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Summary. We formulate a model for electronic foreign exchange markets suggesting
subordinators to represent sellers’ and buyers’ offers. Its analysis naturally leads to
studying level passage events. The classical level passage event concerns the joint law
of the time, height and jump size observed when a real-valued stochastic process first
exceeds a given level h. We provide an up to date treatment when this process is a
subordinator, and extend these results to multivariate subordinators. More precisely,
given a multivariate subordinator, we describe the events when certain components pass
individual levels.
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1 Introduction

Electronic foreign exchange markets collect offers to sell/buy quantities of a currency to
individual minimal /maximal prices. Transactions take place as soon as a buyer’s price
is higher than a seller’s price. What remains are the unmet offers that are commonly
represented graphically as in Figure 1. We are interested in these two price-quantity
processes which indicate to a potential buyer/seller what offers one can currently realise
on the market. We suggest to model these processes by subordinators, i.e. monotonic
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Figure 1: Offers on the market Figure 2: + realised transactions

processes with stationary independent increments. We also model the virtual left parts
of the processes that correspond to the realised transactions, as shown in Figure 2.

Mathematically, the crossing in Figure 2 is related to the level passage event as studied
in the end of the 1960s by Gusak [5] and Kesten [6] for subordinators X = (X;)4>0, and
more general Lévy processes. These studies involved times

T, =inf{a > 0: X, > h}, h >0, (1)

and their associated heights X (7},). Gusak’s and Kesten’s cumbersome approximation
techniques are no longer necessary as is seen in more recent accounts like Section II1.2
in Bertoin’s book [2] where Poisson point process techniques are applied to the process
of jumps of X. In a preliminary section we use these techniques to provide a complete
characterisation of the level passage event at fixed levels h or independent exponential
levels 7(q). By 'complete’ we mean that we give the joint law not only of T}, and X (T})
but also X (7,—), and in the case of an exponential level the level itself. Clearly this also
determines quantities known as undershoot, overshoot, jump size at the passage time etc.

The main purpose of this article is the generalisation to a multivariate setting. On the
one hand, this allows to deal with the passage of two subordinators that move towards
each other as in Figure 2. On the other hand, we describe level passage events of several
dependent subordinators. For precise statements we refer to Sections 2, 3 and 4, where we
treat the univariate case, one passage event involving several subordinators and several
passage events for multivariate subordinators, respectively.

Let us here describe the economic model in some more detail. We consider the two
trajectories in Figure 2 as being realisations of stochastic processes (0;);>0 and (5;)z>0.
A step of o at height py and of length ¢ = x5 — 1 corresponds to a seller who would like
to sell ¢ units of the currency at a price at least pg, and buyers are collected similarly
by 3. Therefore, o, is the price at which z units are supplied to the market. [, is the
price at which z units are demanded by the market. For simplicity, we assume o = 0

and By > 0. Our primary interest is in the 'crossing’ quantity and prices
Q:=inf{r >0:0,>p,} and P:=pg<og=F

representing the quantity actually traded and the range of the (collective) market price.



More precisely, our model consists in specifying o and 3 to be right-continuous inverses
of subordinators - sometimes also called local time processes since they arise as local times
of Markov processes, cf. e.g. Rogers and Williams [10]. In other words, we choose

Sy =inf{x >0:0, >a}, a>0,
to be any (increasing) subordinator starting from zero, and (By — B, )o<a<ps,, Where
B,=inf{z>0: 6, <a}, 0<a</p,

another such process - with finite lifetime but this is of no importance, since we focus on
the crossing event that always happens before. The crossing price and quantity can be
given in terms of the two subordinators as

P=infla>0:B,— S, <0} =inf{a>0:S,+ (By — B,) > Bo}
and Q:SPZBPZQI.

We assume S and B independent. Then X, = S,+ (By— B,) is another subordinator and
P = Ty, its first passage 'time’ over the level h = By given in (1) whereas () and @' are
related to the passage ’height’ of X. We obtain their explicit joint law as an application
of theoretical results in Section 3. The multivariate analogues of Section 4 were obtained
in the aim to model a temporal evolution, but more work has to be done in this direction
to obtain a reasonably flexible dynamic. This seems to necessarily lead away from closed
form expressions as they are presented here. We postpone the further discussion of the
model to Section 5 where we also address the interpretation of parameters.

2 Preliminaries on the level passage event of a single
one-dimensional subordinator

Let X = (X,)q>0 be a subordinator, i.e. an increasing process with stationary indepen-
dent increments, whose law is represented by the Lévy-Khintchine formula for its Laplace
exponent

In E(e 9%a)

a

—0g)=bg+ [ (- e ) ®)
(0,00)

where we refer to b > 0 as the drift coefficient and to Il as the Lévy measure. II is
required to integrate 1 Az on (0, 00). Bertoin [3] is a standard reference, also chapter 111
in Bertoin [2]. Then X has the following structure

Xe=ba+ » AX,, a>0,  where AX,=X,— X,

0<s<a

is the process of jumps of X which is a Poisson point process with intensity measure II.
Note that the integrability condition allows II to be infinite ’at the origin’, i.e. TI(g, 00) 1
oo for € | 0. If so, this means that X has infinitely many jumps in every interval, but
these jumps are summable. If b = 0, X is called a pure jump subordinator.



Independent exponential random variables 7 = 7(a) ~ Exp(a) are often very useful.
An example of their occurrence are resolvents

o 1
V(dr) = / e “P(X, € dx)da (: EP(XT(Q) € dx)) , a> 0. (3)
0

It is an immediate consequence that their Laplace transforms are (a+ ®(q))~!. We shall
meet resolvents in the context of hitting times

Hy =inf{a > 0: X, = h} € (0,00], h > 0.

If b =0, then Hy, = oo a.s. If b > 0, then V* admits a density v® w.r.t. Lebesgue measure
which is continuous on (0, c0) and satisfies v*(0) = v*(0+) = 1/b. Furthermore,

E (exp{—aH,}) = bv*(h). (4)

Cf. Corollary I1.18 and Theorem IIL5 in [2].

