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B.4 Simulation

1. (a) Independent A ~ Gamma(a,1) and B ~ Gamma(b, 1) have joint density

70— le—x yb le—y
[(a)  T(0)

The transformation (R,S) = T(A,B) = (A/(A + B), A + B) is bijective T :
(0,00)% — (0,1) x (0,00) with inverse transformation (4, B) = T7Y(R,S) =
(SR, S(1 — R)) that has the Jacobian

ﬂn@:<581ir) = |det(J(r,s)| =s

and so the transformation formula yields

fA,B(x7 y) =

(S,r.)a—le—sr (8(1 _ ,r,))b—le—s(l—r)

frs(rs) = |det(J(r, o)l fan(T(rs)) = s r)

as required.
Vice versa, for ¢ = a+b and p = a/(a + b), we recognise T~ (R, S) = (4, B),
which has joint distribution

2ol yb—le—y rP—le—= yc(l—p)—le—y

fas(z,y) = T(a) TL(b) - I'(ep) T(c(l—p))

and so any random variable (R, S) with joint distribution as (R, S) will be
such that T7'(R,S) ~T7Y(R,S) = (A, B).

() P(X <2)=PUY* <z)=PU < 2% =2% 2 € (0,1) and so fx(z) = ax®"!,
€ (0,1). We recognise X ~ Beta(a, 1).

(c) We calculate

Y p Y=t
P <t,Y+72<1 = 7<Z<1 Y
<Y+Z * ) == )

_ / /1t (1 = a)zdzdy
- / ay™ (L= )" =y (1 — 1)) dy.

We differentiate with respect to ¢ to get
at((1 —a)(1 —t)7%* 1 — (a — 1)(1 — t)}7272)

fwiyizai(t) =

P(X +Y <1)
a(l—a)t (1=t ((1—t) + 1)
B P(X+Y <1)

and we recognise the density of Beta(a, 1—a), up to the normalisation constant,
but we have calculated a conditional density which integrates to 1, so the
normalisation constant must be the one of Beta(a,1 — a).
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(d)

Given Y + Z < 1, W is Beta(a, 1 — a)-distributed. Since T is independent of
(Y, Z, W), its conditional distribution given Y+ 2 < 1 is still Gamma(1, 1) and
it is conditionally independent of W given Y 4+ Z < 1. Therefore P(TW <
hlY +7Z < 1) = P(SR < h), and we can apply (a) for c = 1 and p = a
to deduce that, SR ~ Gamma(a, 1), i.e. the conditional distribution of WT
given Y + Z <1 is Gamma(a, 1).

This procedure generates a Gamma(a, 1) random variable. Specifically, the
conditioning on Y + Z < 1 is realised by repeated trials until Y + 7 < 1, see
Lemma 57. The procedure is easily implemented and gives a more efficient way
of simulating Gamma random variables from uniform random variables than
inverting the distribution function of the Gamma distribution numerically.

From 1.(a) we take that we obain A/(A+ B) ~ Beta(a, b) for independent A ~
Gamma(a, 1) and B ~ Gamma(b, 1). Johnk’s procedure works for a € (0, 1).
To generate Gamma variables for higher parameters, we can write a = [a]+{a}
for integer part and fractional part and then represent

[a
A=Y "B+ A

k=1

where (Ej)i<k<[q is a sequence of independent Exp(1) random variables and
Ay ~ Gamma({a},1). To summarise, the following procedure generates a
Beta(a, b) random variable:

1.-5. Run Johnk’s Gamma generator for parameter {a}. Set Ay =TY/(Y +2).

6.-10. Independently of 1.-5., run Johnk’s Gamma generator for parameter {b}.

