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Abstract

The mathematical concept of time–changing continuous–time stochastic pro-

cesses can be regarded as one of the standard tools for building financial models.

This article reviews briefly the theory on time–changed stochastic processes and

relates them to stochastic volatility models in finance. Popular models, including

time–changed Lévy processes, where the time–change process is given by a subor-

dinator or an absolutely continuous time change, are presented. Finally, we discuss

the potential and the limitations of using such processes for constructing multivari-

ate financial models.

Keywords: Time change; business time; stochastic volatility; subordinator; Lévy

process; semimartingale.

The mathematical concept of time–changing continuous–time stochastic processes has first
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been studied in [11, 17, 18, 24, 25, 31, 41] and has later been introduced to the finance

literature in [14]. Today, it can be regarded as one of the standard tools for building

financial models (see also [23, 34]).

Let X = (Xt)t≥0 denote a stochastic process, sometimes referred to as the base pro-

cess, and let T = (Ts)s≥0 denote a non–negative, non–decreasing stochastic process not

necessarily independent of X. The time–changed process is then defined as Y = (Ys)s≥0,

where

Ys = XTs
. (1)

The process X is said to evolve in operational time. The process T is referred to as time

change, stochastic clock, chronometer or business time. It reflects the varying speed of Y .

This article is structured as follows. First we link the use of time–changed stochastic

processes to the construction of univariate stochastic volatility models in finance. Then

we focus on the choice of an appropriate base process and, next, on popular examples

for the time change. Finally, we briefly discuss the potential and the limitations of the

methodology of time–changing stochastic processes to construct multivariate models in

finance.

Asset price models with stochastic volatility

The use of time–changed stochastic processes in finance is closely linked to the concept

of stochastic volatility models for asset prices. Numerous empirical studies have revealed

the fact that asset price volatility tends to be time–varying and tends to show clustering

effects. The concept of stochastic volatility (see eqf19 019) in continuous–time asset price

models on a filtered probability space (Ω,A, (Ft)t≥0, P) can basically be introduced by

two methods.

One of the methods is to use time–changed stochastic processes as in (1), where

natural assumptions are that X = (Xt)t≥0 is an Ft–semimartingale and (Ts)s≥0 is an

increasing family of Ft–stopping times. The base process X is often assumed to possess

some homogeneity properties whereas a non–linear time change can induce deviations
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from homogeneity.

The other method is to use stochastic integrals (see eqf02 013) of the form

Yt =

∫

t

0

σr−dXr, (2)

where σ = (σt)t≥0 is a non–negative Ft–predictable stochastic volatility process and X =

(Xt, t ≥ 0) is an Ft–semimartingale. Often, X is assumed to possess some homogeneity

properties so that non–constant σ can induce deviations from homogeneity.

Under certain conditions, the models (1) and (2) lead to equivalent models. However,

this is not true in general and we will highlight in the following some of the main differences

between these two modelling approaches.

Time–changed Lévy processes

In the finance literature, the main focus is on time–changed Brownian motion or, more

generally, on time–changed Lévy processes (see eqf02 004, eqf08 029), since these pro-

cesses possess natural homogeneity properties of stationary and independent increments

(returns).

Time–changed Brownian motion has first been used as a model for (logarithmic) asset

prices by Clark [14]. He investigated the case where X = B = (Bt)t≥0 is standard

Brownian motion and where T is an independent continuous time change. Clearly, in

such a setting, the time–changed process Ys = BTs
has a mixed normal distribution, i.e.

Ys|Ts ∼ N(0, Ts), and is a continuous local martingale. The power of such models and

those with the assumptions of independence and/or continuity relaxed is expressed in the

following key results.

Theorem 1 (Dubins–Schwarz [18, 36, 37]) Every continuous local martingale M =

(Ms)s≥0 can be written as a time–changed Brownian motion (B[M ]s)s≥0, where [M ] =

([M ]s)s≥0 is the (continuous) quadratic variation of M .

Also Mt =
∫

t

0
σr−dWr for X = W = (Wt)t≥0 Brownian motion and σ = (σt)t≥0

independent non–negative with càdlàg sample paths is a continuous local martingale with
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quadratic variation [M ]t =
[∫ ·

0
σr−dWr

]

t
=

∫

t

0
σ2

r
dr, which is often referred to as integrated

variance.

Corollary 2 In the context of the Dubins–Schwarz Theorem, for the local martingale

Ms =
∫

s

0
σr−dWr = B[M ]s independence of W and σ is equivalent to independence of B

and T = [M ].

Therefore, the models (1) and (2) are equivalent if X is Brownian motion and Ts =
∫

s

0
σ2

r
dr is an absolutely continuous time change. Regarding Clark’s independence as-

sumption, we note that independence of σ and X is also equivalent in (1) and (2) –

however, this excludes the leverage effect, i.e. the usually negative correlation between

asset returns and volatility.

