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Abstract

Approximate inference for overparameterized Bayesian models appears challeng-
ing, due to the complex structure of the posterior. To address this issue, a recent
line of work has investigated the possibility of directly conducting approximate
inference in “function space”, the space of prediction functions. This note pro-
vides an alternative perspective to this problem, by showing that for many models
– including a simplified neural network model – Langevin dynamics in the over-
parameterized “weight space” induces equivalent function-space trajectories to
certain Langevin dynamics procedures in function space. Thus, the former can
already be viewed as a function-space inference algorithm, with its convergence
unaffected by overparameterization. We provide simulations on Bayesian neural
network models, and discuss the implication of the results.

1 Introduction

Consider a common Bayesian predictive modeling setting, where we are provided with i.i.d. ob-
servations D := {(xi, yi)}ni=1, a likelihood model p({yi} | {xi}, θ) =

∏n
i=1 p(yi | f(xi; θ))

determined by a prediction function f(·; θ), and a prior πθ(dθ). We are interested in the predictive
distribution p(y∗ | x∗,D) =

∫
πθ|D(dθ)p(y∗ | x∗, θ), induced by the posterior πθ|D.

Modern machine learning models are often overparameterized, meaning that multiple parameters
may define the same likelihood. For example, in Bayesian neural network (BNN) models where
θ ∈ Rd denote the network weights, we can obtain a combinatorial number of equivalent parameters
by reordering the neurons, after which f(·; θ), and thus the likelihood, remain unchanged. Conse-
quently, the posterior measure exhibits complex structures and becomes hard to approximate; for
example, its Lebesgue density may contain a large number of global maxima.

Starting from Sun et al. (2019); Wang et al. (2019); Ma et al. (2019), a recent literature investigates
the possibility of simplifying inference by approximating a function-space posterior. Concretely, let
A : Rd → F ⊂ R|X |, θ 7→ f(·; θ) denote a “parameterization map”. Then

p(y∗ | x∗,D) =

∫
πθ|D(dθ) p(y∗ | f(x∗; θ)) =

∫
(A#πθ|X,Y)(df) p(y∗ | f(x∗))

=

∫
πf |D(df) p(y∗ | f(x∗)),

where A#(·) refers to the pushforward, and πf |D denotes the function-space posterior defined by
the prior A#πθ =: πf and likelihood p(y | x, f) = p(y | f(x)). As shown above, πf |D is sufficient
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for prediction. Moreover, it often has simpler structures: for example, for ultrawide BNN models
with a Gaussian πθ, πf may converge to a Gaussian process (GP) prior (Lee et al., 2018; Matthews
et al., 2018; Yang, 2019), in which case πf |D will also converge to a GP posterior. Thus, it is natural
to expect approximate inference to be easier in function space.

While the intuition has been appealing, existing works on function-space inference tend to be lim-
ited by theoretical issues: principled applications may require full-batch training (Sun et al., 2019),
Gaussian likelihood (Shi et al., 2019), or specifically constructed models (Ma et al., 2019; Ma and
Hernández-Lobato, 2021). Many approaches rely on approximations to the function-space prior,
which can make the functional KL divergence unbounded (Burt et al., 2020). Additionally there is
a lack of understanding about optimization convergence, or the expressivity of the variational fam-
ilies used. In contrast, gradient-based MCMC methods, such as Hamiltonian Monte Carlo (HMC)
or Langevin dynamics (LD)-based algorithms, can been applied to a broad range of models. Their
convergence behaviors are well-understood (Roberts and Tweedie, 1996; Villani, 2009), and in-
triguingly, their performance often appear to be satisfying on massively overparameterized models
(Zhang et al., 2019; Izmailov et al., 2021), even though they are implemented in weight space.

This note bridges the two lines of approach by showing that

• In various overparameterized models, including a simplified BNN model, weight-space Langevin
dynamics (LD) is equivalent to a reflected / Riemannian LD procedure in function space, defined
by the pushforward metric.

• For practical feed-forward network models, the equivalence still appears to hold in simulations:
weight-space LD still produces predictive distributions that appears to approach the functional
posterior, at a rate that does not depend on the degree of overparameterization.

