Example: NHS Direct Self-help Guide

=
=
i)
=
o
K
o
v

Fhis sowice ls surfable far
chitdren and adults,

Dial 999 ekl

It could b a camman cold which
antibiatics cannat freat effectively.
Winless the persan 5 vpry obd, fradl or
hhas some ather serious conditaar. yeud
do not nood 1o see your doctor.
Taie parastetamal {os, for childen we

Example: NHS Direct Self-help Guide

Are you developing a rash that does not
fade when you press a glass tumbler or finger

no

from a stiff neck,
you find the light
nd/or you feeling
confused?

against it?
yes

Are you sufferins
headache and d
hurts your eyes
very sleepy and

Emergency

("Dial 999")

Emergency
("Dial 999")

no

Is there sneezing, a runny
nose, a mild temperature,
a sore throat,|and general
aches and pains?

yes no

Are you feeljng flushed,
hot and swelaty? Do you
have a high{temperature
(over 38 Cgr 100.4 F), a
headache, as well as a
runny nose and general
aches and pjins?

Self-care

yes no

Self-care Self care

280

281

Example: Iris Data

Sepal.Length Sepal.Width Petal.Length Petal.Width

4.4 3.2
5.9 3.0
6.3 3.3
5.3 3.7
5.5 2.5
6.1 2.9
6.1 3.0
5.7 2.8
5.4 3.0
4.8 3.4
4.6 3.1
4.9 3.1
6.4 2.9

Previously seen Iris data set gives the measurements in centimeters of the
variables sepal length and width and petal length and width, respectively, for
50 flowers from each of 3 species of iris. The species are Iris setosa,

versicolor, and virginica.

Example: Iris Data
Decision tree

Petal.Length< 2.45

igth< 1.75
setosa

versicolor virginica

Petal.Width

1

N e T e e

.3

25

20

1.5

1.0

0.5

W ooy U1 0O J O U O

Species
0.2 setosa
1.8 wvirginica
2.5 wvirginica
0.2 setosa
1.3 versicolor
1.4 versicolor
1.8 wvirginica
1.3 versicolor
1.5 versicolor
0.2 setosa
0.2 setosa
0.2 setosa
1.3 versicolor

Induced partitioning

+H
+ +
rar AP ar
++ a4
HHH ar
+HH St
it ar
A+ Ht+t+ +
+ A
an A 4
A LOAH
A A 4
A L0000
AN A
Ao
PYV'S
e}
e}
oaD0 o setosa
ano 2 versicolor
[efcts: cale] + virginica
o @
T T T T T T
1 2 3 4 5 6

Petal.Length

282

283

Decision Trees

» A decision tree is a hierarchically organized structure, with each node
splitting the data space into two halves based on value of a feature.

» Equivalent to a partition of R” into R disjoint sets (R, .., Rr), where
each R; C R”.

» On each region R, the same decision/prediction is made f(x) = B; for all
X e Rj.

» Some terminology:

Parent of a node c is the node which have an arrow pointing into c.
Children of a node ¢ are those nodes which have node ¢ as a parent.
Root node is the top node of the tree; the only node without parents.

Leaf nodes are nodes which do not have children.

Stumps are trees with just the root node and two leaf nodes.

A K-ary tree is a tree where each node (except for leaf nodes) has K
children. Usually working with binary trees (K = 2).

» The depth of a tree is the maximal length of a path from the root node to a
leaf node.

vy Yy VY VY VvYYyYy

284

Classification and Regression Trees

» For regression problems, the parameterized function is
R
Jx) =" Bilper,,
j=1

Using squared loss, optimal parameters are:

B = 2 Viler)
! Zi I]‘[X,ERJ]

» For classification problems, the estimated probability of each class k in
region R; is simply:
5 _ Zi]]'(yi = k>]l[x;e72j]
e Zi]l[xieR,»]

» These estimates can be regularized as well.

285

Partition Estimation

» |deally, would like to find partition that achieves minimal risk: lowest
mean-squared error for prediction or misclassification rate for
classification.

» Number of potential partitions is too large to search exhaustively.

» ‘Greedy’ search heuristics for a good partition:

» Start at root.

» Determine best feature and value to spilit.
» Recurse on children of node.

» Stop at some point.

