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B.4 Simulation

1. (a) Independent A ∼ Gamma(a, 1) and B ∼ Gamma(b, 1) have joint density

fA,B(x, y) =
xa−1e−x

Γ(a)

yb−1e−y

Γ(b)

The transformation (R, S) = T (A, B) = (A/(A + B), A + B) is bijective T :
(0,∞)2 → (0, 1) × (0,∞) with inverse transformation (A, B) = T−1(R, S) =
(SR, S(1 − R)) that has the Jacobian

J(r, s) =

(
s r
−s 1 − r

)
⇒ | det(J(r, s))| = s

and so the transformation formula yields

fR,S(r, s) = | det(J(r, s))|fA,B(T−1(r, s)) = s
(sr)a−1e−sr

Γ(a)

(s(1 − r))b−1e−s(1−r)

Γ(b)

=
Γ(a + b)

Γ(a)Γ(b)
ra−1(1 − r)b−1sa+b−1e−s

Γ(a + b)
,

as required.

Vice versa, for c = a + b and p = a/(a + b), we recognise T−1(R, S) = (A, B),
which has joint distribution

fA,B(x, y) =
xa−1e−x

Γ(a)

yb−1e−y

Γ(b)
=

xcp−1e−x

Γ(cp)

yc(1−p)−1e−y

Γ(c(1 − p))
.

and so any random variable (R̃, S̃) with joint distribution as (R, S) will be

such that T−1(R̃, S̃) ∼ T−1(R, S) = (A, B).

(b) P(X ≤ x) = P(U1/a ≤ x) = P(U ≤ xa) = xa, x ∈ (0, 1) and so fX(x) = axa−1,
x ∈ (0, 1). We recognise X ∼ Beta(a, 1).

(c) We calculate

P

(
Y

Y + Z
≤ t, Y + Z ≤ 1

)
= P(

Y (1 − t)

t
≤ Z ≤ 1 − Y )

=

∫ t

0

∫ 1−y

y(1−t)/t

aya−1(1 − a)z−adzdy

=

∫ t

0

aya−1
(
(1 − y)1−a − y1−a(1 − t)1−ata−1

)
dy.

We differentiate with respect to t to get

fW |Y +Z≤1(t) =
at((1 − a)(1 − t)−ata−1 − (a − 1)(1 − t)1−ata−2)

P(X + Y ≤ 1)

=
a(1 − a)ta−1(1 − t)−a((1 − t) + t)

P(X + Y ≤ 1)

and we recognise the density of Beta(a, 1−a), up to the normalisation constant,
but we have calculated a conditional density which integrates to 1, so the
normalisation constant must be the one of Beta(a, 1 − a).
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(d) Given Y + Z ≤ 1, W is Beta(a, 1 − a)-distributed. Since T is independent of
(Y, Z, W ), its conditional distribution given Y +Z ≤ 1 is still Gamma(1, 1) and
it is conditionally independent of W given Y + Z ≤ 1. Therefore P(TW ≤
h|Y + Z ≤ 1) = P(SR ≤ h), and we can apply (a) for c = 1 and p = a
to deduce that, SR ∼ Gamma(a, 1), i.e. the conditional distribution of WT
given Y + Z ≤ 1 is Gamma(a, 1).

(e) This procedure generates a Gamma(a, 1) random variable. Specifically, the
conditioning on Y + Z ≤ 1 is realised by repeated trials until Y + Z ≤ 1, see
Lemma 57. The procedure is easily implemented and gives a more efficient way
of simulating Gamma random variables from uniform random variables than
inverting the distribution function of the Gamma distribution numerically.

2. (a) From 1.(a) we take that we obain A/(A+B) ∼ Beta(a, b) for independent A ∼
Gamma(a, 1) and B ∼ Gamma(b, 1). Johnk’s procedure works for a ∈ (0, 1).
To generate Gamma variables for higher parameters, we can write a = [a]+{a}
for integer part and fractional part and then represent

A =

[a]∑

k=1

Ek + A0

where (Ek)1≤k≤[a] is a sequence of independent Exp(1) random variables and
A0 ∼ Gamma({a}, 1). To summarise, the following procedure generates a
Beta(a, b) random variable:

1.-5. Run Johnk’s Gamma generator for parameter {a}. Set A0 = TY/(Y +Z).

6.-10. Independently of 1.-5., run Johnk’s Gamma generator for parameter {b}.
Set B0 = TY/(Y + Z).

11. Generate independent U1, . . . , U[a]+[b] ∼ Unif(0, 1) and set

A = A0 − ln




[a]∏

k=1

Uk



 and B = B0 − ln




[a]+[b]∏

k=[a]+1

Uk



 .

