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OOD prediction and its hardness

Given data from different environments:
D, = {{(X,’”V,X/-Sp”,y,-) ~ P}, e €&y}

find a predictor for a test env e, € &;,

e x'" induces invariant p(y | x'") across envs;
defines an invariant predictor

e x°PY induces spurious correlations and hin-
ders generalization of ERM

With a sufficiently large m = |&;,| we can learn

the best invariant predictor using e.g., Group
DRO:

hcpro = argminargmax R,(FPe, h)
heH ec&yr

With a smaller m, GDRO, IRM, etc. may all fail
e E.g., m < dimx for some linear problems
Adaptation using labeled test samples can be
necessary

A constrained posterior for adapta-
tion

Assume known?! lower bound of invariant pre-
dictor performance (e.g., accuracy > p = 0.95);
define
Pcee(d6 | Dy, Dy)

7(d6) 1{max Rn(P., hg) > p} p(D. | 6)

eegtr

: N
relaxed GDRO constraints  test likelihood /
general exp. loss

Approx. inference with LMC + line search

Avoids a pathology of “standard”/scaled poste-
rior,

Pu(0 | Dir, D.) o< w(dO)p*(Dyr | 6)p(Ds | 6)

a < 1 = Dy, not efficiently utilized; aa = 1 =
P can fail just like ERM

Ex. training-time R.(hiny) = 1%, Re(hspy) =
0%, n = 10° test R.(hin,) = 0%, Ru(hspy) =
100% = P, requires n, > 103 samples to switch
to hj,, from hs,,; Pcs only requires n, = O(1)

1. without such knowledge we can still set p based on ERM to trade-off

between in-dist and OOD performance; see paper for discussion and PACS
results in this scenario 2: this includes methods tested in the DomainBed
benchmark (for PACS and ColorMNIST), and IRM, DGRO and DANN for
the real-world problem 3: defined as the 20% percentile of accuracy across
replications, for the worst train/test env split

With only a few training environ-
ments, don't use them to learn an

Invariant predictor.

Adapt to environment shift by us-

Ing them to define constraints.

Analysis: improved convergence
of a constrained estimator

Setup. linear-Gaussian model

X:] ~ N(0, 1),

spu,l

Q€ —1 e
spu ™~ N(Ov dspu/)1 Xi = M [

yi ~ N(B/TWX/env,/ T (ngu TX,fpu,/' 03)

e 3;,, arbitrary & fixed vector with norm
O(1); test-time 3 arbitrary & fixed

e Nontrivial problem: there exists 0,,,_in,
s.t. Re(0iny) — Re(Bnon—inv) 2 m Ve € &,

e Analyzes a constrained point estimator:
0 = argmaxgec, P(Dx | 0) where Cy, is the
constraint set in P-5

Takeaway. 6 outperforms both ERM/GDRO

and the unconstrained posterior (P,) when

Ny X dspy, 1L K m < dspy,

(See paper for full results and discussion.)

Experiments

Setup. synthetic, benchmark (modified Col-
orMNIST, PACS) and real-world classification
tasks; m € {3,4}, n € [103, 10°]

Baselines. ERM (no adaptation); uncon-

strained/scaled/"standard" posterior P,; Di-

vDis (Lee et al, 2023)

Results.

e Test-time adaptation significantly improves
over ERM on datasets where strong do-
main generalization baselines? do not

e Our method is the only one that consis-
tently achieves near-the-top performance

PACS: avg. accuracy / perf. estimate for
unfavorable conditions®

Ny O (ERM) 16 256

P, 83.8/70.1 89.4/80.6

P, 85.0/76.1 87.1/77.2
83.2/72.6

DivDis / 85.0/77.6 85.0/76.9

Ours 86.4/77.6 90.3/83.7

Real-world task: avg./unfavorable accuracy.
*. o selected using additional test data.

n. O (ERM) 20 80

Py 87.3/82.4 92.0/90.0
P* 85.0/81.9 89.3/85.4 92.7/90.5
Ours 89.0/85.1 92.8/91.3

(See paper for full results and additional ex-
periments.)




