A Constrained Bayesian Out-of-Approach to **Distribution Prediction**

Ziyu Wang^{*}, Binjie Yuan^{*}, Jiaxun Lu, Bowen Ding, Yunfeng Shao, Qibin Wu, Jun Zhu[#]

OOD prediction and its hardness

Given data from different **environments**:

 $\mathcal{D}_{tr} := \{\{(x_i^{inv}, x_i^{spu}, y_i) \sim P_e\}_{i=1}^n : e \in \mathcal{E}_{tr}\}$

find a predictor for a test env $e_* \not\in \mathcal{E}_{tr}$

- x^{inv} induces invariant $p(y | x^{inv})$ across envs; defines an *invariant predictor*
- x^{spu} induces spurious correlations and hinders generalization of ERM

With a sufficiently large $m = |\mathcal{E}_{tr}|$ we can learn the best invariant predictor using e.g., Group DRO:

$$\hat{h}_{GDRO} := \arg\min_{h \in \mathcal{H}} \arg\max_{e \in \mathcal{E}_{tr}} \hat{R}_n(P_e, h)$$

With a smaller *m*, GDRO, IRM, etc. may all fail • E.g., $m \leq \dim \mathbf{x}$ for some linear problems Adaptation using labeled test samples can be necessary

A constrained posterior for adaptation

Assume known¹ lower bound of invariant predictor performance (e.g., accuracy $\geq \rho = 0.95$); define

$$P_{CB}(d\theta \mid \mathcal{D}_{tr}, \mathcal{D}_{*}) \propto \\ \pi(d\theta) \underbrace{\mathbf{1}_{\substack{e \in \mathcal{E}_{tr} \\ relaxed \ \mathsf{GDRO \ constraints}}}}_{relaxed \ \mathsf{GDRO \ constraints}} \underbrace{p(\mathcal{D}_{*} \mid \theta)}_{\text{test likelihood / general exp. loss}}$$

Approx. inference with **LMC + line search**

Avoids a pathology of "standard"/scaled posterior,

 $\widetilde{P}_{lpha}(heta \mid \mathcal{D}_{tr}, \mathcal{D}_{*}) \propto \pi(d heta) p^{lpha}(\mathcal{D}_{tr} \mid heta) p(\mathcal{D}_{*} \mid heta)$

 $\alpha \ll 1 \Rightarrow \mathcal{D}_{tr}$ not efficiently utilized; $\alpha = 1 \Rightarrow$ *P* can fail just like ERM

Ex. training-time $R_e(h_{inv}) \equiv 1\%$, $R_e(h_{spu}) \equiv$ 0%, $n = 10^5$; test $R_*(h_{inv}) = 0\%$, $R_*(h_{spu}) =$ $100\% \Rightarrow P_1$ requires $n_* \gtrsim 10^3$ samples to switch to h_{inv} from h_{sDU} ; P_{CB} only requires $n_* = O(1)$

With only a few training environments, don't use them to learn an invariant predictor. Adapt to environment shift by using them to define constraints.

Code

Analysis: improved convergence of *a* constrained estimator

Setup. linear-Gaussian model

$$\bar{\beta}_{spu}^{e} \sim \mathcal{N}(0, d_{spu}^{-1}I), \ x_{i}^{e} = M \begin{bmatrix} x_{inv,i}^{e} \\ x_{spu,i}^{e} \end{bmatrix} \sim \mathcal{N}(0, I),$$

$$v_{i}^{e} \sim \mathcal{N}(\bar{\beta}_{i}^{\top} | x_{i}^{e} + (\bar{\beta}_{i}^{e} |)^{\top} x_{spu,i}^{e} + (\bar{\sigma}_{i}^{e} |)^{\top} x_{spu,i}$$

- $\sim \mathcal{N}\left(\mathcal{P}_{inv}X_{inv,i} + (\mathcal{P}_{spu}) \mid X_{spu,i}, O_y\right)$ • $\overline{\beta}_{inv}$ arbitrary & fixed vector with norm O(1); test-time $\overline{\beta}$ arbitrary & fixed
- Nontrivial problem: there exists $\theta_{non-inv}$ s.t. $R_e(\theta_{inv}) - R_e(\theta_{non-inv}) \gtrsim m^{-1} \forall e \in \mathcal{E}_{tr}$
- Analyzes a constrained point estimator: $\hat{\theta} := \arg \max_{\theta \in C_{tr}} p(\mathcal{D}_* \mid \theta)$ where C_{tr} is the constraint set in P_{CB}

Takeaway. $\tilde{\theta}$ outperforms both ERM/GDRO and the unconstrained posterior (\tilde{P}_0) when $n_* \asymp d_{spu}, 1 \ll m \ll d_{spu}$

(See paper for full results and discussion.)

Experiments

Setup. synthetic, benchmark (modified ColorMNIST, PACS) and real-world classification tasks; $m \in \{3, 4\}, n \in [10^3, 10^5]$

Baselines. ERM (no adaptation); unconstrained/scaled/"standard" posterior \tilde{P}_{α} ; DivDis (Lee et al, 2023)

Results.

- Test-time adaptation significantly improves over ERM on datasets where strong domain generalization baselines² do not
- Our method is the only one that consistently achieves near-the-top performance

PACS: avg. accuracy / perf. estimate fo	r
unfavorable conditions ³	

n_*	O (ERM)	16	256
\tilde{P}_0	83.2/72.6	83.8/70.1	89.4/80.6
\widetilde{P}_1		85.0/76.1	87.1/77.2
DivDis		85.0/ 77.6	85.0/76.9
Ours		86.4/77.6	90.3/83.7

Real-world task: avg./unfavorable accuracy. *: α selected using additional test data.

n_*	0 (ERM)	20	80
\tilde{P}_0		87.3/82.4	92.0/90.0
$ ilde{P}^*_lpha$	85.0/81.9	89.3/85.4	92.7/90.5
Ours		89.0/85.1	92.8/91.3

(See paper for full results and additional experiments.)

¹: without such knowledge we can still set ρ based on ERM to trade-off between in-dist and OOD performance; see paper for discussion and PACS results in this scenario²: this includes methods tested in the DomainBed benchmark (for PACS and ColorMNIST), and IRM, DGRO and DANN for the real-world problem ³: defined as the 20% percentile of accuracy across replications, for the worst train/test env split