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1 Introduction

Assume a one-dimensional infinitesimal particle system whose initial mass is uniformly
spread. An impulse is given to this system by inducing initial velocities to the particles.
Let the evolution of the system obey to the principles of the completely inelastic collision
rule, i.e. whenever two clumps of particles meet they build a larger particle clump. Their
new common velocity is given by the momentum preservation rule; note that there is a
loss of energy.

For a mathematical treatment of this particle system (see E, Rykov and Sinai [9]) it
appears most convenient to model the velocity u(z, t) of a particle that is at time ¢ > 0 in
location x € IR. The initial configuration at time £ = 0 then consists of a specification of
the initial velocity u(z,0), © € IR. This model is commonly referred to as the (inviscid)
Burgers turbulence as it was introduced by Burgers in the 1920-30s as a simplifying
model to describe the turbulence of fluid particles, cf. Burgers [7], Woyczynski [23] and
Leonenko [15] for overviews.

Burgers [7] in the 1970s was one of the first to look at this model initialized by
random data, specifically a white noise. The interest increased considerably in the early
1990s when larger classes of Gaussian processes were considered as initial velocities or
initial potentials (cf. [20], [21], [1], [2], [18], [19], [15]). Their results include properties
of the shock structure and the behaviour of the velocities at positive times. We refer to
Woyczyniski [23] and Leonenko [15] for many more important references on works in this
area.

We consider here a quite different class of processes which in general do not lead
to nice marginal distributions or satisfy any scaling property, but have another set of
properties that can be exploited in order to estimate statistics of the solution process to
some extent. We consider a regenerative impulse, i.e. on a stationary regenerative set
particles are assigned a positive constant initial velocity, whereas particles outside the
regenerative set have zero initial velocity. In particular, all movements go from the left
to the right. Unlike most of the initial data considered by other authors, our system
is not Gaussian and has a memory, i.e. initial velocities in different locations are not
independent. These initial potentials arise naturally as limits when looking at functions
of stationary Markov processes as initial velocities (cf. Remark 1 in subsection 2.3).

We give here large deviation estimates for a few fundamental events. First, we inves-
tigate into the event that the location x(a, 1) at time 1 of a particle is at least at distance
D from its original position a € R as D tends to infinity. Thanks to stationarity the
marginal behaviour is the same in each fixed location a, so we focus on the origin. The
basic data describing a regenerative set are the thickness parameter and the gap measure.
The interesting case is when the thickness parameter is zero. Then the important infor-
mation is the left tail of the gap measure (at zero), which can be motivated by intuition,
namely that a high velocity (distance travelled in unit time) is strongly connected with
a great lot of small gaps (hence many impulse locations) close to the initial particle.
Under certain regularity conditions, the probability of this event decreases faster than a
quadratic negative exponential. We determine the exponential power. We establish the
same asymptotic behaviour also for the event that at time 1 the zero particle is situated
within a particle clump of a size at least s as s tends to infinity. Second, we look at



the event that a particular particle stands still at time 7" as T tends to infinity. The
probability of this event behaves roughly like the right tail of the gap measure, which
is a plausible result as it appears natural that being situated in a large gap favours a
late hit and vice versa. Our results cover both a polynomial and a linearly exponential
decay. Furthermore, we carry out an analysis into the shock structure. A fundamental
characteristic is that at any fixed time there exist intervals of non-moving particles. In
the important case of a vanishing thickness parameter, we carry the analysis further by
showing that the shock behaviour between two such intervals is discrete, provided that
the gap measure satisfies a mild regularity condition at the origin.

The structure of the paper is as follows. A preliminary section introduces the particle
system in question including the initial data considered here. For paedagogical purposes,
this includes an introduction to a discrete mass analogue to the Burgers model which
elucidates the behaviour of the latter; in particular, we develop the Hopf-Cole formulas
by elementary methods. The three main sections state and discuss the precise results
and present their proofs. On this way a number of lemmas providing auxiliary results on
subordinators are established that may be of independent interest. Subordinators arise
naturally in our setting as regenerative sets are known to correspond to the ranges of
subordinators (cf. Fristedt [11], Bertoin [5]).

2 Preliminaries on the dynamic of inelastic collisions

2.1 Evolution of a discrete particle system with inelastic colli-
sions

Throughout this subsection, let the initial mass of our particle system consist of unit point
masses on the integers. To each particle n € Z we assign an initial velocity u,. Then the
behaviour of the particle system consists of movements and collisions of clumps having
positive integer mass, which we assume to take place inelastically. This is a discrete mass
analogue to the (inviscid) Burgers turbulence.

It is convenient to introduce an initial potential 1) given by

n n—1
d)n:Zuj, @Z)_n:—Zu_j, n >0, = Uy = Yy — Vo1, MEL
i=1 7=0

right-continuously continued by ¢ (z,0) := ), for z € [m,m + 1), m € ZZ.

To analyse this model to some extent, we focus on the important special case of non-
negative velocities (i.e. increasing potentials). We shall only use the most basic physical
formula expressing the momentum needed to transfer a number of unit mass objects
within time ¢ a certain distance in a one-dimensional space.

We note that in order for a particle at a € Z to pass the location x € IR, z > a, by
time ¢ > 0, a certain amount of momentum is necessary. For some b < @, the momentum
available must allow all particles b, . . ., [z] by time ¢ to get to [z] and further to z yielding

[z]—b
> i+
i=0

(] = b+ 1)(z —[z]) = (2] =6+ 1)(22 — [2] —b)

iy >
V] — Vo1 > 5

| =
o~ | =



This leads to the necessary condition for the particle initially at a € ZZ to pass the
location x > a by time ¢t > 0

Vi) = 11;25 {wbl + (Pl =b+ 1)@z — |21~ b) } .

2t

Clearly, this is not a sufficient condition as it is possible that the momentum is badly
spread in the sense that, given a b where the infimum is attained, thereisa c € ZZ, ¢ > b,

such that the particles ¢, ..., [z] pass = fairly quickly leaving too little momentum to
b,...,c— 1, i.e. their momentum is insufficient to get all these particles to ¢ and further
beyond x:

(c=b)(2x—c—0b+1)
2t

c—b
Y1 = p1 < %ZZ‘F %(C_ b)(x —c) =
i=1

which is easily seen to be equivalent to

([] —c+1)(2z — [z] — ¢)
2t

B ([x]—b+1)2(t2x—[x]—b)'

’lvbc—l +

Putting the two results together, we conclude that the left-most location b € ZZ at which
the infimum

) ([x] = b+ 1)(2z — [x] — b)
f _
b§1[2]+1 {wb 1t 2t
is achieved presents the left-most location to reach or pass z by time ¢t. b = [z] + 1
corresponds to the case where no particle to the left of x has passed or reached = by time
t. We exclude the case b = —oc by imposing the general assumption 9 (z,0) = o(z?)

which makes the quadratic eventually dominate 1. If the infimum is attained more than
once, we see that the right-most, ¢ say, of these is the left-most to pass. All particles
b,...,c—1 just reach = at time t. We can then calculate the speed of the particle clump
situated at x at time t to be

WY1 =1 2x—c—b+1 lz—-b lx—(c—1)

1) = —
u(@,?) c—b 9 5 ¢ T3 ¢

This determines u(z,t) at all essential locations, i.e. almost everywhere with respect to
the mass distribution at time ¢. We use the standard notation a(z,t) for the right-most
value ¢ € ZZ attaining the infimum. As is clear from the infimum expression as a function
of x, multiple attaining of the infimum at one location z always implies uniqueness at x+
and r—. The values are the right-most and left-most attaining at time x, respectively.
Therefore a(-, t) is right-continuous. a(x—,t),...,a(x,t)—1 are the initial locations whose
particles are situated in x at time .