The equivalence has important implications: it means that principled function-space inference has
always been possible and in use. Thus, explicit consideration of function-space posteriors alone will
not be sufficient to guarantee improvement over existing approaches, and more careful analyses are
necessary to justify possible improvement.

It should be noted that in several scenarios, it has been established that overparameterization does
not necessarily hinder the convergence of LD. Moitra and Risteski (2020) establishes such re-
sults for a family of locally overparameterized models, which covers matrix sensing problems.
Dimensionality-independent convergence has also been established for infinite-width NNs in the
mean-field regime (e.g., Mei et al., 2019), even though its implication for practical, finite-width
models is less clear. While we are unaware of strict equivalence results as provided in this note,
it is not their technical sophistication that makes them interesting; it is rather their implications for
BNN inference, which appear underappreciated: the results justify the use of LD as an effective
function space inference procedure, in settings that match or sometimes generalize previous work.
For example, Example 2.1 covers overparameterized linear models, and many popular approaches
(e.g., Osband et al., 2018; He et al., 2020) are only justified in this setting.

Our results contribute to the understanding of the real-world performance of BNN models, as it
provides theoretical support for the hypothesis that inference may be good enough in many appli-
cations, and is not necessarily the limiting factor in a predictive modeling workflow. In this aspect,
it complements a long line of existing work which examined the influence of likelihood, prior and
data augmentation in BNN applications, with an emphasis on classification tasks with clean labels;
see Aitchison (2020); Wenzel et al. (2020); Fortuin et al. (2021), to name a few.

2 Equivalences between Weight and Function-Space Langevin Dynamics

Suppose the prior measure πθ is supported on an open subset of Rd and has Lebesgue density pθ.
The weight-space posterior πθ|D can be recovered as the stationary measure of the (weight-space)
Langevin dynamics

dθt = ∇θ(log p(Y | θt,X) + log pθ(θt)) +
√
2dBt, (WLD)

where we write X := {xi}ni=1,Y := {yi}ni=1 for brevity.

The pushforward measure A#πθ =: πf provides a prior in function space. Combining πf and the
likelihood lead to a posterior, πf |D. When the function space F := supp πf can be equipped with

2



a Riemannian manifold structure, it is intuitive that we could sample from πf |D by simulating a
Riemannian Langevin dynamics on F . In coordinate form:

df̃t = V (f̃t)dt+

√
2G−1(f̃)dBt, (FLD)

where f̃t ∈ Rd is the coordinate of ft ∈ F , G−1(f̃) = (gij) is the inverse of the coordinate matrix
of the metric, dBt is the standard Brownian motion, and

V i(f̃) = gij∂j

(
log p(Y | f(f̃),X) + log

dπf

dµH,F
(f)− log |G|

2

)
+ ∂jg

ij .

µH,F denotes the corresponding Hausdorff / Riemannian measure.

We are interested in possible equivalences between the induced function-space trajectory of (WLD),
{Aθt}, and the trajectory of possibly generalized versions of (FLD), with metric defined as the
pushforward of the Euclidean metric by A or its generalization. The easiest example is the following:
Example 2.1 (equivalence in linear models). Suppose the map A is linear. For expository sim-
plicity, further assume that πθ = N(0, I), and that the input space X = {x1, . . . , x|X |} has finite
cardinality, so that any function can be identified as a |X | dimensional vector (f(x1), . . . , f(x|X |)).

(i) If A is a bijection, the above vector representation will provide a coordinate for F . In this
coordinate, the pushforward metric has coordinate (AA⊤)−1 (see e.g., Bai et al., 2022), where
A denote the coordinate matrix of A. (FLD) with this metric reduces to

df̃t = (AA⊤)∇f̃

(
log p(Y | f̃ ,X)− 1

2
∥A−1f̃∥22

)
+
√
2AA⊤dBt.

(Derivation for the prior term may be found in Appendix A.1.) By Ito’s lemma, the above SDE
also describes the evolution of Aθt, for θt following (WLD).