Concerning the passage of a level h > 0, three basic and three associated quantities
are of interest, namely the passage time T}, the passage height X (7},) and the jump size
AX(T}) of the level passage, the overshoot oy, the undershoot u;, and the pre-passage
height X (7},—); mathematically, these are

T, =inf{a >0: X, > h}

Op, :X(Th) —h, Up :h—X(Th—), Ah :AX(Th) :X(Th) —X(Th—) = op, + Uy,
If X is a.s. strictly increasing, i.e. if Il is an infinite measure or b > 0, then a.s. for all
h >0, T, coincides with inf{a > 0: X, > h}.

We shall also treat the situation when h is replaced by an independent exponential
height 7 = 7(¢) with parameter ¢ > 0. Then we can give the joint law of these quantities
in terms of the Laplace exponent ® of X. The central result of this section is the following.
It is formulated in three different ways: a) as a distributional identity for a fixed level h,
b) as a distributional identity for an exponential level 7(¢) and ¢) as a Laplace transform

identity for an exponential level which can also be viewed as a double Laplace transform
of the fixed level distributions.

Theorem 1a) For all h >0
P(T), € da, X(T,—) € dy, Ay, € dz)
= (5h(dy)P(Hh € da)(S()(dZ) + 1{0§y§h<y+z}P(Xa c dy)daH(dz)
Theorem 1b) For all ¢ > 0
P(TT(q) € da,X(TT(q)—) € dy, AT(q) S dz)
= P(H, € da)ge “dydy(dz) + e “P(X, € dy)da(l — e ¥*)II(dz).
Theorem 1c) Forallq >0, k> —q, A\> —q— K, a>—P(¢g+ K+ ), andv >0

¢(P(g+K+v) = V)

B (exp {_’W(Q) — T — XX (T7—) — VAT(Q)}) - (q+k) (a+D(g+r+N)




Proof: a) We first generalise Proposition II1.2 in [2] to include the time component. His
argument, using the Poisson point process technique, yields on {0 <y < h<y+2,0<
a< oo}

P(T), € da, X(Ty,—) € dy, Ay, € dz) = P(X, € dy)dall(dz).

The full argument can also be found as a special case in the proofs of generalisations in
this paper.
The term for z = 0 is obtained as follows:

P(Ty, € da, X(Ty,—) € dy, A, =0) = o,(y)P(T), € da, X(T},) = h) = on(y)P(H}, € da).
b) We calculate for bounded real functions f, g, and ¢
E(f(T-)g (X(T:=)) {(Ar))
:/ qe " f(a)g(h)¢(0)P(H), € da)dh
0 [0,00)

N /0°° qe_:l /Ooo /[0 N /( o f(a)g(y)(z)11(dz)P(X, € dy)dadh

= [ S0, € dage vy
0 0,00
[ feewee v - e )P, € dydanaz).
(0,00) J0 [0,00)
¢) We deduce from a) by integration. Assume first k = 0. From (3) and (4) we obtain

E (exp{—aT; = AX(T;) — vA;} Lia, =) = / ge”WINE (e Hm) dh
0

b
a+®(g+ )

The calculation of the second term involves Fubini’s theorem and the Lévy-Khintchine
representation (2) only:

E (exp {—aT; = AX(T:) = vA;} 1A, 50))

/ qe qh/ a/ e_/\y/ e "*II(dz)P(X, € dy)dadh
0,h] (h—y,00)
y+z
/ / Ay/ e”z/ qe "dhll(dz)P(X, € dy)da
0,00) 0,00) Y

P(g+v)—P(v) — bq
a+¢@+A) ’

Finally, we deduce

E (exp {=#7(q) — aTy(g) = AX (Triq)—) — vArq) })



_, / e e (exp {—aT), — AX (Ty—) — vALY) dh
0

= P T /{E (exp {—OzTT(q+K) — )\X(TT(qu)—) — VAT(Q+K)})

q(Plg+r+v)—2(1))
(g+rK)(a+P(g+r+N)

O

The complete result concerning c¢) now follows as a corollary. We also spell out
explicitly some more marginals.

Corollary 1 (i) We have for all q, K, «, 3,7, A, i, v such that the right hand side of the
following formula is defined

E (exp {—k7 — T, — Pu, — vo, — AX(T,—) — uX(T;) — vA,})

_ 4@t rtptBtv) - Sy +p+v)
(@+r+8=7)(@+P(g+r+pu+A)’

(i1) In particular T, ~ Exp(®(q)), (T, X (T,—)) is independent of (u,,0,,A;) and

E(exp{—aT,}) = 8%?%%5
E(exp {-pX(T)}) = ‘b<q;(5)+—ugb<u)
B(exp{-vA,}) = q“q+£é;@00
st - 2500
E (exp{~fu.}) = %
Bloxp (-AX(T-)) = gt
E (exp {—aT, = AX(T;-)}) = 51%%%?B

q(®(q+B) — @(v))
(¢+B—72(q)

The (T}, X (T)) statement is originally due to Gusak [5] and Kesten [6], even in a
more general Lévy process setting. For related results at exponential heights cf. Bertoin
[2], Exercise VI.1, Theorem VII.4, and [3] Lemma 1.11.

We shall now study more thoroughly the independence of (7, X (T.—)) from (u,, o,).
It can in fact be strengthened as follows.

E (exp{—fu, —yo,}) =

Proposition 1 (X,)o<q<r, is independent from (u,,o;).