2.2 Evolution of a continuous particle system with inelastic col-
lisions

Now consider the continuous analogue of the discrete system - let the initial mass of our
particle system be uniformly spread on IR, i.e. according to Lebesgue measure. Assigning
an initial velocity to every particle now means the specification of a function u(-,0), an
initial potential is then simply any integral function (-, 0) of u(-,0). Collisions are again
to take place completely inelastically.

For convenience, let again the initial potential be increasing and satisfy i (z,0) =
o(z?). W.lo.g. we assume 1(0,0) = 0. The analogous considerations to the above,
basically replacing sums by integrals, lead to the definition of a(z,t) as the right-most
location attaining the infimum in

222{@0(@, 0) + M} (1)

2t

x +— a(x,t) is the inverse Lagrangian (at time t). As it is increasing, we define its
right-continuous inverse

z(a,t) :=inf{z € R : a(x,t) > a}, aclR,

which is called the Lagrangian function and which gives the position at time ¢ of the par-
ticle initially started in a. In particular, the jump locations z of a(-,t) are the locations
of particle clumps at time ¢, formed by the particles initially in [a(z—,t), a(z,t)). Con-
sequently, Sr(a) := [a(z(a,t)—,t),a(z(a,t),t)) represents the so-called Lagrangian shock
interval containing the particle initially located at a € R. The velocity of the clump
located at = z(a,t) € R at time ¢ is calculated to be

Yla(z,t),0) —Yla(z—,1),0)  la—a(z—1) la-— a(x,t).

wz,1) = a(z,t) —a(z—, 1) T2 t t3 t

However, in general these Fulerian shock points are not the only locations for which a
velocity has to be assigned. As the mass was initially continuously distributed, there
may well remain continuously spread parts, so-called Eulerian regular points (their initial
positions are called Lagrangian reqular points). However, it is clear that these cannot have
participated in any shocks and have hence kept their initial speed. Specifically, denoting
the union of the (closures of the) Lagrangian shock intervals by S;, for all a ¢ S; the
velocity does not change up to time ¢t. This yields for these locations

z(a,t) = a+ tu(a,0) =: z, a(z,t) = a, u(x,t) =u(a,0) = u(a(z,t),0) = %(x,t)

Now, this latter formula could be performed as a definition for all z € IR and amended
(affecting only the jump locations) by averaging

—_

x — a(z,t)

w(z,t) = . :

u(z,t) = —u(z—, t) + zu(z,1) (2)

[N
[\



to sum up the above considerations into a unifying form. We refer to u defined in this way
as what it is, the velocity field of the particle model. Note that we also assign non-zero
values where there is no particle mass. We refer to these locations as rarefaction intervals
and denote by R, the (possibly empty) rarefaction interval including = € TR.

This model is known as the zero viscosity Burgers turbulence model, an equivalence
that can be made precise in various ways (cf. Hopf [13], Cole [8], Lax [14], E et al. [9])
- for essentially arbitrary initial velocities. The so-called Hopf-Cole limit solution to the
inwviscid Burgers equation is usually chosen to be right-continuous and coincides with «
rather than u. We refer to the definitions of a(z,t) and u(z,t) via (1) and (2) respectively
as the Hopf-Cole formulas.

This argument can be generalised to include non-monotonic initial potentials. Fur-
thermore, we can consider initial data (-, 0) to which we can associate initial velocities
u(+,0) = 9(+,0) in the distributional sense. These are highly irregular generalised func-
tions. However, from our representation of the solution, it is clear that = +— wu(x,t) for
every t > 0 is a well-defined function in the ordinary sense, i.e. singularities at time t = 0
disappear immediately.

Under the condition of an increasing initial potential, a representation of the event
that the zero particle stands still at time 7" is immediate from the above formulae. We
can write it as {u(0,7) = 0} = {z(0,7) = 0} = {a(0,T) = 0} and hence by the condition

a2
—1(a,0) < o for all a <0. (3)

Also, the length of the Lagrangian shock interval S;,(0) can be expressed. Namely, |S;,(0)]
exceeds s if and only if there exists a minorising parabola

1
Q(a):n_ﬁ(g_a)2’ §7n€R7
and touch locations a; < 0 < ay satisfying as — a; > s such that

g <Y(,0), qla) =¢(a,0) and q(as) = (ay,0). (4)

Similarly, the event that the particle started in —D has travelled distance D by time 1,
is {x(—=D,1) > 0} = {a(0—,1) < —D} which can be expressed by

1, 1,
Za? < — < —
(a,0) + 50" < —D11§1£§0 {’gb(x,O) + 5% } for some a < —D
In this work we shall meet stationarity conditions that allow translating the events; and
particle clumps will a.s. not occur at fixed positions which then yields {z(—D,1) > 0} =
{a(0,1) < =D} = {u(0,1) > D} a.s. Finally, we give a domination for the distance event
that shall be useful in the sequel

{2(~D,1) > 0} C {there is a < —D such that ¥(a,0) < —a®/2}. (5)



2.3 Regenerative sets as initial impulse

We recall first the notion of stationary regenerative sets in IR. As standard reference
we mention Fristedt [11] who also gives credits for early treatments of regenerative sets
under different names.

The prototype of such a random set is the zero-set of a stationary Markov processes
X:

Ro={yeR:X,=0}

However, the connection of regenerative sets and Markov processes is not intrinsic as very
different Markov processes may have the same zero-set. It is therefore natural to look for
a description of regenerative sets that does not refer to an underlying Markov process.

Essentially, a stationary regenerative set is a random closed subset of the real line
R C IR that has two properties. First, we assume R to be stationary, i.e. the distribution
of R — s does not depend on s € R. Second, if we denote by gy the first point of R to
the left of the origin, we require (R — go) N (—oc, 0] and (R — go) N[0, 00) be independent:;
this is what we call the regeneration property. We refer to gy as the first nonpositive
regeneration point. We also denote by dy the first nonnegative point of R. Then the
analogous regeneration property is true for dj.

In the Markov process context the regeneration property is simply the strong Markov
property of the reversed process Xy = X_, at its first passage time of zero. Like the
Markov property, the regeneration property is in fact applicable at much more general
random times. Namely, if we introduce the forward and backward natural filtrations F~
and F* of R (completed in the usual way to include all sets of zero probability) by

F, =0(RN(—o0,y]), Fo=0(RNy, o)), y € R,

Y Y

the regeneration property is valid for any stopping time 7 (w.r.t. 7= or F*) that satisfies
T € RU{zxoo} a.s., i.e. conditionally under {—oco < 7 < o0}, (R — 7) N (—00,0] and
(R — 1) N0, 00) are independent.

Regenerative sets can also be characterised by a thickness parameter 6 € [0,1] and a
gap measure v on (0,00) satisfying

pi=10 +/ zv(dx) < oo and 0 +/ (1A z)v(dx) = 1.
(0,00) (0,00]
The distribution of R is specified as follows: the two random variables gy < 0 < dy have
joint distribution

0 1
P(dy — go € dz, gy € dy) = ;(5(0’0)(612 x dy) + ﬁl{zz_yzo}dyu(dz) (6)

Furthermore, independently, (R — dy) N [0,00) and (go — R) N [0, 00) are the ranges
of two independent subordinators (i.e. increasing processes with stationary independent
increments) ot with drift coefficient § and Lévy measure v, i.e. for t > s > 0

E(exp{—q(o;" — 07)}) = exp{—(t — 5)®(q)}



where

B(q) = g + / (1— e ®)w(dr), ¢>0,
(0,00)

is called the Laplace exponent of o*. Note that E(of) = p.
In particular, integration yields from (6)

Plail > ) = (/) [ vy, w>0, )

where 7(y) = v([y,00)). We focus on gy rather than dj since the left hand half of R will
be the important one in our applications.

