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OOD prediction and its hardness
Given data from different environments:
Dtr := {{(x invi , x

spu
i , yi) ∼ Pe}

n
i=1 : e ∈ Etr}

find a predictor for a test env e∗ ̸∈ Etr• x inv induces invariant p(y | x inv) across envs;
defines an invariant predictor

• x spu induces spurious correlations and hin-
ders generalization of ERM

With a sufficiently large m = |Etr | we can learn
the best invariant predictor using e.g., Group
DRO:

ĥGDRO := argmin
h∈H

argmax
e∈Etr

R̂n(Pe, h)

With a smaller m, GDRO, IRM, etc. may all fail
• E.g., m ≲ dim x for some linear problems
Adaptation using labeled test samples can be
necessary
A constrained posterior for adapta-
tion
Assume known1 lower bound of invariant pre-
dictor performance (e.g., accuracy ≥ ρ = 0.95);
define
PCB(dθ | Dtr ,D∗) ∝

π(dθ) 1{max
e∈Etr
R̂n(Pe, hθ) ≥ ρ}︸ ︷︷ ︸

relaxed GDRO constraints
p(D∗ | θ)︸ ︷︷ ︸test likelihood /general exp. lossApprox. inference with LMC + line search

Avoids a pathology of “standard”/scaled poste-
rior,
P̃α(θ | Dtr ,D∗) ∝ π(dθ)pα(Dtr | θ)p(D∗ | θ)

α ≪ 1 ⇒ Dtr not efficiently utilized; α = 1 ⇒
P̃ can fail just like ERM
Ex. training-time Re(hinv) ≡ 1%, Re(hspu) ≡
0%, n = 105; test R∗(hinv) = 0%, R∗(hspu) =
100%⇒ P̃1 requires n∗ ≳ 103 samples to switch
to hinv from hspu; PCB only requires n∗ = O(1)
1: without such knowledge we can still set ρ based on ERM to trade-offbetween in-dist and OOD performance; see paper for discussion and PACSresults in this scenario 2: this includes methods tested in the DomainBedbenchmark (for PACS and ColorMNIST), and IRM, DGRO and DANN forthe real-world problem 3: defined as the 20% percentile of accuracy acrossreplications, for the worst train/test env split

With only a few training environ-
ments, don’t use them to learn an
invariant predictor.
Adapt to environment shift by us-
ing them to define constraints.

Paper Code

Analysis: improved convergence
of a constrained estimator
Setup. linear-Gaussian model
β̄espu ∼ N (0, d−1spuI), xei = M

[
xeinv ,i
xespu,i

]
∼ N (0, I),

y ei ∼ N (β̄⊤invxeinv ,i + (β̄espu)⊤xespu,i, σ2y)
• β̄inv arbitrary & fixed vector with norm
O(1); test-time β̄ arbitrary & fixed

•Nontrivial problem: there exists θnon−invs.t. Re(θinv)− Re(θnon−inv) ≳ m−1 ∀e ∈ Etr•Analyzes a constrained point estimator:
θ̂ := argmaxθ∈Ctr p(D∗ | θ) where Ctr is theconstraint set in PCB

Takeaway. θ̃ outperforms both ERM/GDRO
and the unconstrained posterior (P̃0) when
n∗ ≍ dspu, 1≪ m ≪ dspu(See paper for full results and discussion.)
Experiments
Setup. synthetic, benchmark (modified Col-
orMNIST, PACS) and real-world classification
tasks; m ∈ {3, 4}, n ∈ [103, 105]
Baselines. ERM (no adaptation); uncon-
strained/scaled/"standard" posterior P̃α; Di-vDis (Lee et al, 2023)
Results.
• Test-time adaptation significantly improves
over ERM on datasets where strong do-
main generalization baselines2 do not

•Our method is the only one that consis-
tently achieves near-the-top performance
PACS: avg. accuracy / perf. estimate for

unfavorable conditions3
n∗ 0 (ERM) 16 256
P̃0 83.8/70.1 89.4/80.6
P̃1 83.2/72.6 85.0/76.1 87.1/77.2

DivDis 85.0/77.6 85.0/76.9
Ours 86.4/77.6 90.3/83.7

Real-world task: avg./unfavorable accuracy.
*: α selected using additional test data.
n∗ 0 (ERM) 20 80
P̃0 87.3/82.4 92.0/90.0
P̃ ∗α 85.0/81.9 89.3/85.4 92.7/90.5
Ours 89.0/85.1 92.8/91.3

(See paper for full results and additional ex-
periments.)