Proof: ~ This is once more due to the Poisson point process property of the process
Jo = X4 — X4 of jumps of X. Choose an arbitrary functional f on the path space,
B >0 and v > 0. Assume first b = 0. Then

E(f (Xs)o<s<r, ) exp {—Pu, — vo,})

=F <Z f 0<s<a exp{ ﬁ(T - Xa—) - V(Xa— + Ja - 7—)} ]-{Xa_<$,Ja>TXa_})

a>0

= / E (f ((X )0<s<a) 1{Xa—<7}/ eﬁ(TXa—)V(Xa—+z7)1{Z>TXa_}H(dZ)> da
(0,00)

/ / 0<s<a)| Xa— - y) e—(’y—ﬂ)y
0,00)

y+2
/ e 7Z/ ge” Me PV gRIN(d2) P(X,— € dy)da

</ /Ooo Xs)o<s<a)| Xaw = y) TP (X, € dy)da)
m/(om) (1= e @2) — (1 %)) T1(d2)

shows the asserted independence. If b > 0, denoting the range of X by R, we obtain
from the second line an additional term, cf. Corollary IV.6 in [2]

E(f (Xo)o<s<r,) Llia,=0y) = / qe™"E (f (Xs)o<s<m,) Linery) dh

= (/ I (( 0<s<Th)6_qX(Th_)qdeh>
= </ f 0<s<0L)6 @ Xa- qbda)

= qb/ E (f ((Xs)0§8<a) e_QXai) da

0

which cancels with an additional occurring from the last line above due to

/( oy (L) = (1= ) TH(d2) = B(g + ) = @(3) = bla + 5 =),
O

The next two sections extend the results presented here to two different multivariate
settings. The first is to consider X = X 4. ..+ X (™ as the sum of m independent sub-
ordinators XM ... X The additional information asked for are then the individual
heights at 7}, and which of the components jumps at the passage time. The special case
m = 2 appears in the foreign exchange market model.

The second way to generalise to a multivariate setting is by taking a multivariate sub-
ordinator X = (X(l), . ,X(")) with dependent components, and simultaneously study



the times and associated quantities when the components X @) pass levels hj,j=1,...n.
The most general example of a multivariate subordinator is obtained by chosing its deter-
ministic drift vector and the Lévy measure which is the measure gouverning the rates and
height distributions of its Poissonian jumps like in the one-dimensional case (2). More
particular examples have been discussed by Barndorff-Nielsen et al. [1]. Specifically, mul-
tivariate subordinators can be obtained by superposition, i.e. linear transformation of a
vector of independent subordinators, or by subordination, i.e. e.g. time-changing a vector
of independent subordinators by another independent subordinator.

3 Level passage for a sum of independent subordi-
nators
Let X = XO 4+ X® 4+ 4+ X be a subordinator built from a deterministic drift
X,EO) = ba, and m independent pure jump subordinators X ... X We study
T, =inf{a > 0: X, > h}, h >0,

the associated individual heights X®(T},—), i = 1,...,m, and the jump occuring at T}, -
there is only at most one jump since independent subordinators have no common jump
times a.s., cf. e.g. Revuz and Yor [9], Proposition XII.(1.5). We use the obvious notation
®@ T14 ... for the Laplace exponent, Lévy measure,... of X® i=0,...,m. Clearly,

d(q) = Z 1 (q) and  II(dz) = Z 1% (dz).

3.1 Which subordinator performs the passage?

In this subsection we shall not bother about the laws of the quantities introduced but
only how the passage takes place. Specifically, we calculate the probabilities that the
drift (i = 0) or a jump (i = 1,...,m) of X makes X pass the level. We denote these
events by

AD(p) ={AXO(T) >0}, i=1,...,m, AO() = (LmJA(i)(h)) :

The O-resolvent measure V = V9 of X, cf. (3), is called the renewal measure. Recall
that b > 0 entails the existence of a Lebesgue density v, continuous on (0,00). We also
introduce the tails [I?)(z) = 1) (z, 00) of the Lévy measures of X,

Proposition 2 a) For allh >0
P(AOh)) =bu(h) and P(AD(h)=TD%V(h), i=1,...,m,

where x s the convolution of a function with a measure.
b) Fort=1(q), ¢ >0,




Proof: a) The first is the probability that X hits h, cf. (4).
For the second probability we repeat the proof of Proposition II1.2 in [2] to obtain on
{0<z<h<z+2z}

P (X(Ty—) € dz, X(T3,) — X(T},—) € dz) = 11V (dz)V (dx)
and therefore

P (XO(T}) - XO(Th—) > 0) = / 0O (h — )V (dz) = 0O+ V (h).
[0,h]

b) We integrate the formulas in a) w.r.t. the exponential law and use the facts that
the Laplace transforms of V and TI® (h)dh are 1/®(q) and ®(q)/q, respectively, cf. [2]
section III.1. a

The special case m = 2 can be interpreted differently. Also, we see that supposing
the only drift term is in X© is for notational ease.

Example 1 (Passage of two subordinators moving towards each other) Let YV
and Z be two independent subordinators, with drift coefficient by, 7, Lévy measures
[Ty and Il,, etc. associated in the obvious notation. Consider now Y as it is but h — 7
the subordinator starting from h and moving downwards, towards Y. The passage event
of X =Y + Z over level h is the event that Y and h— Z cross. The preceding proposition
yields

a) for all h > 0

P (Y(Th—)=Y (Th)=h—Z(Th)=h—Z(Th—)) = byszvy+z(h)
P(Ay(h)) = P (Y(Th—)<h—Z(Ty)=h—Z(T;~)<Y(T})) = Iy * Vy1(h)
(h)) = P (h—Z(Ty)<Y (Th—)=Y (Ty)<h—Z(Th—)) = Ty + Vs 5(h).

P(Ao(r)) = P (Y (T,=)=Y (T,)=r—Z(T;)=r—Z(T;~)) = @qf:(Z )
P(Ay(1)) = P(Y(T,—)<r—Z(T,)=r—Z(T,—)<Y (T},)) = ‘I’quzf(g)
P(Ay (1)) = P (1—Z(T,)<Y (T.—)=Y (T,)<t—Z(T,—)) = %j((q))’

where I denotes the identity process I; = t.



3.2 The joint law of the passage variables

We now turn to the joint law of the involved quantities. These are principally the passage
time T},, the pre-passage heights X@(T,,—), i = 1,...,m, the jump size A, and the
information which subordinator performs the passage, i.e. which of the events A®, § =
0,...,m, occurs. When h is replaced by an independent exponential height 7, this
height is added to the list. Note however, that on A©® there is no jump at time 7.,
hence 7 = XO(T,—) + ... + X")(T.—) = XO(T,) + ... + X")(T}) is determined
by XO(T,—) = bT,, XD (T,—),..., X™ (T, —). From these principal quantities we can
derive e.g. overshoot, undershoot and passage heights by linear transformations.
In this setting we formulate the main theorem of this section.