Fundamentally, these results are due to the scaling property of Brownian motion X,

which translates spatial scaling σXt or (2) into temporal scaling Xσ2t or (1). Also, if

Brownian motion is replaced by an α–stable Lévy process and Tt =
∫

t

0
σα

s
ds, the two

models (1) and (2) are basically equivalent (see [27, 28]). No other Lévy process has such

a scaling property, and indeed, the models (1) and (2) will be different. If we relate higher

volatility to higher market activity, then (1) suggests that markets move at a higher speed,

and (2) suggests that the volumes traded are higher.

Theorem 3 (Monroe [35]) Every (càdlàg) semimartingale Z = (Zs)s≥0 can be written

as a time–changed Brownian motion (BTs
)s≥0 for a (càdlàg) family of stopping times

(Ts)s≥0 on a suitably extended probability space.

In the light of the Fundamental Theorem of Asset Pricing (see eqf04 002), this means

that every arbitrage-free model can be viewed as time-changed Brownian motion. How-

ever, this result is of limited use for the construction of simple and natural parametric

models.

In the finance literature, we find many asset price models where the base process is

chosen to be a Lévy process other than Brownian motion (see e.g. [12, 13]). Here, we just

refer to eqf08 029 for a detailed treatment of this class of models.
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We also mention Lamperti’s representations [29, 30] of continuous-state branching

processes and of self-similar Markov processes as time–changed Lévy processes very much

in the spirit of the Dubins–Schwarz Theorem. Salminen and Yor [38] use Lamperti’s

time change to study Dufresne’s functional (cf. [20]) that arises in the computation

of discounted values in certain models of continuously payable perpetuities in actuarial

science.

Choice of time change

There are different methods for choosing a time change which is suitable for financial mod-

els. Two classes of such processes are particularly popular: subordinators and absolutely

continuous time changes (see e.g. [1]).

In the finance literature, the terms time change and subordinator are sometimes used

synonymously. However, in probability theory, the term subordinator describes a partic-

ular class of stochastic processes (as defined below) and does not include all time changes.

Subordinators

Subordinators are non-decreasing Lévy processes (see e.g. [10, 15, 39]) and hence possess

stationary and independent increments. They are pure jump processes of possibly infi-

nite activity plus a deterministic linear drift. Clearly, they have no Brownian component

and are of finite variation. Important examples include simple Poisson processes, increas-

ing compound Poisson processes, gamma processes and (tempered) stable subordinators.

Note that many popular models in finance are based on time–changed Brownian motion

where the time change is chosen to be a subordinator. E.g. the Variance Gamma process

([32, 33]) can be represented as Brownian motion time–changed by a gamma process, the

Normal Tempered Stable process (including the Normal Inverse Gaussian process ([2, 3]))

can be written as Brownian motion time–changed by a tempered stable subordinator.

Brownian motion time–changed by an independent subordinator always yields a Lévy

process.
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Absolutely continuous time changes

Another important class of time changes is given by the class of absolutely continuous

time changes of the form Ts =
∫

s

0
τudu, for a positive and integrable process τ = (τs)s≥0.

Note that in such a setting T is always continuous, but τ can exhibit jumps. The process

τ is often called instantaneous (business) activity rate. Such models have been studied in

the context when X is a Lévy process by Carr et al. [12] and [13] amongst others. The

advantage of this model class is that it leads to affine models which are highly analytically

tractable (see e.g. [19, 27]), whereas stochastic integrals with respect to Lévy processes are

in general not affine. Popular examples for the instantaneous activity rate are given by

the Cox–Ingersoll–Ross process and the non–Gaussian Ornstein-Uhlenbeck process (see

[7, 8, 16]).

Multivariate setting

Time–changed stochastic processes are also used in the finance literature to construct

multivariate models. Usually, the base process X is then assumed to be multivariate (e.g.

a multivariate Brownian motion) and the time change process T is still assumed to be

univariate (see e.g. [15, 21] and the references therein). The advantage of such a modelling

framework is the fact that such processes are highly analytically tractable and easy to

simulate from. However, the range of dependence between the univariate components

in such a multivariate model is rather limited (and in particular does not even include

complete independence). Furthermore, such a model does not allow for an arbitrary

choice of univariate models for the components (see [15]). The mathematical properties

of multivariate processes X time–changed by a multivariate vector of time changes T have

recently been studied in [5], but this has so far not been considered as a standard tool for

constructing multivariate models in finance. So far, it has been much more common to

use multivariate extensions of a stochastic integral (2) to construct multivariate stochastic

volatility models, than to use time–changed processes. Finally, note that the concept of

subordinators can also be generalised to matrix subordinators (see e.g. [4, 6]) and their
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applicability in financial models is subject to ongoing research (see e.g. [9, 40] for some

first references).
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els driven by a Lévy process, Dissertation, Technische Universität München,

10



München. Urn: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-

20070704-624065-1-3.

[41] Volkonski, V. [1958], ‘Random time changes in strong Markov processes’, Theory of

Probability and its Applications 3, 310–326.

11