Example 1 If the gap measure v is finite, ¢ is a compound Poisson process with a drift
fs added. In this case we can write v = cF' for a constant ¢ > 0 and a probability
measure F. R N (—oo, 0] has the following law: there is a family of independent random
variables Xo,_; ~ Exp(), X5, ~ F, n > 1. Define S, = |go| + X1 + ...+ X,,. Then we
have s € R N (—o0,0] if and only if Sy, < —s < Sy,,41 for some n > 0. Note that § =0
corresponds to S, = Sa,41, i.e. R is a.s. a collection of isolated points whereas 6 > 0
leads to a collection of intervals of an exponentially distributed length.

As already apparent in the special setting of the example, the parameter # is an
important indicator of the size of the regenerative set. In fact, it is true in full generality
that § > 0 corresponds to a heavy regenerative set, entailing M(R) > 0 a.s. where W\
denotes Lebesgue measure, whereas § = 0 corresponds to M\(R) = 0 a.s., called a light
regenerative set.

In the heavy case an initial velocity v = klg, k > 0 constant, to the particle system
yields an increasing initial potential ¢ which can be identified with the continuous inverse
function of 0./, where o, = dy + of, 0_s = go — 0, is the so-called associated two-sided
subordinator whose range is R. In the light case, u = k1x yields a constant potential, i.e.
there is no energy in the system. The light case can be treated differently, as a limit case
of the heavy case, and can still be represented by the inverse of the associated two-sided
subordinator as an initial potential. This is a function that increases precisely on R
but it is not differentiable on R. Its derivative can be defined in a distributional sense,
corresponding to a measure concentrated on R that (for infinite v) can be identified as
some Hausdorff measure restricted to R. As such, the initial potential 1 is the integral
of 1z w.r.t. this Hausdorff measure. Cf. Fristedt and Pruitt [11]. Loosely speaking, an
infinite velocity is assigned on R.

When entering the particle system, the case of a finite v is of minor importance. In
order not to exclude it categorically, we stick to the definition of an initial potential as
the inverse of the associated two-sided subordinator. In the light case, this corresponds
to independent exponential jumps of the potential which is again a stationary behaviour
but when integrating 1 w.r.t. the counting measure (which is the adequate Hausdorff
measure) these weights have to be taken into account.



Since the range of a process is invariant under time changes, any subordinator having
deterministic drift ¢ = 6/k and Lévy measure IT = v/k for some intensity & € (0, oc)
has the same range as with intensity £ = 1. Given a subordinator ¢ with unit intensity
and ¢(z,0) = sup{t € R : 0, < z}, we can pass to a subordinator with intensity k,
t — ok, which corresponds to the potential z +— kt(x,0). The mean of the time-
changed subordinator is now m = p/k. When entering the particle system in the way
described above, a high intensity corresponds to higher initial velocities on the same
regenerative set. We refer to k as the intensity parameter of a regenerative impulse. Note
that the distribution of the regenerative impulse is completely determined by II (or its
tail TI(¢) := TI(¢,00), t > 0) and m. For technical reasons we shall often use these as a
parametrization. In fact, £ will not influence our results.

Remark 1 In the setting of a stationary Markov process (call the stationary distribution
), for suitable approzimations of the Dirac distribution

is well-known and means here that initial velocities f,(X,), y € R, in the limit lead to
the local time 1 (x,0) of X at zero as initial potential.

Assume now a stationary regenerative impulse in the sense indicated above. Due to
the stationarity assumption, the position zero behaves like any other location, therefore
the event {z(a,T) = a} is stationary in a, i.e. behaves stochastically the same for all
a € R. Picking up the representation (3) of the last subsection we simply invert 1 to
obtain

{particle in 0 not moving at time T} = {z(0,T) =0}
= {o, > V22T —|go| for all z > 0}.

Also the representation (4) of the length of the Lagrangian shock interval containing zero
can be reformulated by inverting 1. Inverted parabolas take the form

ffﬂ](z):é-_ V2(77_z)7 ZST]: fﬂ?e]R-
For the event we obtain

{ISL(0)] > s} = A{thereare &,me R,z <0< 2 such that fe, > o,
0-21 = f§7n(zl)’0-22 = ffﬂl(ZQ)’ ffﬂl(ZQ) - f§7n(zl) > S}

The domination (5) of the distance event translates as well. We can furthermore continue
in estimating gy < 0 which yields

{x(=D,1) >0} C {thereis 2 < —D?/2 such that o, > —/2|z|}

C {thereis y > D?/2 such that o, < \/2y}.



3 The event of getting far away from an initial posi-
tion

3.1 Formulation and discussion of Theorem 1

Let us consider the event that a typical particle is found at distance greater than D
from its initial position within unit time. Closely related, in fact, is the event that the
particle clump containing a particular particle exceeds a given strength s. Both events
are considered for large values, i.e. when D and s, respectively, tend to infinity. We shall
first define the type of decay we encounter:

Definition 1 For p € (0,00) we call a function f : (0,00) — (0,00) p-exponentially
decreasing if

1 1
liminf ——In(f(t)) = o0 forallr <p and limsup—t—rln(f(t)) =0 for all r > p.

t—o0 1T t—o00

Denoting I(t) = fJ

M(z)dz = (1/k) [; 7(x)dz, we have

Theorem 1 Assume a Burgers turbulence model initialized by a stationary regenerative
impulse satisfying

B . In(I(2))
=0 and ltlf(rll (1) =1-—ac(0,1]. (8)

Then the tails of both the distance law and the distribution of the shock interval length
D~ P(z(0,1) > D) and s~ P(]SL(0)] > s)
are (2 — a) /(1 — a)-ezxponentially decreasing.

Remark 2 1. Important subordinators like the Gamma subordinator (o = 0) and the
inverse Gaussian subordinator (o« = 1/2) are among the class of subordinators for that
the theorem applies. The same is true for the entire class of subordinators introduced
by Vershik and Yor, as treated in Appendix A. Within it all parameters o € [0,1) are
represented.

2. The condition (8) can be rewritten in several ways, cf. Proposition III.1 in Bertoin
[3]. We mention In(®(\))/In(A) — « € [0,1) as A tends to infinity, where ® is the
Laplace exponent of the associated subordinator as introduced in subsection 2.3. This
is the condition we shall exploit in the sequel. We point out, that due to the smoothing
effect of integration, the simpler condition In(TI(¢))/In(t) — —a € (=1,0] as t | 0 is
stronger, but indeed unnecessary for our arguments.

3. Due to stationarity each fixed location behaves stochastically the same; that is
why we focus on the origin. The shifted events are {z(a,1) —a > D}, a € R.

4. The distance events are closely related to the tail of the velocity u(0,1). In
fact we have {z(—D,1) > 0} = {a(0,1) < =D} = {u(0,1) > D} a.s. by the Hopf-Cole
formulas. However, the equality fails where there are particle clumps, due to the averaging
adjustment of u(0,1). In particular, u(0, 1) is not the typical velocity of a particle as it

10



is merely an instant in a velocity field that, when considering a regenerative impulse,
interacts with discretely spread particle clumps, non-moving infinitesimal particles and
empty areas; concerning a typical velocity tail, the latter two are not interesting and
particle clumps correspond precisely to the locations where the adjustment has to be
performed.

5. If the underlying regenerative set is heavy, all velocities are bounded. This is
stronger than the limiting case a = 1 of Theorem 1 which states a decay faster than
p-exponential for all p > 0. Also the particle clump size is bounded at any fixed time.

6. A combination of the distance and the shock interval size parts of Theorem 1
yields a uniformity result to the distance part, extending the result concerning a fixed
position, a = 0 say, to the left end point of the Lagrangian shock interval Sz (0) = (lg, 1)
surrounding 0:

Corollary 1 In the situation of Theorem 1
D P(x(lg+,1) — Iy > D)
is (2 — a) /(1 — a)-ezxponentially decreasing.