Theorem 2a) Forallh >0andj=1,...,m

P(T, € da, X'(T},—) € dzj,i=1,...,m, Ay, € dz, AD)
= P(XY eda;,i=1,...,m|X, = h)P(H, € da)dy(dz)
P(Ty € da, X(T),—) € dxy,i=1,...,m, Ay € dz, AV))

= 1{321+...+:L‘m§h<$1+...+$m+2’} <H P(XL(IZ) [ dl‘z)) daH(])(dZ)

i=1
Theorem 2b) Forallg>0andj=1,...,m
P(T, € da, X')(T,—) € dz;,i=1,...,m,A, € dz, AY)
= (ﬁ e wip(X\W ¢ dx1)> da bgdy(dz)
i=1
P(T, € da, X'"N(T,—) e dz;,i=1,...,m, A, € dz, AD)

— (H e wip(X¥ ¢ dxi)> da(1 — e 1Y) (dz).
i=1

Theorem 2c) Forall¢g>0,k>0,0a>0&>0,...,6,>0,v>0,7=0,...,m

E (exp {—#7 —aT, — 6§ XD (T,—) — ... = £, X"(T, =) — vA } 1 409)
q (P9 (g + r+v)— 2V (v))
(q+ k) (a+PD(g+r+&)+...+PM(g+K+&y))

Proof: a) The first law is immediate since {H, = a} = {X, + Y, = h} for all h > 0,
a > 0.

The second is obtained like in Theorem 1b) by verifying for f, g, £ bounded measurable
functions via the compensation formula for the Poisson point process J&) = X — x¥)

a—

10



of jumps of XU). Note that this process ignores the jumps of X® for 7 # j.

E(f(T)g(X(Th—), ..., X" (T,=)0(An)1400)

=F (Z Fa)g(x{, ... ,Xér—n))f(ﬁj))l{xagh,Ja>h—Xa}>

a>0

= [T 1@ (s X [ e<z>1{z>hxa_}n<ﬁ<dz>) da
(0,00)
/ / fla)g(xy, ..., T HP ) € dx) | IV (dz)da.
0<z1+...42m<h<zi+..4+Tm+2

b) We verify the first law by fixing f and g arbitrary bounded measurable functions
and using Corollary IV.6 in [2] like in proof of our Proposition 1:

E (f(TT)g(X(l)(TT—), e :X(M) (TT_))l{X(Tr*):T})

B / ge "B (f(T)g(XW, ..., X"N(T, =) x(r,—)=ny) dh
0

= ( / N ge” XA f(1) g (XD (Ty—), ..., X (Th—))l{hen}dh)
0

—E (/OO ge o= f(a)g(X, . XM da>
0
= / E <qe"’X“‘f(a)g(X,§1,), e ,Xé@)) bda
0

= / / fla)g(z, ..., xm)qbe d@1tFom) (H P(X\ ¢ d:EZ)> da.
o J[o,00)m i=1

The second formula follows from a) by Fubini’s theorem.
¢) From b) we calculate for j =0

E(exp{—aT, — & XW(T,—) — ... = £ X™(T,-) — vA, } 140)
/ / ge” 1@t Fam) gmaa=Giz1— _&”MP(X((I Ve dy)...P(X™ e dx,,)bda
0,00)™

:/0 exp{— (a+®V(g+ &) +...+ 2™ (g +&,)) a} gbda

_ qb
S a+ W (g+ &)+ M (g + &)
and for j=1,...,m
E (exp {—aT, — & XO(T, =) — ... = £ XM (1) — A} 140)

11



— (/ / e—q(m-I—...—I—:cm)6—aa—§1x1—...—§mmmP(X(§1) c diEl) N P(X(Em) e dmm)da>
0 [0,00)™

( /( RS e‘qz)H(j)(dz)>
QW) (g +v) — @Y (v) ’

a+ 0D (g+&)+...+ M (g+ &)

In both cases, 7 can be included in the joint transform in the same way as for Theorem
lc). O

Example 2 (Example 1 continued) In the situation of Example 1 we have e.g.

P(T, € da,Y (Ty—) € dy, Z(Tp,—) € dz, Ay, € dC, Ag)
=P(Y, €dy,Z, € dz|Y, + Z, = h)P(H), € da)dy(dC)

P(T), € da,Y (Tp—) € dy, Z(T),—) € dz, A, € d(, Ay)
= Liytech<ytory P(Ya € dy)P(Z, € dz)dally (d()

P(T), € da,Y (Ty,—) € dy, Z(T,—) € dz, Ay, € d(, Ay)
— Uyrecneysor) P(Ya € dy) P(Z, € dz)daTl(dC)

Again, one can easily derive from Theorem 2¢) the joint Laplace transform of all

involved quantities like in Corollary 1. We leave the details to the reader but mention,
that (T, XO(T,—),..., X(™(T,—)) is independent of (u,,0,), and this extends to

Proposition 3 (X,EO), .. ,X,Em))a<TT and (tur, 07,1 40, -, Lgem)) are independent.
Proof: 'The proof of Proposition 1 is easily adapted. O

Furthermore, we can characterize the law of (T,, XM (T,—), X(™) (T, —)) as follows.

Proposition 4 (T, X")(T,—),..., X(™)(T.-)) is infinitely divisible with zero drift co-
efficient and Lévy measure a~ e~ P(X{" € dx)...e~ 9 P(X{™ € da,,)da.
Proof: By Theorem 2b), the law in question is given by
P (T, € da, X"(T,-) € day, ..., X" (T,-) € dz,,)

= ®(q)e ™ P(XV € dxy)...e”® P(X™ € dx,,)da

= ®(q)e W P(X € dry) ... P(X™D € da,,)da

= P (7(®(q)) € da, X" (1 (®(q))) € da1,..., X ™ (7 (2(q))) € dam)
where X% is constructed from X by an exponential density transformation, cf. Sato
[11] Section 33, which is also called temperation, discountation or exponential tilting. The
importance of this reformulation is that now the exponential random variable 7(®(q))

is independent of (X9, ... X(m9)) and we may apply Lemma VI.7 of Bertoin [2] to
obtain the Lévy measure

atemo®@p (Xél’Q) €dry,..., XM ¢ dz,,) da
—ale ™ P(XW cdry)...e " P(X™ € dz,,)da.