(ii) The equivalence continue to hold in the overparameterized case (e.g., when d > |X |): con-
sider the decomposition Rd = Ran(A⊤)⊕Ker(A). Then the evolution of θt in (WLD) “fac-
torizes” along the decomposition: the likelihood gradient is fully contained in Ran(A⊤) and
thus only influences ProjRan(A⊤)θt, whereas ProjKer(A)θt has no influence on Aθt. There-
fore, we can describe the evolution of the former independently, thereby reducing to the exactly
parameterized case.

(ii) above provides the first intuition on why (WLD) is not necessarily influenced by overparameteri-
zation. While technically simple, it is relevant as it covers random feature models, which (formally)
include infinitely wide DNNs in the “kernel regime” (Jacot et al., 2018), where the pushforward
metric converges to a constant value.

The following claim shows that linearity of A is not necessary in establishing the equivalence.
Claim 2.1 (nonlinear parameterization, proof in Appendix A.1). Suppose A is differentiable, and

1. A is bijective; or

2. A is locally bijective, the priors have constant densities, and the “pushforward” of the weight-
space metric can be consistently defined globally; see App. A.1 for precise statements.

Then the equivalence between (WLD) and (FLD) continues to hold.

As we will show in Example 2.3, Claim 2.1 already demonstrates some equivalence between (WLD)
and (FLD), in the presence of global overparameterization. It can also be combined with Exam-
ple 2.1 (ii), to construct models exhibiting both local and global overparameterization. Still, we
present a more relevant example below, which is a simplified BNN model exhibiting permutational
symmetry. Note that this model allows for a non-constant neural tangent kernel, which is an impor-
tant feature of realistic NN models (see e.g., Ghorbani et al., 2019; Wei et al., 2019).

Example 2.2 (simplified BNN model). Consider the model f(x; θ) :=
∑d

i=1 sin(θix), which is
a two-layer BNN with the second layer frozen at initialization. Let the prior support supp πθ be
contained in (0,+∞)d, and assume the technical conditions (A1)-(A2) in Appendix A.2.
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By the linear independence of sin functions, for Aθ = Aθ′, θ′ must be a permutation of θ. Thus,
the weight space is partitioned into d! polyhedral cones, based on the ordering of the components
(θ1, . . . , θd). Within any cone, the restriction of A is bijective; thus by Claim 2.1, (WLD) will
be equivalent to (FLD) (with the pushforward metric) before θt hits any boundary between cones.
However, the crossing of boundaries requires extra analyses, since any function with parameters on
the boundary cannot be included in the function-space manifold.

Appendix A.2 proves the equivalence between discretized versions of (WLD) and a reflected LD
algorithm (Sato et al., 2022) in weight space, where θ is constrained to the initial cone. Since the
restriction of A to any single cone is a bijection, and the resulted pushforward metric is independent
of the choice of cones (see appendix for proof), we may view1 the reflected LD procedure as a
reflected LD procedure in function space, in light of the equivalence result in Claim 2.1.

Discussion. It is intuitive that simulation of (FLD) should constitute an efficient function-space
inference algorithm, in light of the established guarantees of (Riemannian) LD. Thus, the established
equivalences provide strong justifications for the use of (WLD) in practice.

The pushforward metric used to define the equivalent (FLD) is often believed to encode a desirable
inductive bias, and has been used to characterize or design first-order optimization methods (e.g.,
Luk and Grosse, 2018; Lee et al., 2019). However, there are also models on which it may be unsuit-
able, such as very deep feed-forward networks, for which the pushforward metric may degenerate
(Jacot et al., 2019). It should also be noted that VI and MCMC methods can have different behavior
on overparameterized models: for VI methods it may still be necessary to explicitly account for
overparameterization. While recent works have made similar observations (e.g., Sun et al., 2019),
and provided some examples (Wang et al., 2019; Kurle et al., 2022), the following example may
provide additional insight:

Example 2.3 (LD and particle-based VI on torus). Let Aθ := ([θ1], . . . , [θd]), where [a] := a −
⌊a⌋ ∈ [0, 1). Let πθ, πf have constant densities, and the negative log likelihood be unimodal and
locally strongly convex. Then we have F = Td, the d-dimensional torus, and by Claim 2.1, (WLD)
is equivalent to Riemannian LD on F . As Td is a compact manifold, (FLD) enjoys exponential
convergence (Villani, 2009), and so does the induced function-space measure of (WLD).