Proof: In order to conclude from Theorem 1 just note that

IN

P(z(0,1) > D) P( sup z(a,1)—a > D)= P(z(lo+,1) — Iy > D)

a€(lo,r0)
P(ly < —D/2) + P(x(ly+,1) > D/2)
P(|S,(0)] > D/2) + P(z(0,1) > D/2).

The proof of Theorem 1 is given in the following subsections.

3.2 Auxiliary results

This subsection contains two quite general results on (one-sided) subordinators concern-
ing the behaviour of the Laplace exponent ® and its derivatives and the probabilities
P(civt < 0y < e3v/1) respectively.

We start by identifying the asymptotics of related analytic quantities when condition
(8) holds.

Lemma 1 Given a subordinator satisfying condition (8), we have for p = @'

n(e(A) ~ (@—=1)In(A),  In(=¢'(})) ~ (@ = 2)In(})

as A\ tends to infinity. Furthermore

In(¢~"(7)) ~ In(v)

a—1

as vy tends to zero.

11



Proof: Let € > 0. From Remark 2 2. and the wellknown concavity of ® we conclude

P00 ¢ 5 < )
which yields
In(®AME) — ®(N))  In(A—2)  In(e()) _ In(®(N))
L In(Ae)  In()) = In()) = In()\) -1

which, in the limit, restricts In(p(A))/In()) to something in [a(1+¢) — (1 +¢),a — 1]
establishing the first claim.
Second, along the same lines, the convexity of ¢ entails

p(A) — e(A) () < p(AM77) — (V)

< _
PSSR S e
and
In(p(N) — (M)  Im(A™* -3 _In(=¢'(V) _ In(p(\" %) — (V) _In(A - A7)
In(\) In()\) - In(A)  — = In(A1-°) In(\)

yvields an asymptotic behaviour within [a — 1 — (1 +¢), (1 —&)(a—1) — 1].
Finally, as ¢ strictly decreases to zero, the substitution v = () yields eventually

-1
L W) .t
a—1+e~ In(y) ~“a-1-c¢

O

We now use this analytic lemma for a large deviation result using essentially standard
techniques. Here we meet probabilities that decrease exponentially in the way that has
been postulated in the theorem.

Lemma 2 Let 0 be a subordinator satisfying (8). Then for all 0 < ¢; < ¢3 < 00, € >0
there is a kg > 0 such that for all t large enough

P(ciVt < o, < epVt) > exp {—kot!* /(27200 %< 1

Proof: 'W.l.o.g. we can assume ¢y < oo. We change the probability measure. Define (); =
exp{—Aio; + t®()\;)} P where ), is chosen such that Eg,(0;) = tp(A\) = (1 + e2)V/1/2.
Thanks to the preceding lemma

1
ln()\t) ~ 1 ln((q -+ (32)/(2\/%)) = tl/(2_2a)_5 S )‘t S tl/(Q—Qa)—l—g

for all t > t;. Then we have
P (ﬁ\/iﬁ 0, < cg\/Z) = Fy, <6Atat—t<1>(,\t)1{61\/&06@%})
> emQ, (61\/5 <o < 62\/5)
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for any € > 0 sufficiently small and a suitable ky > 0. Note that for all £ > ¢;

— 4V
QeVi <o < e/ = Qu (lon— Equlon)] < 2=9vE) > 1 - Vareda) 5
2 (C2 — Cl)zt
since Varg, (o) /t = —¢' () < Ap72Fe < ¢la72)/(272a)+e(2mat1/(2-20)=¢) jg agymptotically
negligible. a

3.3 Proof of Theorem 1

We treat the four bounds for Theorem 1 separately. In fact, only for two of them some
effort is needed.
Lemma 2 is the key to the shock strength lower bound.

Proposition 1 (Lower bound - shock interval length part) Under the condition
(8), for all € > 0 there is an M > 0 such that for all s > M

P(|SL(0)] > 5) > exp { —sZo)/(mar+e]

Proof: We restrict our attention to a subevent that can be analysed more easily. The
aim is to look at paths for which there is a parabola a — 1 — 1(£ — a)? which touches
the initial potential 1(a,0) once below zero and once beyond s/2, say. As ¢(0,0) = 0,
it has to increase very quickly just before zero, then still quite quickly up to s/2, not
depassing a quadratic threshold, though, after which it has to increase only little. Here,
we translate the three conditions into terms of the subordinators o that constitute the
inverse of ¢ (cf. subsection 2.3), by exchanging coordinate axes. Of course, we also have
to choose suitable coefficients that we explain when they enter calculations:

Iy = {-o0,.,>(3/2—+/33/8)s+1}
Iy = {lgol < 1.do <1}
I3 = {s/2§0:2/16§s—1}

r, = {0:2/12 — 0:2/16 > (1++/1/12)s}

are four independent events. As I'y does not depend on s, P(T'y) > 0 and the probabilities
of the other three events behave correctly by Lemma 2, it suffices that on I' := Ty NIy N
['3 N Ty the particles initially in [0, s/2) are part of a single particle clump at time 1.
For the precise parabola analysis, we introduce the so-called two-sided subordinator
o by o5 :=dy+ o) and 0_; := gy — 0, . Then ¢ is the continuous inverse of o. (Cf.
subsection 2.3).
As for the constants, look first at the parabola

p(2) = 3s/2 — \/2(s%/16 — 2), z < s%/16.

We have p(—2s?) = (3/2 — 1/33/8)s, hence T'; (and |gg| < 1) are chosen so as to ensure
that o0_s,> > p(—2s?) which means that in order to find the parabola at height 3s/2
that touches o, we must move p to the left. Now note that on I'; N {dy < 1} we have

13



p(z) > p(0) = (3/2 = \/1/8)s > s > 0,2/16 > 0, for all z € [0,5%/16]. So, all translations
of p to the left stay above ¢ on the positive part of their domain. Therefore, on I'yNI'sNI'3
we have a(3s/2,1) <0, i.e. £(0,1) > 3s/2. On I'y, we have 0,2/ > (14 4/1/12)s.

Let us now look for a function

f(z)=¢—V2n—2), §&neR,

that remains always above the subordinator ¢ and hits it in one negative and one positive
position (z; and zy, say). As 0 is not a Lagrangian regular point (since xz(0,1) > 3s/2),
elementary geometric considerations show that & and 7 exist and are unique. (There
are possibly further hits. Take z; and 2, as close to zero as possible.) Furthermore, we
conclude that [f(z1), f(22)) is (part of) the shock interval around zero, £ the position of
the corresponding clump at time 1. We want to show f(z2) > s/2 on I

First, we noted above that we have 2(0,1) > 3s/2, therefore we have £ > 3s/2.

Second, if n < s?/12 then f dominates g(z) = 3s/2 — \/2(s%2/12 — 2). Now f(0) >
9(0) = (3/2 — \/1/6)s means we have no hit before o exceeds height (3/2 — 1/1/6)s,
which does not happen before s?/16 (by T'3).

Third, if n > s?/12 and f hits o between zero and s%/16, then f fulfils f(s%/12) >
(1 + 4/1/12)s (to stay above o) and f(0) < s (to enable the hit) yields the condition
n < s?/8 by estimating the coefficient of differences against the slope f’(s*/12). (This
justifies the upper bound in I'; and the lower bound in T'y.) The condition f(0) < s now
yields & < 3s/2 which contradicts £ > 3s/2.