(b)

Set By = TY/(Y + 7).
11. Generate independent Uy, ..., Ujg4p ~ Unif(0, 1) and set

[a] [a]+[b]
A= Ay—1In HUk and B=B;—In H Uy
k=1 k=[a]+1

12. Return the number A/(A + B).

The procedure generates a stochastic process successively at refining lattices
of dyadic times. The key step (for n = 0 and then inductively for n > 1) is
to take a 27"-increment Yi, = Xjpo-n — X(_1)2-n ~ Gamma(27",1) and a
By, ~ Beta(ay,, b,) random variable to split Y}, into two increments By, Yy
and (1 — By.,)Yin. Now 1.(a) applies with a, = 27""! and b,, = 27", Note
the stationary independent increments of length 27"~!. Therefore, running
this procedure up to stage n yields X% for § = 27",

Johnk’s Gamma generator is more efficient than the inverse distribution func-
tion computation. The method is less liable to accumulating errors since time
1 is most accurate and errors only accumulate along the dyadic expansions,
i.e. with local rather than global impact. Furthermore, we get an iterative
procedure for which we do not have to fix the time lag J in advance, but can
continue to fill in extra points until a satisfactory result is obtained.
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3. (a) Since Gy ~ Gamma(a.t, ;) and H; ~ Gamma(a_t, _), we have

ayt ot a_ oy
E(at+ G, —H)=at+ —5————=0 <= a=— — —.
ot G ) =at+ 5o~ F B
(b) e Denote Fs(z) =P(Vy < z).
1. Set Sy =0 and n =1.
2. Generate U, ~ Unif(0,1).

3. Set S, = S,,_1 + Fé_l(Un). If enough steps have been performed, go
to 4., otherwise increase n by 1 and go to 2.
4. Return (S,),>0 as simulation of (Vs,)n>o0-
e Denote F(z;a,3) = P(G < x) for G ~ Gamma(c, (3).
1. Set Sy =0 and n =1.
2. Generate two independent random numbers Us, 1 ~ Unif(0,1) and
U, ~ Unif(0,1).
3. Set S, = Sp_1+ad + F Y (Uspp_1;046,8:) — F Y (Usp; a8, B-). If
enough steps have been performed, go to 4., otherwise increase n by
1 and go to 2.
4. Return (S,)n,>0 as simulation of (Vs,)n>o0-
e Fix t = 1, iterate for further time units if needed. Denote G(x;a,b) =
P(B < x) for B ~ Beta(a,b).
1. Set Vo =0 and n = 0.
2. Generate 2 independent random numbers U; ~ Unif(0, 1) and Uy ~
Unif (0, 1).
3. Set P, = F~Y(Uy;ay,B4), Ny = F Y (Uy;a_, 3_) and Vi = a+ P, — Nj.
4. Generate 2" independent random numbers Upni1,y ~ Unif(0,1), k =
1,....9m
5. Set B,x = G Y Up+1,p; 27" o, 27" tay), k= 1,...,2"7! and
ka:G (U2n+1+2n Ly 2777 1 _,2 n—l _) k=1,. 2"_1
6. Set Pog_1y2-n = BnipPok—22-n + (1 — Bng)Paren, N(zk—l)rn =
kaN(gk_Q)g—n + (1 — ka)N(Qk)g—n and ‘/(Qk_l)g—n = (2]{3 - 1)2_"a +
Piak—1y2-n — Nigg—1)2-» for k = 1,...,2"7 1 If the resolution is fine
enough, go to 7., otherwise increase n by 1 and go to 4.
7. Return (Vig—n =1, on.
Instead of ! and G~!, one can use Johnk’s Gamma generator of A.3.2.
and the associated Beta generator of A.3.3.

e Denote H(z; 3) = [Fy~te™Pdy/ [7y~te Pdy. Also denote

[e.9]

A= a+/ y_le_mydy—l—oz_/ y e P Ydy
€

€

and p = A_1a+/ yte Prdy.
g

1. Set Vo =0,1Ty =0and n = 1.
2. Generate three independent random numbers Us,_» ~ Unif(0, 1) and
Usp—1 ~ Unif(0, 1) and Us, ~ Unif(0, 1).
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3. Set Z, = —In(Us,) /.
4. M Us,_y > p, let J, = —H 1(Us,; B_), otherwise let J,, = H 1 (Us,; 34).

5. Set T, =T,-1+ Z, and Vp,, =V, +aZ, + J,. If T,, is big enough,
go to 6., otherwise increase n by 1 and go to 2.

6. Return (V7 )n>o0-

(c) Below are 9 simulations for a; € {1,10,100} (rows) and a_ € {10, 100, 1000}
(columns). Note the big positive jumps for a, = 1, the cases oy = a_ with
a = 0 and convergence to Brownian motion from top left to bottom right. The
code is similar to the symmetric case and is available on the course website.
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