286

Growth Heuristic for Regression Trees

1. Start with R; = R”.
2. For each featurej =1,...,p, for each value v € R that we can split on:

2.1 Split data set:

I ={i:x; <v} I ={i:x; > v}

2.2 Estimate parameters:

ZIEI< Yi

15

Ziel> Yi

Be =
= |75 |

B> =

2.3 Quality of split is the squared loss:

Si=B) D i—)

= iels

3. Choose split with minimal loss.
4. Recurse on both children, with datasets (x;, y;)ic;. and (x;, yi)ier. -

287

Boston Housing Data

crim
zn
indus
chas
nox
rm
age
dis
rad
tax
ptratio
b
lstat
medv

per capita crime rate by town

proportion of residential land zoned for lots over 25,000
proportion of non-retail business acres per town

Charles River dummy variable (= 1 if tract bounds river; (
nitric oxides concentration (parts per 10 million)

average number of rooms per dwelling

proportion of owner-occupied units built prior to 1940
weighted distances to five Boston employment centres
index of accessibility to radial highways

full-value property-tax rate per USD 10,000

pupil-teacher ratio by town

1000(B - 0.63)"2 where B is the proportion of blacks by tc
percentage of lower status of the population

median value of owner-occupied homes in USD 1000’s

» Predict median house value.

288

Boston Housing Data

8.65

© oogo 8
8

1

[}

MEDIAN HOUSE PRICES
MEDIAN HOUSE PRICES

MEDIAN HOUSE PRICES
MEDIAN HOUSE PRICES

LOG(CRIME) LOG(CRIME)

289

Boston Housing Data

» Overall, the best first split is on variable rm, average number of rooms per

dwelling.
» Final tree contains predictions in leaf nodes.

rm< 6.941

Istat>=14.4 rm< 7.437

crim>%7.393 nox>=(.682¢

144 3335 21.9 459

crim>%6.992 dis>=[1.385

(\ ‘
11.98 17.14 mM<6.543
45.58
21.63 27.43

Growth Heuristics for Classification Trees

» For binary classification,

5o Ziﬂ(yi = 1)]]-[)(;672,']
6=
! z:ﬂMmeRJ

» A split is good if both sides are more “pure”, i.e. Bj] is closerto O or 1.
» Different measures of node impurity:
> Misclassification error: 1 — max{3, 1 — 3 }.
» Gini Index: ;’le(l - ﬁ,‘]). R R
> Entropy: —filog 81 — (1 — Bj1) log(1 — Bn).
» Typically prefer Gini and entropy: differentiable and produces purer
nodes.
» Extension to multi-class:
» Misclassification error: 1 — max 3.
> Gini Index: 3-8, Bi(1 —).
> Entropy: — >, Biclog Bi.
» Stops once a node has insufficient number of items, or is pure.

290

291

Growth Heuristics for Classification Trees Example: Leukemia Prediction

» Tree found is of depth 2.

» Very interpretable as it selects 3 out of 4088 genes and bases prediction
only on these.

0.7

te}
Q 4 ; -
S P <

0.6

0
I o X.2481<0.9985

0.15
I
0.4

Gini coefficient
Entropy

0.10
I

0.2

0.1

— Gini coefficient
- Entropy

0.0 02 04 06 08 10 X.172>24-0.3118 X.35<D.7172

P4 0 1

Misclassification error?

292 294

Example: Leukemia Prediction Example: Pima Indians Diabetes Dataset

» The subjects: women who were at least 21 years old, of Pima Indian
heritage living near Phoenix, Arizona.

. » Tested for diabetes according to World Health Organisation criteria.

» Features:

0 » number of pregnancies (npreg)

plasma glucose concentration (glu)

diastolic blood pressure (bp)

tricep skin fold thickness (skin)

body mass index(bbi)

diabetes pedigree function (ped)

age (age)

2500 3000

2000

genes
=
genes

r
vy Yy VY VvYVvYYyYy

samples samples

Leukemia Dataset: Expression values of 3541 genes for 47 patients with
Leukemia ALL subtype (left) and 25 patients with AML (right).