12



Finally, let us give two examples where joint densities can be calculated explicitly.
Again, we consider the two-dimensional case, for simplicity. The extensions to more
dimensions are obvious.

Example 3 (Gamma subordinators) Let X, ~ I'(Jxa, mx) and Y, ~ T'(dya, my).
Then we have
P(X, €dz) (zmx)"**e™x*  TIx(dz) e~ mx?

= =
dr I(Wxa) x dz Xy

s @X(q):ﬁxln <1+i>
mx
and for Y likewise. Then by Theorem 2a), (T}, X (T,—), Y (T,—), Ay) has on [0, 00)* the
joint density
dxa __dya

m m _ a—1. —9va—1_ -1 —mxx—m —mxz —my 2
1{m+y§h§x+y+z}F(ﬁ))((a)r(gya)x ey Ovarly e mxamyy (ﬁXe ¥t ye Y)

with some further simplifications if Jx = Jy and/or mx = my. In particular, if my =
my, (1ay,1a,) is independent of (7., X(T;—),Y(T,—),A,) and

19)( 19Y

Dx + Uy Ox + Oy "

P(AX) T, P(AY)
This is, in fact the case whenever by = by = 0 and (1 — r)IIx = rIly, not only in the

Gamma case.

Example 4 (Inverse Gaussian subordinators) Let X, ~ IG(dxa,vx) and Y, ~
IG(dya,7yy). This means

1

e %fy;)(mf §5§(a21_1

P(X,edx) oixa .

— Txdxa

dx V2r x3/2
My(dz) . yx e %" B [
P _6X\/—2_WW’ Px(q) = dx Yx + 29— x

and for yx = vy = 7, this yields the following as density for (7}, X (T),—), Y (T,—), Ap)
on [0, 00)*

1.2 152 2, —1_ 152 2. 1
(SX(SY’YQ2 Y(0x+dy )a e 2’ (THyte) gk a’a™ —ybya’y

1{x+y§h§m+y+z}W6 :173/2y3/223/2 (5)( + (5y) .

4 General setting of a multivariate subordinator

The law of multivariate subordinators, i.e. stochastic processes X = (X(l), ceey X(")) with
stationary independent increments in [0,00)", are characterised by the analogue of (2),
the so-called multidimensional Lévy-Khintchine formula of their joint Laplace exponent

_InE(em<0Xe>) — B(q) =< b q > +/ (1 — e <o*>)TI(dz), q €1[0,00)", (5)

a [0,00)"
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where <a,b> = a1b; + ... + a,b, is the Euclidean inner product of R". The vector
b= (by,...,b,) is called the drift vector and II, as in the one-dimensional case called
the Lévy measure, does not charge {0} but may charge hyperplanes and coordinate axes.
The analogous integral condition on II is that it integrates 1 A |z| where |z|? = <z, 2>
defines the Euclidean norm. Again,

Xe=ab+ Y AX,, a>0, where AX,=X,— X,

0<s<a

and (AX,).>0 is a Poisson point process with intensity measure II. As a consequence
of a well-known result from the theory of Poisson point processes, X has independent
components if and only if IT is concentrated on the coordinate axes, cf. e.g. Revuz and Yor
[9], Proposition XII.(1.7). In the sequel we shall suppose b = 0 in order not to overload
the presentation with unnecessary technicalities. It should be clear from the preceding
sections that the case b > 0 can be dealt with in a similar way, leading to some more
subcases and extra terms. Since the remaining zero-drift process is only moving by jumps
we call it a pure jump subordinator.
Level passage events can now be studied in each component, i.e. we can define

T,Ej):inf{aZO:Xéj)>hj}, j=1,...,n,

and ask for the probabilistic structure of the vector (T,EP, cee T,E:)) and associated heights
and jumps of the components at these passage times. We also replace hq,...,h, by
independent exponential heights.

4.1 The case of a bivariate subordinator

First, we focus on the bivariate case and indicate generalisations later. This is convenient
since the two-dimensional case captures all intrinsic difficulties whereas the large number
of random variables to be characterised in higher dimensions causes notational difficulties.
Let therefore (X,Y) be a bivariate subordinator, and

T =inf{a>0: X, > h} and TY =inf{a>0:Y, >k}

two level passage times. We use the notation Il x yy, [Ix and IIy for the Lévy measures
of (X,Y), X and Y, etc. Then we have the following result.

Theorem 3a) Let (X,Y) be a bivariate pure jump subordinator and h > 0 and k > 0
two levels. Then
P(T;¥ =T . T} € da, X (T;¥-) € da,Y (T} -) € dy, AX (T;Y) € db, AY (T}Y) € dc)
- 1{$§h<m+b,y§k<y+c}P(Xa € d:E, }/a € dy)daH(X,Y)(dba dc)
P(T;F <T), T} €da, X (T =) € da,Y (T;}—) € dy, AX (T;Y) € db, AY (T;}) € de,
T, — T, €da,Y (I, -) = Y (I;}) € dj, AY (T})) € dé)
= 1{m§h<x+b,y+c+gj§k<y+c+z}+6}P(Xa €dx,Y, € dy)daH(X,Y)(db: dc)
P(Ya € dgj)ddl'[y(dé)

14



Theorem 3b) Let (X,Y) be a bivariate pure jump subordinator and T ~ Exp(q) and
o ~ Exp(p) two independent exponential random variables. Then

P(T} =T), T} €da, X (I*-) € dx,Y (T)—) € dy, AX (I*) € db, AY (T))) € dc)
=e P (1—e ") (1—e ") P(X, € dr,Y, € dy)dallxy(db, dc)
P(TF <TY, T €da, X (T —) € da,Y (TX =) € dy, AX (T}) € db, AY (T)) € dc,
T) —TX eda,Y (I)-) - Y (I})) € dj, AY (T))) € dé)
= ¢ 9T WHetIr (1 — 79 (1 — e #%) P(X, € dx,Y, € dy)dall(x,y(db, dc)
P(Y; € dj)dally (de).