Particle-based VI methods approximate the weight-space posterior with an empirical distribution of
particles {θ(i)}Mi=1, and update the particles iteratively. Consider the W-SGLD method in Chen et al.
(2018): its update rule resembles (WLD), but with the diffusion term replaced by a deterministic
“repulsive force” term, ṽt(θ)dt, where

ṽt(θ) :=

M∑
j=1

∇θ(j)kh(θ, θ
(j))∑M

k=1 kh(θ
(j), θ(k))

+

∑M
j=1 ∇θ(j)kh(θ, θ

(j))∑M
k=1 kh(θ, θ

(k))
,

and kh is a radial kernel with bandwidth h. Formally, in the infinite-particle, continuous time limit,
as h → 0, both ṽtdt and the diffusion term implements the Wasserstein gradient of an entropy
functional (Carrillo et al., 2019), and W-SGLD and LD are formally equivalent (Chen et al., 2018).

The asymptotic equivalence between (WLD) and W-SGLD breaks down in this example: whereas
(WLD) induces a function-space measure that quickly converges to πf |D, this is not necessarily true
for W-SGLD. Indeed, its induced function-space measure may well collapse to a point mass around
the MAP, regardless of the number of particles. To see this, let θ∗ ∈ [0, 1)d be any MAP solution so
that ∇θ log p(Y | X, θ∗)p(θ∗) = 0. Then for any fixed h = O(1), as M → ∞, the configuration
{θ(i,M) = (1010

Mi

, 0, . . . , 0) + θ∗}Mi=1 will constitute an approximate stationary point for the W-
SGLD update. This is because the posterior gradient term is always zero, but the repulsive force
term vanishes due to the very large distances between particles in weight space.

Past work have noted the pathologies of particle-based VI in high dimensions (Zhuo et al., 2018; Ba
et al., 2021); this example is interesting as it does not require an increasing dimensionality. Rather,
it is global overparameterization that breaks the asymptotic convergence to LD.

1It appears unnecessary to introduce the formalism of reflected LD on manifolds.
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3 Simulation Study

We now validate our findings on practical BNN models. We consider BNN inference on a toy 1D
regression dataset, and check if the function-space measure induced by (WLD) appears to converge
at a similar rate, across models with increasing degree of overparameterization. Concretely, we will

1. visualize the pointwise credible intervals, which are informative about one-dimensional marginal
distributions of the function-space measure;

2. when the training sample size n is small, we approximately evaluate the approximation quality
of (n + 1)-dimensional marginal distributions of f(Xe) := (f(x1), . . . , f(xn), f(x∗)), by esti-
mating the kernelized Stein discrepancy (KSD) between the marginal distribution q induced by
(WLD), and the approximate ground truth p.
The KSD can be estimated because it only accesses p through its score function,

∇f(Xe) log p = ∇f(Xe)

(
log

dπf(Xe)

dµLeb
+ log p(Y | f(Xe))

)
= ∇f(Xe)

(
log

dπf(Xe)

dµLeb
+ log p(Y | f(X))

)
, (since X ⊂ Xe) (1)

where πf(Xe) denotes the respective marginal distribution of πf , and µLeb denotes the Lebesgue
measure. We estimate the first term by fitting nonparametric score estimators (Zhou et al., 2020)
on prior samples. The second term can be evaluated in closed form.

We use feed-forward networks with factorized Gaussian priors, and the standard initialization scal-
ing: f(x; θ) := f (L)(f (L−1)(. . . f (1)(x))), where

f (l)(h(l−1)) := W (l)h(l−1) + b(l), vec(W (l)) ∼ N
(
0, (dim h(l−1))−1I

)
, b(l) ∼ N (0, 0.1I).