293 295

Example: Pima Indians Diabetes Dataset

library (rpart)

library (MASS)

data (Pima.tr)

rp <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8])
rp

n= 200

vV V.V V VvV

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 200 68 No (0.66000000 0.34000000)
2) glu< 123.5 109 15 No (0.86238532 0.13761468)

4) age< 28.5 74 4 No (0.94594595 0.05405405) =«

5) age>=28.5 35 11 No (0.68571429 0.31428571)
10) glu< 90 9 0 No (1.00000000 0.00000000) =
11) glu>=90 26 11 No (0.57692308 0.42307692)

22) bp>=68 19 6 No (0.68421053 0.31578947) =
23) bp< 68 7 2 Yes (0.28571429 0.71428571) x
3) glu>=123.5 91 38 Yes (0.41758242 0.58241758)

6) ped< 0.3095 35 12 No (0.65714286 0.34285714)
12) glu< 166 27 6 No (0.77777778 0.22222222) *
13) glu>=166 8 2 Yes (0.25000000 0.75000000) =«

7) ped>=0.3095 56 15 Yes (0.26785714 0.73214286)
14) bmi< 28.65 11 3 No (0.72727273 0.27272727)
15) bmi>=28.65 45 7 Yes (0.15555556 0.84444444) x

*

296

Example: Pima Indians Diabetes Dataset

> plot (rp); text (rp)

glu< 123.5
age<28.5 ped< (.3095
glu£ 90
No
bp>=68
No
No Yes
gluq166 bmi< 28.65
No Yes

No Yes

297

Model Complexity

» When should tree growing be stopped?

» Will need to control complexity to prevent overfitting, and in general find
optimal tree size with best predictive performance.

» Consider a regularized objective
R(T) + C x size(T)

» Grow the tree from scratch and stop once the criterion objective starts to
increase.

» First grow the full tree and prune nodes (starting at leaves), until the
objective starts to increase.

» Second option is preferred as the choice of tree is less sensitive to
“wrong” choices of split points and variables to split on in the first stages
of tree fitting.

» Use cross validation to determine optimal C.

298

Model Complexity

> rp <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-81],
control=rpart.control (xval=10))) ## 10-fold CV

> plotcp (rp)

> rp2 <- prune.rpart(rp,.029)

> plot (rp2); text (rp2)

size of tree

1 2 3 4 5 8
I I I I I I
i glu< 1235

12

1.0

ped< 0.3095

X-val Relative Error
0.8

‘ No

o | gluq 166 bmi<[28.65
S

No Yes

T T T T T
Inf 0.19 0.11 0.066 0.029 0.012

299

Model Variability

glu< 123.5

ped< (0.3095

glu<q 166 bmi< P8.65

No Yes

> |s the tree ‘stable’ if training data were slightly different?

300

Bootstrap

» The bootstrap is a way to assess the variance of estimators.
» Fit multiple trees, each on a bootstrap sample. This is a data set
obtained by sampling with replacement » times from training set.
> n <- nrow(Pima.tr)
> bss <- sample(l:n, n , replace=TRUE)
> sort (bss)
[1] 24456 7 910 11 12 12 12 12 13 13 15 15 20

> tree_boot <- rpart (Pima.tr[bss,8] ~ ., data=Pima.tr([bss,-8],
control=rpart.control (xval=10)) ## 10-fold CV

glu< 123.5 lu< 123.5

ped<[0.348

No

glu< 164.5 bmi< 8,65

301

Bootstrap for Regression Trees

» Regression for Boston housing data.
» Predict median house prices based only on crime rate.
» Use decision stump—the simplest tree with a single split at root.

50
L

crime>=1.918

30
L

MEDIAN HOUSE PRICE
20

13.44 24.44

10
L

LOG(CRIME)

Bootstrap for Regression Trees
» We fit a predictor f(x) on the data (i, yi)i -
» Assess the variance of f(x) by taking B = 20 bootstrap samples of the
original data, and obtaining bootstrap estimators
ffx), b=1,....B

» Each tree f” is fitted on the resampled data (x;, y;)._, where each j is
chosen randomly from {1, ..., n} with replacement.

MEDIAN HOUSE PRICE
MEDIAN HOUSE PRICE

20

.

LOG(CRIME) LOG(CRIME)

302

303

Bagging

» Bagging (Bootstrap Aggregation): average across all B trees fitted on
different bootstrap samples.

1. Forb=1,...,B

1.1 Draw indices (ji, ..., j.) from the set {1, ..., n} with replacement.
1.2 Fit the model, and form predictor #°(x) based on bootstrap sample

(X515 Y,)7 s (xjm}"jn)

2. Form bagged estimator

fBag Zfb (X

Bagging

MEDIAN HOUSE PRICE
20
L

MEDIAN HOUSE PRICE
20
L

LOG(CRIME) LOG(CRIME)

» Bagging smooths out the drop in the estimate of median house prices.
» Empirically, bagging seems to reduce the variance of f, i.e.