Theorem 3c) In the situation of Theorem 3b)

E (exp {=aT = Xy — Yoy — BAXpx —yAVpy } lgrxnyy)
Dxyy(Bp+7) + Pxyy (g + B,7) — vy (B,7) — Py (@ + B,p+ )
a+Pxyy(g+&p+n)
E (exp {—aT} — éXgx_ — BAXyx — &T) — iiYzy - — AAYpy } Lipx c7yy)
O+ Bp+0) = Sy (Bip+7)  Py(p+T) — Py (7)
- ata+Pxy)(g+&p+1) a+Oy(p+n)

Proof: a) For the first formula note that the pure jump subordinators X and Y can pass
a level simultaneously only if they jump at the same time. Let J, = (AX,, AY,) be the
jump process of (X,Y’). The Poisson point process argument, cf. the proof of Theorem
2a), yields the result.

For the second formula the argument is iterated, once for a first jump that makes X
pass its level h, then for a second jump that makes Y pass its level. The first application
of the compensation formula for Poisson point processes is replaced by an application of
Maisonneuve’s analogous formula for exit systems, which generalises the compensation
formula to include information on the post-point process, cf. Théoreme XX.49 of Del-
lacherie et al. [4]. We introduce the post-T;X processes Y, = Y (I;*4a) and J, = J(T +a)
which are independent of (X, Yq),<rx and have the same law as Y and J, and we denote

the conditional law given (X,, Y, )a<TX by P. The second application of the compensation

formula is the argument of Theorem 1a) applied to the process Y and the level k—Y,_ —¢
under E. Specifically, we calculate for bounded measurable functions f, ¢, ¢, f,§ and ¢

E(f(T;f()g(X(Tff—), V(T =) UAX(T;7), AY (T})))

FTY =T (T =) = V(L)Y (T) gy cay )

(Zf 9(Xam, Yo )T F(TY = a)g(Y (T =) = Y)UAY(T})))

a>0

(X, <h<Xo_47X} 1{Ya_+Jg<k}>
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2

:/ fla)E (9(Xa—aYa—)1{Xa_<h}/ €, )l ponXoy e<k—va_)
0 [0,00

Fy s, Ty, . ))E(A?(T,f_ya_c)m(X,n(db,dc))da

/ / f(a)l(b,c)E <Xa Yo )l ixeo<nylosn— X} Ve<k-va}
[0,00)2

E (f(Tk Y._ —c Tk Y,_—c ))E(A}N/(T/X—Ya,—c))>) daH(XJ/)(db, dc)
= /[ : / f(a)g(b; C)E<g(Xa’Ya)1{XaSh}l{b>h—Xa}1{c§k_Ya}
0,00)2 J0

/OO /<k Y, — <~+~f(d)§( DUP(Y; € dy)ﬁﬂdé)d&) dallx yy(db, dc)

/ / / / / F(@)g(z, y)E(b, &) F(@)3(5)0)
>0 b>0,c>0 J a=0 J z<h<z+b,y+c+y<k<y+c+y+é
P(X, € dz,Y, € dy)dall x.y(db, dc) P(Ys € dij)dally (de).

b) The formulas are easily derived from a) by integrating w.r.t. the exponential laws
of 7 and o.

¢) Again, this is elementary integration. Just note that we restricted attention to the
core quantities of each level passage event. As a first step we do the representation in
terms of the quantities used in b), for the second formula e.g.

E (exp{—aT — éXpx_ — BAXyx — &T) — Yy - — YAy } Lipx orry)
= E (exp{—(a+ &)} — {Xqpx_ — i¥rx_ — BAXpx — JAY7x
—a(Ty =T7) =i (Yry— = Vo) = 3AYVzy } Lzxaryy)

The proof is concluded like in Theorem 1c). O

Clearly, Theorem 3a)-3c) is not given in its most general form. One can include
information on X at T). Also, in part ¢) the laws of o and 7 can be included for a full
description. This works in the same way as for Theorem 2c).

To stress the importance of the first formulas in each part of Theorem 3a)-3c), we
state

Corollary 2 P(TX =TY) =0 if and only if X and Y are independent.

This is also obvious from the fact that a bivariate subordinator has independent
components if and only if they have no common jump times if and only if they pass levels
at the same time with positive probability. Note that the situation is the same if we
admit drift components because o is a.s. different from the value of Y at the passage
time of X over level 7.

Also, we can deduce the analogue of Proposition 2 giving the probabilities of the
subcases.
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Corollary 3 For independent T ~ Exp(q) and o ~ Exp(p) we have
®(0,p) + (¢,0) — (g, p)

P =T5) = ®(g, p)
P(TX <T)) = @(q’g)(q_ ;(O,p) and  P(TX >TY) = (I)(q,](g(;;(q, 0

where ® = @ (x yy.

There are also formulas for fixed A and k, but apart from

P(T;' =T)) = Hixy) * Vixyy(h. k) with (z,y) = Hxy)((x,00) X (y,0¢))
these are not so nice. One could write

P(T;Y < T)Y) = Ty = Vo * Hxy) * Vixy) (b, k)

where the convolutions and tail operators are to be interpreted in different ways. The first
convolution convolves a function of one variable with the one-dimensional measure V.
The middle convolution convolves a function of one variable with the second component
of the measure I x y). The last convolution convolves a function of two variables with the
two-dimensional measure V(xy). The tail operators always operate on one-dimensional
measures, here.

4.2 Examples

A source of examples for multivariate subordinators is Barndorff-Nielsen et al. [1]. In
particular, in our bivariate situation, we discuss briefly the constructions by subordination
and by superposition.

