extractor $\Phi_0 \in \mathcal{C}^{\beta_1}(\mathbb{R}^{d_1} \to \mathbb{R}^{d_2})$, where $\frac{d_1}{d_2} = \frac{\dim z}{\dim z} \gg 1$, and $\frac{\beta_1}{d_1} \ge 1.^2$
- True latent-space \bar{k}_z^0 is equivalent to Matérn- β_2 , where $\bar{b} = 2\beta_2/d_2 \ge 1$.

choice for $\ensuremath{\mathbb{I}}$	fixed-form	learned	k _z (unusable)		
Polynomial rate	$\frac{\beta_1}{2\beta_1+d_1}\wedge \frac{\bar{b}}{2(\bar{b}+d_1/d_2)}$	$\Big(\frac{\beta_1}{2\beta_1+d_1}\wedge\frac{\bar{b}}{2(\bar{b}+3)}\Big)\frac{\bar{b}}{\bar{b}+1}$	$\frac{\overline{b}}{2(\overline{b}+1)}$		
Table: Convergence rates for $\ \hat{f}_n - f_0\ _2$ w.r.t. $n = n_1 + n_2$.					

Learned kernel avoids the curse of dimensionality.

²To simplify notations; we can compare the other side as well.

Simulation: Low-dim Setup

Setup: optionally extends Bennett et al (2019) with high-dim instruments **Baselines**: fixed-form kernels (-RBF), flexible models (-Tree, -NN)

Figure: Test MSE across all settings.

Method	AGMM-Tree	AGMM-NN	Proposed
Runtime / s	1374 ± 418	303 ± 16	25.9 ± 5.6

Method	$n_{1} = n_{2}$	Test MSE	90% CB. Rad.	90% CB. Cvg.	90% Cl. Cvg.
$RBF \mathcal{I}$	500	.431 ±.192	.240 ±.036	.187 [.147, .235]	.640 ±.191
	2500	.176 ±.089	.175 ±.023	.517 [.460, .573]	.822 ±.136
	5000	.126 ±.072	.156 ±.019	.660 [.605, .711]	.855 ±.143
Proposed	500	.097 ±.065	.201 ±.025	.923 [.888, .948]	.915 ±.123
	2500	.035 ±.024	.074 ±.008	.917 [.880, .943]	.908 ±.127
	5000	.024 ±.016	.049 ±.004	.920 [.884, .946]	.905 ±.134

Table: Test MSE, radius and coverage rate of the 90% L_2 credible ball (CB) / pointwise CI, for $f_0 \sim \Im P$, D = 100.

Learned \mathcal{I} leads to **reliable** credible sets which are **also more informative**.

Extension for High-dimensional Exogenous Covariates

Idea: learns optimal^3 tensor product kernels for ${\mathcal H}$ and ${\mathfrak I}$

Experiment on the demand data (Hartford et al, 2017)

n	DeepIV	DeepGMM	AGMM-RBF	AGMM-NN	Proposed
Low-dimensional setting					
1000 5000	3.76 [3.74, 3.77] 3.14 [3.10, 3.21]	3.97 [3.94, 3.99] 3.94 [3.91, 3.96]	3.75 [3.71, 3.79] 3.50 [3.46, 3.52]	3.42 [3.06, 3.99] 2.74 [2.66, 2.76]	2.94 [2.85, 3.06] 2.39 [2.30, 2.47]
Image setting					
5000	3.96 [3.93, 4.01]	4.41 [4.38, 4.45]	4.03 [4.02, 4.05]	4.20 [4.10, 4.33]	3.87 [3.85, 3.92]

Table: Log test MSE vs the total sample size $(n = n_1 + n_2)$.

³In the sense of minimizing $||E(\hat{f}_n - f_0)||_2$; no estimation theory established

Paper: https://arxiv.org/abs/2205.10772

Code: https://github.com/meta-inf/fil