E[(f(0) —EF @)X =] 2 E[(faag(x) — Elfpug(x)])*|X =]

304

305

Variance Reduction in Bagging

>

Suppose, in an ideal world, our estimators f” are based on independent
samples of size n from the true joint distribution of X, Y.

The aggregated estimator would then be

Jag(x Zf”

b]

) = f(x) =E[f(x)] as B — oo
where expectation is with respect to datasets of size n.
The squared-loss is:

E[(Y — fue®)*IX =] = E[(Y — ()X = 2] + E[(f(x) — fug(x))*|X = x]
= E[(Y —f()*|X = 4

Aggregation reduces the squared loss by eliminating variance of f(x).

In bagging, variance reduction still applies at the cost of a small increase
in bias.

Bagging is most useful for flexible estimators with high variance (and low
bias).

Variance Reduction in Bagging

>

>

Deeper trees have higher complexity and variance.
Compare bagging trees of depth 1 and 3.

log(xgcrim) log(xScrim)

306

307

Out-of-bag Test Error Estimation

» How well does bagging to? Can we estimate generalization performance
and tune hyperparameters?

» Answer 1: cross-validation.

=1 =2 =3 =4

=5 =6 =7 =8 =9 i=10 i=11 =12

"mOO®®®®®®®®0O0 0

=®®®®®®000e0ee

“®®®0000eee®®

OO0l @ee®®®® ® ® ®

v=4

» Foreachv=1,...,V,
> fitfaag on the training samples.
» predict on validation set.

» Compute the CV error by averaging the loss across all test observations.

Out-of-bag Test Error Estimation

’

308

» Butto fitfgag on the training set foreach v =1, ..., V, we need another set

of B bootstrap samples!

D
BN
0
N
I
@
T
H
T
o
I
o
0
N
I
<]

=9 =10 i=11 =12
:

v=1

)
©@@®®0
®@®000®
00®0®
®®000
®@®00®
cooc®e®
0®®®0
0oe®e
00000
00000
0000
FIEET

v=2

®@@®®0
@e@®@®0
[6XCXOXOXO)
[CXCXOXOXO)
[eJOXOXOXO)
O00®O0
O0000
O000O0
O000O0
@00®®
Cee®®
@®@000®
A

v=3

O0®®00
O®@®@0®
@@0®®

» Answer 2: Out-of-bag test error estimation.

O0000
O0O000
O0000
[€XCXOXCXC}
OOCe®®
[CRONONOXC]
O@®@®®0
@000®@®
@@®@00
TIERE

O0000
00000
O000O0
@®@00®®
[OJOXOXOXOJ
[eJCXOXOXO)
[eJCYOXCXO)
@®@0®@00
CPe®®
[eJeXeXOXO)
@®@0@O0®
@®@@®@®@00
A

309

Out-of-bag Test Error Estimation

» Idea: test on the “unused” data points in each bootstrap iteration to
estimate the test error.

<

W
a
.
1N
T
4N
i
Tk
o)
n
i
i

b=1

b=2

b=3

I

b=

b=

b=6

b=7

b

11
@

® @ O|0|0|0|0|®|C

o
I
©

0@®0®®®00®®e
O@®0e®e®®®0
O0®e®e®®®
~ O0®0®e®®®0
©0®0®®0C®®
©® 0O 0|®0®®0O
®0®0®e®®®C:
©©®®0|00®0 @ e:

' ©@0|®0@®®0®
- ©@0®0e®e®®0
®

2= 0O0@®0®®®®®

.
N
S
S
—~
=

(]
~
g

be{3,

N

8,10}

Out-of-bag Test Error Estimation

» Idea: test on the “unused” data points in each bootstrap iteration to
estimate the test error.

W'<%

o
N
I,
n
4N
o
i
n
i
i

o
I}
-

b=2

;

b=3

b=4

b=5

b=6

b=7

b=8

® ® O0|0|0|0|®Cs

b=

|
©

Vo
O@®0®®®00®

O@0®®e®®®0
O0@we®e®®®

~
)
S
S
—~
=
)
N2

olo®0j®®®®0

. _Olo®oeeeee®
®0O®0|®®®®®/CE
©/®®0|0|0|®|0|®@|ek

S8
m
—~—
»
&
—
S
-~
~»
S
—~
=
)
=

©0®0®®0®®
®® 0 0®0|®®0
©®0®0®©®0®
©®0®0®®®0

o
I

-
o

310

311

Out-of-bag Test Error Estimation

» Foreachi=1,...,n, the out-of-bag sample is:

B; = {b : x; is not in training set} C {1,...,B}.