Example 5 (Bivariate subordinators by subordination) Let A, B,C be three in-
dependent purely atomic subordinators and (X,Y’) the bivariate subordinator obtained
by X =A0C,Y =BoC. Then

x,v) (&5 m) = Pc (Pa(§) + 25 (n))

Also joint law and Lévy measure are easily seen to have the explicit forms

P(X; € dx,Y, € dy) = / P(A, € dz)P(B. € dy)P(C; € dc)
(0,00)

x y)(da, db) = / P(A. € da)P (B, € db)lx(dc)
(0,00)

This yields for the formulas in the theorem e.g.

E (exp {—0T — {Xpx —nYpy  — aAXgx — BAYpy } Lipx_gy)y)
_ P (Pa(a) + Pr(p+ P) + Do (Palg + @) + P5(H))
0+ @c (Pa(é) + Pp(n))
P (Pa(e) + P5(B)) + Pe (Palg+a) + Pp(p+ 5))
0+ @c (Pa(§) + P5(n)
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It is also possible to include information on C' into the formulas since (X, Y, C) is a subor-
dinator as well. However, this is only a special case in the next section on subordinators
in dimensions higher than two.

Example 6 (Bivariate subordinators by superposition) Let A, B,C be three in-
dependent subordinators and X = A+ C,Y = B+ rC. Then

Pxy)(&m) = Pa(§) + Pp(n) + Pc(§ +1n).
Also

P(X, € d, Y, € dy) = / P(Ay+ ¢ € de)P(B, + rc € dy)P(C, € do)

(0,00)

T x.v)(da, db) = 8o (db)TL(da) + T (db)do(da) + 6. (db)TT(da).

As already mentioned in [1], there is a connection to processes of Ornstein-Uhlenbeck
type (OU processes). Specifically, a positive stationary OU process can be used to con-
struct families of (dependent) subordinators.

Example 7 (Relation to OU processes) Let (Z(a,?))s>00em be a random field
which contains stationary OU processes for fixed ¢ > 0 and subordinators for fixed
t € R. Then (X,Y) for X, = Z(a,0) and Y, = Z(a,t) is a bivariate subordinator with
Laplace exponent

(I)(X,Y) (67 77) - q)stat(g + neict) + (I)stat(n) — q)stat(neict).

where @, is the stationary univariate Laplace exponent of the subordinators, ¢ is the
correlation parameter of the OU processes. This is a special case of the superposition
example.

In the same way, one can study continuous-state branching process (CB processes).

The family of associated subordinators can be interpreted as describing an underlying
genealogy. Cf. Le Gall [8].

Example 8 (Relation to CB processes) Let (Z(a,?))s>04>0 be a family of CB pro-
cesses started in a, a > 0, such that one has a family of subordinators for fixed t. Like
in Example 7, (X,Y) for X, = Z(a,s) and Y, = Z(a,s +t) = Z(X,.t) is a bivariate
subordinator with Laplace exponent

Dxyy(§m) = P (§+ Pi(n))

where ®; is the Laplace exponent of (Z(a, s)),>0. This is a special case of the subordi-
nation example.

Of course, one can also analyse the non-stationary case of the OU example. On the
other hand, CB processes have no stationary behaviour. In the critical and subcritical
cases they die at a finite time, if the variation of the sample paths is a.s. unbounded,
and converge to zero if the variation is bounded. In the supercritical case they explode
(possibly even at a finite time).
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4.3 Extensions to higher dimensions

All results can be extended to n-variate subordinators (X™, ... X)) and levels
hi,...,h,. A presentation needs some notational simplifications since the number of
cases increases quickly from the three cases which determine the order of T;* and T} .
More precisely, let 1 < d < n, D;U...UDy; = {1,...,n} a partition into d disjoint
subsets, and 7 a permutation of {1,...,d}. We interpret the choice of D, as the events
{1}) = T\7 iff i, j € D,}, denote Ty, = T for i € D,, v =1,...,d. The choice of 7 is
to fix the order of passage times, i.e. to describe the event {T(,) < T(,) iff 7(r) < 7(s)}.
Once Dy,...,D; and 7 have been chosen, the formulas are composed by terms like in
Theorem 3a)-3c¢) according as two successive times are equal or not. We leave the details
to the interested reader.

Example 9 In principle, the above allows to give explicitly all finite-dimensional
marginal distributions of the passage events of (Z(a,t))s>04>0 in both the OU and CB
settings of Examples 7 and 8.

5 Applications in the econometric model

Figure 3 shows how offers on electronic foreign exchange markets are represented in
practice.

video picture

Figure 3: Snap shot of the electronic £-$ exchange market, 13 May 2001, 12h34:56

This is one of the original pictures that are behind our Figure 1 in the Introduction.
After indicating the context of this picture rather briefly, we focus on the model we set
up to its description. This includes a discussion of the properties required to obtain
tractability with the passage event theory developed in earlier sections of the present
paper. Also, the degree of modelling freedom is explained. Finally, we mention some
generalisations of the model.
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5.1 Main features of electronic foreign exchange markets

Let us briefly describe how these electronic markets work. Looking at Figure 3 as a
potential seller, the relevant information is what the current best buyers’ offers are, the
left part of the lower path (the vertical axis showing the price, lengths of horizontal lines
being quantities). A potential seller has two possibilities; either he is prepared to meet
the best buyers’ offers - then transaction takes place, the buyers’ offers are removed from
the screen, sellers’ offers remain unchanged; or he puts forward an offer higher than the
best buyers’ offers which is inserted into the sellers’ path waiting for new buyers willing
to meet the offer. A potential buyer has the opposite possibilities. In addition to these
four types of modifications, current offers may be removed by their owners.

5.2 Representation of offers by homogeneous Poisson point pro-
cesses

Let us now fix time, hence assume the situation of the snap shot, Figure 3. It is instructive
to continue the paths to their left as in Figure 2 of the Introduction and think of the added
part as the offers behind realised transactions. To be more precise, think of a number of
sellers and buyers who present their offers. These offers are then ordered by their price
and represented graphically as quantity-price paths as in Figure 2. Some buyers’ prices
will be higher than sellers’ prices so that transactions can take place. Assume that one
collective price is calculated at which all willing buyers and sellers buy and sell. This
price P is so that the quantities sold and bought coincide.