Therefore f cannot hit o before s*/16. Now the lower bound in I's is needed to
conclude f(z3) > s/2. This completes the proof. O

The distance part is now an easy consequence:

Corollary 2 (Lower bound - distance part) Under the condition (8) there is for
each e > 0 a Dy > 0 such that for all D > Dy

P(2(0,1) > D) > exp {—D* /-yt
Proof: 'We conclude from the proposition by noting the obvious inclusion
{so > s} C {x(—s/2,1) +s/2 > s/2} U{x(0,1) > s/2}
which implies by stationarity P(sq > s) < 2P(x(0,1) > s/2). O
For the upper bounds, a martingale argument applies:
Proposition 2 (Upper bound - distance part) Let 1/®(\) = O(A™%) for some a €

(0,1), as X tends to infinity. Then D w— P(x(0,1) > D) is at least (2 — a)/(1 — a)-
exponentially decreasing.
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Proof: Define martingales
M, = exp (—D’o, + a®(D")), a > 0.

for a parameter p € IR to be chosen later. With
. 1 5
Tp = inf s>§D co, < V2s
the optional stopping theorem yields
1>E (exp (—D”\/QTD + TD¢(DP)) Tp < oo)

where we used that o, = /2Tp on {Tp < oo} since o~ is increasing and s V2s is
continuous.

Now we wish to replace T by D2/2. In order to be able to do so we choose D such
that ®(D?) > 4D?~! for all D > D,. This is possible if p < 1/(1 — «). Then it is easy to
see that we have for all D > Dy a.s. on {Tp < oo}

p \/§Dp 1 2 p _ 1 2 p
@(D)zm_\/ﬁ = (TD—§D)<I>(D)2<\/E \/2D>ﬂD.

This yields

1
1>E <exp (—DP“ + §D2<I>(Dp)) Tp < oo) > E (exp (D), Tp < o0) .

This establishes p + 1 as an upper exponent for P(Tp < 00).
The proof is finished as {Tp < oo} = {there is s > D?/2 such that oy < \/2s}
represents the event in question (cf. subsection 2.3). O

The shock interval length upper bound follows from the distance lower bound in the

same way as the distance lower bound was concluded from the shock interval length lower
bound.

Corollary 3 (Upper bound - shock interval length part) Let 1/®(\) = O(A™9)

for some o € (0,1), as X tends to infinity. Then D w— P(x(0,1) > D) is at least
(2 — a)/(1 — a)-exponentially decreasing.
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4 The event of not being involved into the shocks
4.1 Formulation and discussion of Theorem 2
For the sequel it is worth fixing some terminology.

Definition 2 A function f : (0,00) — (0, 00) is called exponentially decreasing if

1 1
0 < pg :=liminf —=In(f(¢)) < limsup ——In(f(t)) =: py < oc.
t—o0 t t—o0 t
Analogously, it is called polynomially decreasing if

0= o= Hn ity M) < B

In(f(t)) =: a, < 0.

e (or ay) and p,, (or «y,) are called (lower and upper) exponents.

Note that the exponential decay defined here is stronger than the 1-exponential decay
of Definition 1 as the latter does not necessarily imply p, > 0 nor p, < oo. By allowing
ay < ay (g < py respectively) our definition includes cases of an ’oscillation’ between
different exponents.

Using this terminology, we can formulate our main result. Recall that {(0,7) = 0}
denotes the event that at time 7' the particle started in 0 is still in 0, i.e. it has not
yet been hit. Furthermore, we refer to the preliminaries concerning the basics and our
notation of Burgers turbulence and regenerative impulse.

Theorem 2 Assume a Burgers turbulence model initialized by a stationary regenerative
impulse having thickness parameter 6, gap measure v (and intensity parameter k > 0).
a) If v is polynomially decreasing with exponents 1 < ay < oy, < oo then

T + P(2(0,T) = 0)

18 polynomially decreasing with lower exponent greater than or equal to ay — 1 and upper
exponent less than or equal to o, — 1.

b) If v is exponentially decreasing with erponents 0 < p;, < p, < oo, then T
P(x(0,T) =0) is also exponentially decreasing as T — 0o, and its upper exponent is less
than or equal to pu,/2m.

The proof is given in the following subsections.

Remark 3 1. We mention here briefly that the exponential case includes regenerative
sets that correspond to important subordinators like the Gamma subordinator and the
inverse Gaussian subordinator. We refer to Appendix A for further illustrations and their
embedding in a larger class of subordinators first considered by Vershik and Yor [22].

2. In the exponential case no explicit lower exponent has been given. It is how-
ever part of the statement that there exists a positive lower exponent. Our argument
does in fact provide a lower exponent of the following form: denote v; = @(—pe+),
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B(Y) = (¢~ (7)) — v~ (y), where ®(\) = —In E(e=*9!) is the Laplace exponent of the
subordinator ¢ associated to the model, and ¢ = ®’. Then the lower exponent is greater
than or equal to 8(2m —rq)/2m?. Here r¢ is the unique positive location in (2m — vy, m)
such that 5(2m — rg) = pero, if it exists, rg = 2m — ~; otherwise.

3. The transfer of exponents shows that in the polynomial case the asymptotic
behaviour of P(z(0,-) = 0) is only dependent on the asymptotic behaviour of 7. In the
exponential case the mean drift m enters our exponents of P(x(0,) = 0). However, this
means that, for a given asymptotic behaviour of v, we can make the upper exponent of
P(z(0,-) = 0) arbitrarily small by just adding one sufficiently heavy atom at a sufficiently
large location to v which does clearly not affect the asymptotics of 7. In other terms, as
m depends on the whole of v, k and 6, so do the asymptotics of P(x(0,7) = 0) in the
exponential case.

4. In the special polynomial case ay = o, =: «, we have the existence of the following
limits

= li ! In(v li ! In(P T) = = 1
o= tirgo—m n(r(t)) = Tgrolo—m n(P(z(0,7)=0)) =a—1.
This does not follow in the exponential case because we have not been able to provide
sharp enough bounds. However, the simple structure of the event in question leads us to
conjecturing the analogous statement for the exponential case:

Conjecture 1 If p := limy_,o —1 In((t)) exists then —7 In(P(x(0,T) = 0)) converges
as well as T tends to infinity.

An approach trying to establish subadditivity does not work in a reasonably straight-
forward way.

4.2 Auxiliary results

We shall here present four lemmas which are central in establishing the lower and upper
bounds claimed in the theorem. They all concern one-sided subordinators.

The first elementary lemma transfers the asymptotics of the Lévy tail to the integrated
tail.

Lemma 3 Let II be the Lévy measure of a subordinator. We introduce its integrated tail
I(T) = [7T1(t)dt.

a) If 11 is exponentially decreasing with exponents 0 < py < p, < 00, then so is I with
exponents at least pp and at most j,,.

b) If 11 is polynomially decreasing with exponents 1 < ay < a,, < 0o then so is I with
exponents at least ay — 1 and at most o, — 1.
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Proof: a) By assumption, there is for all 0 < py < g, poy < pz < 00 a ty > 0 such that
for all t > ¢,

e Hat < I:I(t) < ekt

which can be integrated from 7" > t; to oo to yield

1 - 1
—e T < [(T) < —e™ T
M2 M1
establishing the assertion.
b) The same argument also works here. Just, integrating polynomials changes the
exponent by one. a

In the second lemma we relate the behaviour of the Lévy tail to the behaviour of the
distributional tail at time one.

Lemma 4 Let o be a subordinator with drift coefficient ¢ and a polynomially decreasing
Lévy tail I1. Then there exists a constant h > 0 and for all § < 1 an Hs < oo such that
forall s > 1

hIl(s) < P(oy > s) < Hsll(s°)
In particular the decay of I1 and P(oy > -) admits the same upper and lower exponents.

Proof:  Assume first ¢ = 0. The lower bound for P(o; > s) is straightforward, namely

P(oy>s) >1—e 1 > pII(s)

first estimating by the Poisson probability that there has occurred at least one jump of
size at least s then choosing h = (1 — exp(—II(1)))/II(1).