» Construct the out-of-bag estimate:

J}oob(xi) _ 1 Zfb(l-i)

|Bi|b€3
» Estimate the test error as

~ 1< .
Rev - = L iy 0ob i
test nz Vi, S (x:))

i=1

312

Out-of-bag Test Error Estimation

v

We need |B| to be reasonably large forall i = 1,...,n.

The probability 7°°” of an observation NOT being included in a bootstrap
sample (ji,.-.,j.) (and hence being ‘out-of-bag’) is:

v

n—o0

1
0ob — [—1) ~ 0.367.
wr =TJ0-) " exp(-1)

i=1

v

Hence E[|B;|] ~ 0.367Bforalli = 1,...,n.

In practice, number of bootstrap samples B is typically between 200 and
1000, meaning that the number |B;| of out-of-bag samples will be
approximately in the range 70 — 350.

The obtained test error estimate is asymptotically unbiased for large
number B of bootstrap samples and large sample size n.

v

v

313

Example: Boston Housing Dataset
» Apply out of bag test error estimation to select optimal tree depth and
assess performance of bagged trees for Boston Housing data.
» Use the entire dataset with p = 13 predictor variables.

n <- nrow (BostonHousing) ## n samples

X <- BostonHousing[,-14]

Y <- BostonHousing[, 14]

B <- 100

maxdepth <- 3

prediction_oob <- rep (0, length(Y)) ## vector with oob predictions

numbertrees_oob <- rep(0,length(Y)) ## number pf oob trees

for (b in 1:B) { ## loop over bootstrap samples
subsample <- sample(l:n,n,replace=TRUE) ## "in-bag" samples

outofbag <- (1l:n) [-subsample] ## "out-of-bag" samples
fit tree on "in-bag" samples
treeboot <- rpart(Y¥ ~ ., data=X, subset=subsample,
control=rpart.control (maxdepth=maxdepth,minsplit=2))
predict on oob-samples
prediction_oob[outofbag] <- prediction_oob[outofbag] +
predict (treeboot, newdata=X[outofbag,])
numbertrees_oob[outofbag] <- numbertrees_oob[outofbag] + 1
}
final oob-prediction is average across all "out-of-bag" trees
prediction_oob <- prediction_oob / numbertrees_oob

314

Example: Boston Housing Dataset

plot (prediction_oob, Y, x1lab="PREDICTED", ylab="ACTUAL")

For depth d = 1. For depth d = 10.

doo00 o@mwoo o

ACTUAL
ACTUAL

PREDICTED PREDICTED

315

Example: Boston Housing Dataset Random Forests

TABLE 2
Test set misclassification error (%)

v

Out-of-bag estimate of test error as a function of tree depth d:

tree depth d ‘ 1 5 3 4 5 10 30 Data set Forest Single tree
single tree f 60.7 448 328 312 277 265 273 Breast cancer 2.9 5.9
bagged treesfgag 43.4 27.0 228 215 20.7 20.1 20.1 Ionosphere 5.5 11.2
Without b . th timal t deoth tobed — 10 Diabetes 24.2 25.3
» Without bagging, the optimal tree depth seems to be d = 10. Glass 99,0 30.4
» With bagging, we could also take the depth up to d = 30. Soybean 5.7 8.6
» Bagging strongly improves performance. Letter‘s 3.4 12.4
» On the other hand, bagged trees cannot be displayed as nicely as single Satellite 8.6 14.8
- -) Shuttle x10 7.0 62.0
trees and some of the interpretability of trees is lost. DNA 39 6.9
» Bagging does not always improve accuracy, but often does in practice. Digit 6.2 17.1

From Breiman: “Statistical Modelling: the two cultures”.
316 318
Random Forests and Extremely Randomized Trees Random Forests and Nearest Neighbours

» Let P(x,x;) € [0, 1] be the proportion of trees for which a vector x falls into