We vary the network depth L ∈ {2, 3}, and the width of all hidden layers H ∈ [20, 500].

The training data is generated as follows: the inputs consist of ⌊2n/3⌋ evenly spaced points on
[−2.5,−0.5], and the remaining points are evenly placed on [1, 2]. The output is sampled from
p(y | x) = N (x sin(1.5x) + 0.125x3, 0.01). We use n = 7 for visualization, and n = 3 for KSD
evaluation. The difference is due to challenges in approximating the KSD: we need the score estima-
tor to generalize to out-of-distribution inputs (approximate posterior as opposed to prior samples),
which is challenging in high dimensions.

We implement (WLD) with the Metropolis-adjusted Langevin algorithm (MALA), and evaluate the
induced function-space samples for varying number of iterations. The step size is set to 0.025/nH ,
so that the function-space updates have a similar scale.

We visualize the posterior approximations in Fig. 1 and Fig. 3, and report the approximate KSD
in Fig. 2. As we can see, the convergence appears to happen at a similar rate, which supports the
equivalence results.
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A Proofs

A.1 Proof for Claim 2.1

Claim A.1 (Claim 2.1, restated). Suppose A is differentiable, and one of the following holds:

1. A is bijective;

2. A is locally bijective, and that

(a) for any θ, θ′ ∈ supp πθ s.t. Aθ = Aθ′ = f , and their neighborhoods N,N ′ s.t. the restric-
tions A|N ,AN ′ are bijective, the pushforward of the local Euclidean metric by A|N and
A|N ′ at f are equivalent;

(b) both dπθ

dµLeb
and dπf

dµH,F
are constant functions.

Let θt follow (WLD), and fwld
t := A(θt). Then fwld

t follows the same SDE as (FLD), defined with
the pushforward metric.

Note that in the locally bijective case, by condition (b) a metric can be consistently defined by
considering the pushforward of restrictions of A, to any subset of its preimage on which it becomes
bijective. With slight abuse of notion, we refer to this metric as the pushforward of A.

Proof. By definitions, for any f ∈ F , there exists θ ∈ supp πθ and one of its neighborhood N ,
s.t. f = Aθ, and that for U = A(N), (U,A|N ) forms a coordinate chart. On this chart, the
coordinate matrix of the pushforward metric tensor equals identity, by its definition. Thus, the
coordinate representation (FLD) reduces to

dθt = ∇θ

(
log p(Y | θt,X) + log

dπf

dµH,F

)
+

√
2dBt.

The above equation only differs from (WLD) in the prior term. In the locally bijective case both
prior terms have gradient zero, and thus the proof is complete; for the bijective case, it suffices to
show that for all θ ∈ supp πθ, we have

dπf

dµH,F
(Aθ) =

dπθ

dµLeb
(θ) = pθ(θ),

where µLeb denotes the Lebesgue measure. By the change of measure formula, the above will be
implied by

πf
(i)
= A#πθ, µH,F

(ii)
= A#µLeb.

(i) is the definition of πf . For (ii), let g : F → R be any measurable function with a compact support,
{(Ui = A(Ni),A|Ni) : i ∈ [h]} be a finite chart covering of supp g, and {ρi} be a corresponding
partition of unity. Then∫

F
g(f)µH,F (df) =

h∑
i=1

∫
Ni

(ρig)(A(θ))
√

|G(θ)|µLeb(dθ)

=

∫
A−1(supp g)

g(A(θ))µLeb(dθ).

This establishes (ii), and thus completes the proof.
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A.2 Proof in Example 2.2

Let θ̂ld,k be the trajectory of the forward Euler discretization of (WLD) with step-size η:

θ̂ld,k+1 := LDUpdate(θ̂ld,k, Zk) := θ̂ld,k + η∇θ(log p(Y | θ̂ld,k) + log pθ(θ̂ld,k)) +
√
2ηZk. (2)

Following Sato et al. (2022), we will use bounded, rotationally invariant independent random vari-
ables as Zk, to avoid the rare large jumps; this is known to not affect weak convergence.