Now, for the upper bound we first get rid of the small jumps by splitting o = p+ 7
where p consists of all jumps having less than unit size, 7 of the rest. An elementary
calculation shows that

P(01>S)§P<p1>§)+P<T1>§).

To proceed we look at the two right hand probabilities separately. We consider the
martingales Z; = exp(Ap; —tA(—\)) where A denotes the Laplace exponent of p which is
defined on the whole real line since the Lévy measure of p has compact support. Clearly
forall A > 0

1> E(Z11qp,55) > exp{As = A(=A)}P(p1 > s) = P(p1 > s) <exp{—As+A(=)\)}

which shows an exponential decay for P(p; > s), in fact faster than any e=*%.
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7 is a compound Poisson process with rate r = TI(1) and jump law v = LT1(-N[1, 00));

1
define its nth convolution power v, = v(™. It is immediate that 7, (s) < Ig(%) Now for
all N = N(s) e N

P(r >s) = Z He""l/’n(s)

VAN
=

o

_ /S T

() e X

n=N

yields two terms to estimate. The first one favours small values of N in order to yield
good estimates, the second one large ones, in particular depending on s. A successful
compromise is N = [s° V 2r] for any small € > 0 where [] denotes the integer part. This
choice does arbirarily little harm to the first term, yielding the aimed argument s’ for
e =1—0. We can estimate the second term - being the tail of an exponential series - by
standard methods

f: "o 2rN <2 (re)N < [N
2wl =N T \aaN \N/ T

(K sufficiently large) establishing a decay faster than polynomial (in s).

Now we can dominate the nonpolynomial terms eventually by the polynomial term:;
adding a multiplicative constant the domination holds everywhere as all terms are cadlag
in s.

The case ¢ > 0 is easily reduced to the preceding case by noting the trivial identity
P(oy > s) = P(0y—c¢ > s—c) where the latter describes the shifted tail of a subordinator
without drift component; clearly the shifting does not influence the asymptotic behaviour.

O

Note that the lower bound holds for arbitrary Lévy tails; also, h can be chosen
uniformly away from zero.

In the special case of II regularly varying, the preceding lemma is a corollary of
Theorem 8.2.1 in Bingham [6].

The third and fourth lemma provide standard large deviation estimates of the Cramér
type; they can hence be seen as rate results for the law of large numbers for subordinators.
We treat first the polynomially decreasing Lévy tail, then the exponential case.

Lemma 5 Let o be a subordinator with Lévy tail TI at least polynomially decreasing with

lower exponent oy > 1. Denoting m = FEoy, then for all v > m, t — P(o, > 7t) is at
least polynomaially decreasing with lower exponent cy — 1.
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Proof: W.l.o.g. assume m = 1, otherwise perform a linear rescaling of time.
Fix 1 < a < ay arbitrarily close to ay. Then there is a Ty > 0 such that for all T > T

(T) < T °

By Lemma 4 we can even choose T > 0 such that the same holds for P(o; > -) instead
of TI, by introducing a multiplicative constant K, > 0 we can assume for all z > 0 that
P(oy > x) < Kox~®. Putting S,, = 0, — n, the same holds true for the tail of the
increment distribution F' of this centered random walk, by monotonicity. By introducing
a function h: R — R by h(x) = z*, 2 <0, h(z) = Ky, = > 0, we have indeed

1—F(z) <27 %h(x) for all x € R.

In this situation we may apply Theorem 2 of Nagaev [17] to infer that there exists a
K, > 0 such that for all n > 2 and for all z > n(y —1)/2

P(S, > z) < Kynz “h(z) = KogKine @ < Ky(n—1)(z+1) ¢

where the restriction n > 2 is just to be able to find a Ky := 2KoKi(v/(y — 1)) to
perform the last inequality (as is easily checked).

Now for all (y +1)/(y—1) < n <t <n+1and z > t(y — 1) (which implies
z—1>(n+1)(y—1)/2) we conclude from this

Ploy—t>2) < P(Spy1 > x—1) < Kotz ©

which for x = t(y — 1) establishes the assertion when putting ¢, = 2v/(y — 1) and
M = Ks(y —1)~®. Then we can increase t, and decrease M to choose M = 1. O

The notation fixed in Remark 3 3. is in fact reasonable in a more general subordinator
setting with Lévy tail II exponentially decreasing having a lower exponent ju,.

Lemma 6 Let o be a subordinator having a Lévy tail at least exponentially decreasing.
Then for all v € (m,v1] and all t > 0 also t — P(oy > ~t) is at least exponentially
decreasing with lower exponent B(v) = ®(¢~' (7)) — vo~'(y) > 0 where ="' denotes
the inverse function of the strictly decreasing, hence invertible function p. Furthermore,
apart from the deterministic subordinator o, = mt, we have vy, > m.

Proof:  First let us note that D(®) = {A € R : ®(\) < oo} does include negative
values. This is a simple application of the Lévy-Khintchine formula for subordinators
which identifies ® to be essentially an exponential transform of II, cf. Bertoin [3].

Clearly, the process Z\) = exp{—ao; + ®(a)t} is a martingale for all a € D(®). If
furthermore a < 0, we can use the martingale property to conclude for all v > 0

1> BE(Z5,5y) > exp{—t(ay — ®(a))} P(o; > 1)

which establishes for every nonpositive a € D(®) an exponential bound for the probability
of interest. Optimisation by calculus methods yields for v € [m,~;] the asserted a =

o (7).
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We note that the well-known properties of ® being concave and analytic (when ex-
tended to D(®) + iR) imply even strict concavity (except for the trivial cases oy = mt
which precisely correspond to linear Laplace exponents). This means that ¢ is strictly
decreasing. To ease notation we introduce 6(a) = B(p(a)) = ®(a) — ap(a). Excluding
again o, = mt, ¢'(0) = —Var(o;) < 0 yields for all a € (—¢,0), e > 0 sufficiently
small ¢'(a) = a¢'(a) > 0 implying S(y) > 0 for all v € (m,7;) as B(m) = 0 and using
§'(a) = a¢'(a) >0, B =350¢p ! is seen to be at least weakly increasing on the whole of
(m,v1). ¢’ being positive around the origin also implies the last statement. O

4.3 Proof of Theorem 2

We shall establish the theorem in two steps, first the two upper bounds, second the
two lower bounds. In the sequel we stick to terms of subordinators as their occurrence
dominates the arguments. The translation into the language of the theorem then relies
basically on the representation of the event {z(0,7) = 0} in terms of a subordinator, cf.
subsection 2.3. Note also that the gap measure v of a regenerative set is a multiple of
the Lévy measure Il of any associated subordinator, hence the asymptotic behaviour of
their tails is the same. Recall our notation I(t) = [, II(s)ds

Proposition 3 (Upper bounds) Let o be a subordinator with Lévy measure 11 satis-
fying m = E(01) < 00, go a (negative) random variable independent of o and satisfying
P(|gol > 1) = 2.

a) If 11 is at most exponentially decreasing with upper exponent i, then we can find
for all p, < p < oo aTy> 0 such that

P(o, > V22T —|go| for all z>0) > e HT/2m for all T > Ty.

b) If T1 is at most polynomially decreasing with upper exponent cv, > 1, then we can
find for all a, < @ < oc a Ty > 0 such that

P(o, > V22T — |go| for all z>0)>T (@Y for all T > T,.