12. Return the number A/(A + B).

(b) The procedure generates a stochastic process successively at refining lattices
of dyadic times. The key step (for n = 0 and then inductively for n ≥ 1) is
to take a 2−n-increment Yk,n = Xk2−n − X(k−1)2−n ∼ Gamma(2−n, 1) and a
Bk,n ∼ Beta(an, bn) random variable to split Yk,n into two increments Bk,nYk,n

and (1 − Bk,n)Yk,n. Now 1.(a) applies with an = 2−n−1 and bn = 2−n−1. Note
the stationary independent increments of length 2−n−1. Therefore, running
this procedure up to stage n yields X(1,δ) for δ = 2−n.

(c) Johnk’s Gamma generator is more efficient than the inverse distribution func-
tion computation. The method is less liable to accumulating errors since time
1 is most accurate and errors only accumulate along the dyadic expansions,
i.e. with local rather than global impact. Furthermore, we get an iterative
procedure for which we do not have to fix the time lag δ in advance, but can
continue to fill in extra points until a satisfactory result is obtained.
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3. (a) Since Gt ∼ Gamma(α+t, β+) and Ht ∼ Gamma(α−t, β−), we have

E(at + Gt − Ht) = at +
α+t

β+
−

α−t

β−
= 0 ⇐⇒ a =

α−

β−
−

α+

β+
.

(b) • Denote Fδ(x) = P(Vδ ≤ x).

1. Set S0 = 0 and n = 1.

2. Generate Un ∼ Unif(0, 1).

3. Set Sn = Sn−1 + F−1
δ (Un). If enough steps have been performed, go

to 4., otherwise increase n by 1 and go to 2.

4. Return (Sn)n≥0 as simulation of (Vδn)n≥0.

• Denote F (x; α, β) = P(G ≤ x) for G ∼ Gamma(α, β).

1. Set S0 = 0 and n = 1.

2. Generate two independent random numbers U2n−1 ∼ Unif(0, 1) and
U2n ∼ Unif(0, 1).

3. Set Sn = Sn−1 + aδ + F−1(U2n−1; α+δ, β+) − F−1(U2n; α−δ, β−). If
enough steps have been performed, go to 4., otherwise increase n by
1 and go to 2.

4. Return (Sn)n≥0 as simulation of (Vδn)n≥0.

• Fix t = 1, iterate for further time units if needed. Denote G(x; a, b) =
P(B ≤ x) for B ∼ Beta(a, b).

1. Set V0 = 0 and n = 0.

2. Generate 2 independent random numbers U1 ∼ Unif(0, 1) and U2 ∼
Unif(0, 1).

3. Set P1 = F−1(U1; α+, β+), N1 = F−1(U2; α−, β−) and V1 = a+P1−N1.

4. Generate 2n independent random numbers U2n+1+k ∼ Unif(0, 1), k =
1, . . . , 2n.

5. Set Bn,k = G−1(U2n+1+k; 2
−n−1α+, 2−n−1α+), k = 1, . . . , 2n−1 and

Cn,k = G−1(U2n+1+2n−1+k; 2
−n−1α−, 2−n−1α−), k = 1, . . . , 2n−1

6. Set P(2k−1)2−n = Bn,kP(2k−2)2−n + (1 − Bn,k)P(2k)2−n , N(2k−1)2−n =
Cn,kN(2k−2)2−n + (1 − Cn,k)N(2k)2−n and V(2k−1)2−n = (2k − 1)2−na +
P(2k−1)2−n − N(2k−1)2−n for k = 1, . . . , 2n−1. If the resolution is fine
enough, go to 7., otherwise increase n by 1 and go to 4.

7. Return (Vk2−n)k=1,...,2n.

Instead of F−1 and G−1, one can use Johnk’s Gamma generator of A.3.2.
and the associated Beta generator of A.3.3.

• Denote H(x; β) =
∫ x

ε
y−1e−βydy/

∫ ∞

ε
y−1e−βydy. Also denote

λ = α+

∫ ∞

ε

y−1e−β+ydy + α−

∫ ∞

ε

y−1e−β
−

ydy

and p = λ−1α+

∫ ∞

ε

y−1e−β+ydy.

1. Set V0 = 0, T0 = 0 and n = 1.

2. Generate three independent random numbers U3n−2 ∼ Unif(0, 1) and
U3n−1 ∼ Unif(0, 1) and U3n ∼ Unif(0, 1).
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3. Set Zn = − ln(U3n)/λ.

4. If U3n−1 > p, let Jn = −H−1(U3n; β−), otherwise let Jn = H−1(U3n; β+).

5. Set Tn = Tn−1 + Zn and VTn
= VTn−1

+ aZn + Jn. If Tn is big enough,
go to 6., otherwise increase n by 1 and go to 2.

6. Return (VTn
)n≥0.

(c) Below are 9 simulations for α+ ∈ {1, 10, 100} (rows) and α− ∈ {10, 100, 1000}
(columns). Note the big positive jumps for α+ = 1, the cases α+ = α− with
a = 0 and convergence to Brownian motion from top left to bottom right. The
code is similar to the symmetric case and is available on the course website.
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