For any permutation r = {ri}, define the cone

Θr := {θ ∈ (0,+∞)d : for all i ≤ d, θi has the ri-th largest value}.

Clearly any θ ∈ Θr will have distinct coordinates. Let Pr : Rd → Rd be the map that permutes the
components of its input so that it falls into Θr. We restrict to the probability-1 event where for all
k ≤ K, there exists some permutation rk s.t. θ̂ld,k ∈ Θrk . Then the operator P introduced in the
text equals Pr0 . We further impose the assumption that

(A1) The model and likelihood is such that, for any fixed L > 0, as η → 0, we have, with probability
approaching 1, ∀k ≤ ⌊L/η⌋, rk and rk+1 differs by at most two elements.

In words, we want all θ̂ld,k+1 to fall into an adjacent cone to that of θ̂ld,k. This holds for continuous
time random walk (i.e., LD with no likelihood), and thus is natural to expect; we pose it as an
assumption for simplicity. We restrict to this event in the following. We also assume that

(A2) The prior density is symmetric, i.e., pθ = pθ ◦ Pr for all r; moreover, as θ → θ0 where the
vector θ0 contains at least one zero, log pθ(θ) → −∞ at a rate sufficiently fast.

The latter condition ensures that when η is sufficiently small, (2) will never leave the prior support.

F and its metric structure We define F as the image of A restricted to any Θr. Clearly, F
is consistently defined as a differentiable manifold. We can equip F with the pushforward of the
Euclidean metric by A|Θr

, for any fixed r. Here we show that all such choices are equivalent; thus,
similar to Claim 2.1, we can refer to the “pushforward of A” in an unambiguous way.

This is because the metric at Aθ can be identified through the function KAθ(x, x
′) =∑d

i=1 xx
′ cos(θix) cos(θix

′) =: xx′ ∫ ρθ(da) cos(ax) cos(ax
′), where ρθ :=

∑d
i=1 δθi(·) is a dis-

crete measure associated with θ. By the linear independence of sinusoid functions (and our restric-
tion θi > 0), Aθ = Aθ′ will imply ρθ = ρθ′ , which in turn implies KAθ ≡ KAθ′ . This proves the
equivalence of choices.

Proof for the equivalence

1. {θ̂ld,k} and {P(θ̂ld,k)} produces equivalent predictions: we have A(Pθ) = Aθ for all θ.

2. Let θ̂P,k := P(θ̂ld,k). We now claim that

θ̂P,k+1 = P(θ̂PU,k+1), θ̂PU,k+1 := LDUpdate(θ̂P,k, Z̃k), (3)

where Z̃k denote a permuted version of Zk. When rk+1 = rk, (3) immediately follows from the
fact that, by symmetry, we have

Pr(LDUpdate(θ, Z)) = LDUpdate(Pr(θ),Pr(Z)) (4)

for all r and θ. Otherwise, observe that

θ̂P,k+1 = P(θ̂ld,k+1) = P(Prk(LDUpdate(θ̂ld,k, Zk))) = P(P0(LDUpdate(θ̂ld,k, Zk)))

(4)
= P(LDUpdate(P0θ̂ld,k,P0Zk)) = P(LDUpdate(θ̂P,k,P0Zk)).

This proves (3). Note that Z̃k is still independent of Z<k, and identically distributed as Zk. Thus,
{Z̃k : k ∈ N} provide a valid source of driving noise in (2).
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3. It remains to show that {θ̂P,k} is equivalent to the particle trajectory of the reflected gradient
Langevin dynamics algorithm in Sato et al. (2022), which is defined as

θ̂R,k+1 = R(θ̂RU,k+1), θ̂RU,k+1 := LDUpdate(θ̂R,k, Z̃k)

where R denotes the symmetric reflection operation: R(θ) := 2θ̄ − θ, where θ̄ denotes the
projection of θ to the constraint set Θr0 . Thus, to show the equivalence between {θ̂R,k} to
{θ̂P,k}, we only need to show the equivalence of P and R. This can be easily verified given
(A1).

B Additional Results
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Figure 3: Additional visualizations in the setting of Fig. 1.
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