Proof: Assume first m = 1. We fix € > 0 and restict ourselves to the event

{|90| > §(1+5)} = {% > T(lTﬂLf)Q}

Since a subordinator is always positive, only z > T(ITJFE)Q need to be considered. In
what follows we shall establish a deterministic and uniform (in 7") upper bound for the
random square root function V22T — |go| which as a first step is clearly dominated by
V22T — %(1 +¢). In fact, we shall now define the smallest such function and calculate

it explicitly:

T
g(z) := max {\/22T——(1—|—6)}:
0<T <55 2

1+e¢
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where we use standard calculus methods to justify the second equality. Now we can
proceed estimating the probability of interest

P(o, > V22T — |go| for all z > 0)

T(1 T(1 9
= P (lgoi > ¥,02 > V22T — |go| for all z > %)
@ T( + )2
> (g > TUED) 55 2 pop o> TUTES
2 1+e
T(1+e¢) o, 1 T(1 +¢)?
= F >—— | P2 > Te)
<|90|_ 5 ) (z _1+€f07“allz_ 2

since go and o are independent.

As & — FE(01) > 1= P — a.s., the right hand probability tends to 1 as T' tends to
infinity. We proceed now for the assertions a) and b) separately.

a) Continuing the above calculation, we choose T} so large as to make the right hand
probability larger than % for T' > Ty. By possibly increasing T we can get an exponential
estimate for the left hand probability according Lemma 3 since P(|go| > T') = I(T'). More
precisely, we conclude

1 T(1
P(o, > V22T — |go| for all z>0)> 5 €XD (—u%)

If m # 1, we define 7, = 0, which satisfies E(7;) = 1 and has Lévy measure II/m. In
particular go has the same distribution when assigned to ¢ as when assigned to 7. Then
we derive from the above calculations applied on 7

T
P(o, > V22T — |go| forall z>0) = P (TZ > /22— — |go| for all z > 0)
m

1 T(1+¢)
> — —y ———
- 2 b < H 2m )

b) The same argument yields here for large enough T

1(T(1 e
P(o, > V22T —|go| for all z>0)> 5 <¥)

Replacing here T' by T'/m does not change the exponent, hence the result. O

Proposition 4 (Lower bounds) Let o be a subordinator having Lévy measure I1 and
finite mean m = E(o1), and gy a negative random variable independent of o satisfying
P(lgo| > 1) = T

a) If I is at least exponentially decreasing with a lower exponent py, then P(o, >
V22T —|go| for all z > 0) is at least exponentially decreasing as well. More precisely we

denote by ro the unique positive location in (2m — v, m) such that 5(2m — ro) = pero, if
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it exists, ro = 2m — vy, otherwise. Then we can find for all 0 < pg < B(2m —ry)/2m? a
Ty > 0 such that

P(o, > V22T — |go| for all z>0) < e7#T for all T > Ty.

b) If I1 is at least polynomially decreasing with a lower ezponent bound ay > 1, then
for all o < ay there is a Ty > 0 such that

P(0, > V22T — |go| for all z>0) <T@V for all T > Ty.

Proof: a) In estimating the probability in question, we restrict our attention to a single
location z = % This location suggests to be the best choice as here the concave square
root has slope m which is the critical value, the mean slope of the subordinator. In order
to hit the square root in front of or behind this location while being above it at this
instant requires a behaviour that appears atypical.

Let 0 < o < pg. In the following we apply Lemma 3 and choose T} so large as to be
able to use the according estimates for T" > T,. An application of Lemma 6 is possible

when we exclude the deterministic subordinator and choose a 0 < r € (2m — 1, m)

P(o, > V22T — |go| for all z>0)

T
< Plor, >——|gl)
m

2m?2

T T T
< P<|90|ZT2—m2>+P<02mT2ZE_|QU|Z(2m_T)w>

1 T T
< — exp <—ur2—m2) + exp (—B(Qm - ”ﬁ) )

b) Let 1 < a < ay. We repeat the argument. Instead of applying Lemma 6 we now
use Lemma 5. This yields for any 0 < r < m and all T' > T

P(o, > V22T — |go| for all z>0)

T T
< P <|90| er> +P<O'T2 > (2m—7")2—)

2m m2

T —(a-1) T —(a-1)
< — — < MT (@D
< (o) (o)

where M is a constant sufficiently large. O

23



5 The shock structure

5.1 Formulation and discussion of Theorem 3

Assume for the whole of this section an inviscid Burgers turbulence model initialized
by a stationary regenerative impulse. In the sequel we exlude implicitly the trivial case
IT = 0 which corresponds to systems without shocks. Then our main result on the shock
structure at positive times is the following

Theorem 3 When the regenerative impulse to the Burgers turbulence is light and TI(t) <
t~? near zero for some p < 1, then the shock structure at time t > 0 consists of a sequence
of intervals of Fulerian reqular points that have kept their initial position and between
each successive two of which there is a finite number of Fulerian shock points.

VA A S

>
>

Figure 1 Shock structure

At time ¢ = 0 particles in the regenerative set R (# ) receive the initial impulse.
At time t, between intervals —— of non-moving particles, there are finitely
many moving shock points ', the rightmost of which is pushing against the
non-moving particles.

Remark 4 1. For the first part of the statement no additional assumption is needed,
i.e. a general stationary regenerative impulse leads to intervals of non-moving Eulerian
regular points. This shall provide a powerful partition of the time axis in order to obtain
ergodicity results on the shock structure.

2. In the heavy case, next to the intervals of non-moving Eulerian regular points,
there may be moving regular points. As all initially moving particles have the same finite
speed, this can happen for instance if the regenerative set contains intervals in which case
it is no more than a discrete collection of intervals.

3. The regularity condition II(#) < t* is weak because any Lévy tail ful-
fils the integrability condition folﬁ(t)dt < oo. More precisely, the possible cases

lim sup, 4 (In(11(#))/In(1/t)) € (—o0, 1] are all admissible but the extreme value 1.

5.2 Proofs of the statements

The first lemma and the following proposition describe the set of non-moving Eulerian
regular points. As stated in the remark, a restriction to light regenerative sets is not
necessary here.

Lemma 7 At any time t > 0, there are a.s. non-moving FEulerian reqular points, i.e.

7o :=sup{a < 0:z(a,t) = a} is a.s. finite.
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Proof: We shall use the parabola analysis described in subsection 2.2, transferred to the
subordinator level via exchanging coordinate axes (cf. subsection 2.3). Then the event
{1y" = —oo} describes a behaviour of o~ that requires for every & > 0 the parabola

20, +/2t(z —x), z >,

to intersect with o~. Clearly the most critical of these x > (0 are the locations of
large jumps (> jo, say) as the parabolas in these locations start low in comparison to
the subordinator and the asymptotic behaviour of the two (recall that o] ~ pz by
the law of large numbers) suggests an early hit if at all. Define now (possibly finite)
sequences of locations T,, of large jumps and intersection points S,, of the subordinator
and the parabola belonging to x = T,, such that T, is the first large jump after S,. As
(T5,)n>1 and (Sy,),>1 are sequences of stopping times (w.r.t. the canonical filtration of 07),
constructed as successive occurrences of events, the subpaths (og ., —0g _ )s,_,<u<s,
are, conditionally under S,,_; < oo, independent of (o}, ),<s,_, and identically distributed.
The same is therefore true for (o7, ., — 07 _)o<u<s,—7, since the properties of S,_; to
be intersection time of ¢~ with an increasing function and of 7,, to be jump time entail
T, > Sp_1. As the probability that (o, — op,_)u>7, remains always above \/2t(u —T7)
is positive, there is a.s. an n > 1 such that S,, = oc. Therefore we conclude

P(ry = —00) < P(S, < oc for all n > 1) =0.

Proposition 5 The random times

Toy1 = inf{a > 7, :z(a,t) = a}

T = inf{a > 71, x(a,t) > a}

7, = sup{a<71t :z(a,t) > a}
4 = supla <712, :z(at) = al,

n >0, are a.s. finite and satisfy 7, — +0o as n — +oc. Then (1,7, 7.7), n € ZZ, denote
the successive intervals of non-moving particles.