Let Ng be the number of sellers and Np the number of buyers, Ps(s) > 0 the minimal
price at which seller s would sell his Qg(s) units of currency, s = 1,..., Ng, Pg(b) > 0
the maximal price at which a buyer b would buy @ g(b) units of currency. All information
is contained in

Se= > @s(s) and  By= > Qp(), a>0, (6)

s:Ps(s)<a b:Pg(b)>a

the number of units offered and demanded, respectively, if the agreed price was a. Obvi-
ously, S, is increasing in a starting from zero whereas B, decreases. The price, for which
the two coincide, is

P=inf{a>0:5,> B,}

or possibly the strict inequality replaced by a weak one or the inf replaced by a sup of the
inverse inequality. We consider these differences as negligible and stick to our definition
of the collective price P which is the most suitable from a mathematical point of view.
B and S are not the processes whose realisations we see in pictures like Figure 2,
but almost. All we need to do is swap the coordinate axes since B and S are quantity
processes indexed by price. The corresponding price processes indexed by quantity are
o, =inf{a>0:8, >x} and B, =inf{a > 0: B, > z}, x> 0.
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Let us focus on S now, the sellers. Without complicating the analysis, we may allow an
infinite number Ng of sellers provided their quantities are summable over the appropriate
price ranges in (6). As path of a stochastic process indexed by the price parameter a,
(Sa)a>0 is increasing and only moving by jumps, here given in its characterisation by the
point process

{(Ps(5),Qs(s)) :s=1,2,...}

of jumps (a,y) of size y at price a. If this point process is a homogeneous Poisson point
process, then (.S,),>0 is a subordinator. The Poisson property implies an independence of
sellers, i.e. the numbers of sellers with minimal price and quantity in disjoint regions are
independent and have Poisson distributions. The homogeneity means that the law of the
quantities is proportional to the Lebesgue size of a price region (in the sense of convolution
powers, i.e. the quantity of currency in a region r times as big as another has as law the rth
convolution power of the other). It is another consequence of the homogeneous Poisson
property that conditionally on having n sellers in a price-quantity region, the n quantities
and minimal prices are independent and respectively identically distributed. The law of
the quantities can be chosen under some consistency constraints as the so-called Lévy
measure of the subordinator. The minimal prices have a uniform distribution on the
region. Globally, this uniform spread on the price axis may seem unsatisfactory but it is
certainly acceptable locally. Note in this context that only minimal prices close to the
actual price P have a direct influence on its determination, the others only influence by
their quality of being low or too high.

Next, consider the buyers as modelled by B. Clearly, infinitely many may occur
provided their total quantity of currency is finite. Here, we cannot allow arbitrarily high
prices for non-negligible quantities since this makes the sum defining B in (6) infinite. The
only possibility to allow an infinite demand is as the price tends to zero, but homogeneity
considerations will prohibit us to do so. Let us look again at the point process

{(Po(b), Qb)) 1 b=1,2,..}

of jumps (a,y) of (Bg)e>0. Here (a,y) means a jump of size —y at price a. If this point
process is a Poisson point process, the buyers have the same independence property as
the sellers. Our aim is, of course, to establish a subordinator type property for (B,).>o0,
as well, but we cannot ask for homogeneity on the whole price axis [0, 00) since this
would make the sums in (6) diverge a.s. However, there are other ways to get to a
subordinator setting. Mathematically, the most convenient is to fix the total quantity By
of good demanded to a constant A > 0 or to an independent exponential random variable
7 = 7(q) with parameter (inverse mean) ¢ > 0. Then we may consider homogeneity of
the Poisson point process but adjust the definition of B to sum Qg (b) not over all b with
Pg(b) > a but only those below a random price threshold .

The situation described is now the one in Examples 1 and 2, if we put Y, = S, and
Z, = h— B,. Note however, that we have no drift components here, by = bz = by = 0.
This leads to some simplifications. E.g., the passage cannot take place continuously, i.e.
P(Ap) = 0. In the notation of this section and the Introduction, we obtain the explicit
laws of (P, Q,Q', A) as a corollary to Theorem 2a)-2c). Here Q = Sp is the amount of
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currency that sellers offer at the collective market price P, Q' = Bp is the amount of
currency that buyers demand at price P. As Q) # @’ a.s., either the last buyer or the last
seller can only partially realise their transaction. We denote by A their total quantity
offered or demanded.

Corollary 4 Let B and S be the subordinators associated to buyers’ and sellers’ offers
via (6).
i) Assume that By = h is a constant, then

P(P € da,Q € dz,Q" € dy, A € dz)
= lyoey s3>0y} P(Sa € dz)P(By — B, — 2 € dy)dallp(dz)
+1{y<m,22y71}P(Sa +z € dl‘)P(Bg - B, € dy)daHS(dz)

ii) Assume that By = T ~ Exp(q) is independent of By — B and S. Then

E (exp {—aP —£Q —nQ" — vA})
_(®p(g+v) = Pp(v—n) + Ps(g+v+n+§) - Ps(v+¢))
(g +mn) (a+ @p(q) + Ps(g+n+E))

We can also split the formulas like in Theorem 2a)-2¢) to specify whether A refers to
a buyer or a seller. Also, by linear transformations we obtain other related quantities.

5.3 Extensions by transformation

There are immediate extensions of the model away from homogeneity. One might consider
higher intensities in a ’realistic’ price range with decreasing tails or cut off close to zero
and infinity. This corresponds to a deterministic time change of the subordinators. If both
subordinators are transformed by the same time change, T}, and associated quantities are
just transformed accordingly. Some care is needed if the time change is not infinite -
the agreed price may then be outside the possible region to make sense in the model
- this happens if the tails at infinity are integrable, particularly when cut off. Also,
independent random time changes are a possibility. Dependent random time changes or
different time changes for sellers and buyers, or replacing the subordinators by suitable
increasing additive processes, lead out of the immediate range of the theory presented in
this paper.
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