Proof: By the previous lemma, all we need to show is that, positioned at the right end d
(> 0, say) of an interval of Eulerian regular points, the next non-moving Eulerian regular
point to the right is at a positive distance. Then the sequences of times are strictly
increasing. Noting that 7,7 and 7,7 = inf{a > 7,, : @ € R} are stopping time w.r.t. the
canonical filtration F~ of R, the regeneration property at 7,7 implies the independence
and identical distribution of the increments 7,7, — 7,7, n > 0 (and similarly for n < 0).
Assume, there exists a sequence &; | d of Lagrangian regular points, i.e. for all j > 1

L 2
0.0+ S5 u6.0)  forany <
For y = d we obtain for all j > 1
0(.0) — vid.0) < GO
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The closure property of the regenerative set R of increase points of (-, 0) implies that d
is a regeneration point. Furthermore, d is a stopping time (w.r.t. the canonical forward
filtration F~ of R). The right derivative is thus a.s. positive (= k/0 > k > 0, cf.
Proposition IIL.8 in Bertoin [3]), implying for all j > j,

¥(&5,0) = ¢(d, 0) = (& — d)

which is incompatible with &; | d. O

Do |

This provides a partition of the particle space into the parts between the non-moving
regular points. As in the light case all initial velocities are zero or infinite, there cannot
be any moving regular points because they keep their initial velocity. As an immediate
consequence we note

Corollary 4 (z(7, + a,t) — T;)USKTJFH?T;, n € Z, are independent. They are identi-
cally distributed for all n # 0.

Proof: This is an immediate consequence of the regeneration property at 7,7, as is clear
from the proof of the proposition. O

Let us now analyse the structure between two successive intervals of non-moving
Eulerian regular points.

Lemma 8 Any right endpoint of an interval of non-moving Eulerian regular points is
not reqular itself.

Proof: Assume, the right endpoint a of an interval of Eulerian regular points is regular
itself. Then a(§,1) > a for all £ > a, i.e. for all £ > a there is a touch location 7 € (a, €],
i.e. in particular, for a sequence §; | a we find another sequence 7; | a such that

R 2 Y
w(a,0)+% ZT/J(??j,O)qL%

Now like in the proof of Proposition 5 we use the regenerative property in a to obtain

g(nj —a) < ¥(n;,0) — ¥(a,0) < (nj — a)(QZ —1; — a)

contradicting ; | a. a

In order to show the discreteness of the shock structure between the regular points,
we shall need a preliminary lemma on the path behaviour of subordinators.

Lemma 9 Let o be a subordinator with zero drift component and whose Lévy tail fulfils

[I(t) <t for some p <1 and all t < ty. Then we have

. . o0t— — Ot—p
Plsupliminf ———— =0} =1
<t>¥]) hi0 h )
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Proof: 1f o is a stable subordinator, this result is an immediate consequence of Theorem
1 of Fristedt [10]. The idea to reduce the general to the stable case was employed by
Marsalle [16] in a similar setting. If o is not stable, we first note that large jumps do
not influence the result, so we may assume w.l.o.g. that the Lévy measure Il of o has
compact support. Now the condition posed on its tail allows to find ¢ > 0 such that
T1(t) < ct=* for all t > 0 where the upper bound is the Lévy tail of a stable subordinator
7 with index p.

This enables us to couple the Poisson point processes Ao and A7, which describe the
jumps of the two processes, in such a way that Ac(t) < Ar(t) for all ¢ > 0. This implies
o —o0s <1 — 7, for all 0 < s < ¢t. This reduces the assertion for o to the stable case

already known. O

Denoting now the points of R isolated to the left by G and those isolated to the right
by D, we deduce from Lemma 9 by elementary calculus considerations

Corollary 5 In the case of a light regenerative set R and under the condition I1(t) < t=°
near zero, we have

P ( inf limsup ¥(,0) = ¥z — h,0) = oo) =1.
z€ER-G  plo h

Proof: The corresponding statement when the infimum is taken over t € R — G — D is
a consequence of Lemma 9. Since D only contains a countable number of stopping times
(w.r.t. the natural filtration F* of R in reversed time) where the behaviour of (-, 0)
is well-known to be likewise (cf. Proposition II1.8 in Bertoin [3]), the infimum can be
extended to R — G. O

Proposition 6 When the regenerative set is light, there is only a finite number of Fule-
rian shock points between two successive intervals of Eulerian regular points.

Proof: By Lemma 8, a right endpoint by := a of an interval of Eulerian regular points,
contributes to a Eulerian shock point ¢, say, corresponding to a Lagrangian shock interval
[bo, by). If by is regular (i.e. by € R and b; = ¢y), this part of the proof is finished. If not,
we continue along the same lines, defining ¢ to be the Eulerian position corresponding
to the shock interval [by, by), etc. constructing a sequence g, T r < oo of Eulerian shock
points (the finiteness of r stems from the fact that all this happens before the next interval
of Eulerian regular points). Now b, 1 ¢ < r.
By the Hopf-Cole formulas we have for all j > 1

(bj — bj—1)(2¢; — bj — bj_1)
2t

(b, 0) = ¥(bj—1,0) =

which yields for all € > 0 when summing j from large enough n + 1 to infinity

77/)(67 0) - ¢(bna 0) >

(r—e)(c=bs) -0
t 2t
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and hence

(e, 0) — (b, 0) S 2r —2e —c—by, L roe-c
c—b, - 2t t

Since a(r—,t) = ¢, the parabola z — k — (r — z)?/(2t) for k = ¢(c,0) — (r — ¢)/(2t) rests
always below 1(x,0) and touches in z = ¢ where its slope is (r — ¢)/t. We conclude
¢(Cao)—7/)(0—h70) r—c

lim sup =
h10 h t

Clearly, there are regeneration points within every shock interval, hence arbitrarily close
to left of ¢. Therefore, ¢ is not a left endpoint of R, and by Corollary 5 we obtain a
contradiction. O

A A class of subordinators of Vershik and Yor

An interesting class of processes, which satisfy the conditions of Theorems 1 and 3 and
the exponential condition of Theorem 2, correspond to subordinators having a zero drift
coefficient and a Lévy measure of the form

11—«

o
['(1— «)tett

e M

II(dt) =m

where m > 0, > 0 and a < 1 - the latter is to ensure the integrability condition w.r.t.
IT at 0+ that every Lévy measure of a subordinator must fulfil. This class of processes
has been studied previously by Vershik and Yor [22]. The case & = 0 corresponds to
a Gamma subordinator, a = % to an wnverse Gaussian subordinator. o is a compound
Poisson process if & < 0. The processes having a € (0,1) converge in law when the
coefficient of the Lévy measure is held constant, to a stable subordinator of index « as
tends to zero.
It is easy to see that

. 1. =

The Laplace exponent of the Gamma subordinator is well known to be

o0 =t (1+2).

For a # 0 we can calculate the Laplace exponent of ¢ by partial integration and the
Gamma integral

B(\) = /00(1 S U
—Jo ['(1—a)tett

e’

_ KH e —ut _ o~y —a—1 gy
"T1—a) /0 (7 —e )
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11— —a o>
_ K —ut o~y L
mF(l—a) [(6 ‘ s .
o0 t—a
pe M — (A + p)e AFIh ——qt
1 — O{ 0 -
1 @ - 'l —
ok ( ( o)
of(1—a) \ p=  (A+pe

Ry

This entails in particular that the parametrisation of the Lévy measure above was done
in such a way as to yield E(oy) = ®'(0) = m.
It is now easy to show that
In(® (A
(@)

/\*)OOW:OZVO.

Furthermore, we can read off the domain of ® as (—pu,00) if @ < 0 and [—p, 00) if
0<a<l
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