» Random forests are similar to bagged decision trees with a few key the same final leaf node as the training vector x;. P(x,x;) is a proximity

differences: value, and tends to be large when x and x; are close by.
» For each split point, the search is not over all p variables but just over mtry > If every leaf node contains th? same nu.mber of training samples, the
randomly chosen ones (where e.g. mtry = |p/3]) prediction of random forests (in regression mode) at x is:
» No pruning necessary. Trees can be grown until each node contains just .
very few observations (1 or 5). f-RF(x) _ izt POx,xi)yi
» Random forests tend to produce better predictions than bagging. S Plx,x)
» Results often not sensitive to the only tuning parameter mtry. L . . .
» Implemented in randomForest library. which is a weighted (approximate) nearest neighbour scheme.
» Even more random methods, e.g. extremely randomized trees: » If the nodes contain different number of original observations, P(x, x;) is a
» For each split point, sample mtry variables each with a value to split on, and weighted proportion of trees, where the weight of a tree is inversely
pick the best one. proportional to the number of samples in the leaf node containing x.
» Often works even when mtry equals 1! » For classification, the prediction will be the weighted majority vote, where
» Often produce state-of-the-art results, and top performing methods in again weights are proportional to the proximities P(x, x;).
machine learning competitions. » kNN does not scale well to very large datasets, and computational

geometry techniques for approximately finding nearest neighbours often
rely on tree data structures, e.g. kd-trees, cover trees, ball trees. Random
forests and other randomized trees can also be thought of similarly.

Breiman (2001)., Geurts et al (2006). 317 319

Ensemble Methods

» Bagging and random forests are examples of ensemble methods, where
predictions are based on an ensemble of many individual predictors.

» Bayesian posterior averaging can also be thought of as an ensemble
method:

ploix.Data) = | plyix.6)p(6[Datat

B
> pOlx, 6%)
b=1

where ¢” are samples drawn from posterior p(¢|Data).

» Many other ensemble learning methods: boosting, stacking, mixture of
experts, Bayesian model combination etc.

» Often gives significant boost to predictive performance.

1

~
~

™|

320

Dropout Training of Neural Networks

» Neural network with single layer of hidden
units:

» Hidden unit activations:

P
hi = 5 (w + W;”m)

j=1

» Output probability:

» Large, overfitted, networks often have
co-adapted hidden units.

» What each hidden unit learns may in fact
be useless, e.g. predicting the negation of
predictions from other units.

» Can prevent co-adaptation by randomly
dropping out units from network.

P
% '/‘\20:"\\@

Hinton et al (2012). 321

(o)
= s <b+2Wh> (] £ (1)

Dropout Training of Neural Networks

» Model as an ensemble of networks:

pi=1x,0) = Y "1 —g)" Plp(yi = 1]x;,6,drop out units b)

» Weight-sharing among all networks: each network uses a subset of the
parameters of the full network (corresponding to the retained units).

» Training by stochastic gradient descent: at each iteration a network is
sampled from ensemble, and its subset of parameters are updated.

322

Dropout Training of Neural Networks
Classification of phonemes in speech.

Test Error

| AN — 15 frames 3 layers 2000 units
4 15 frames 3 layers 4000 units

— 31 frames 3 layers 4000 units
/ — 31 frames 4 layers 4000 units

Classification Error %
w
&

finetuning wi&n dropout

finetuning with dropout

(+] 50 100 150 200
Epochs

Figure from Hinton et al.

323

Boosting

» Boosting is an iterative ensemble learning technique. At iteration 7, the
predictor is (with 0 < v < 1, typically small, say v = 0.1):

ﬁ(x) = Z v8m(x)
m=1

v

For regression, L,-boosting works as follows:

1. Fit a first function to the data (x;, y;)/—, with base learner, yielding g, (x).
2. Fort=2,3,...,T do:

2.1 Compute residuals .
up = yi — fi—1(xi)
2.2 Fitthe residuals (x;, u;)?_,, obtaining & (x).
Boosting is a bias-reduction technique, as opposed to bagging and
dropout.

Boosting works well with simple base learners, e.g. decision stumps, with
low variance and high bias.

Implemented in the mboost library.

v

v

v

324

Boosting

» Boosting can be viewed as functional gradient descent.
» Say we wish to minimize empirical risk with differentiable loss function,

1 n
R(f) = p ZL(YL' —f(x:))
i=1
» We can calculate V(R(f) and take a gradient descent step:
Fix) = fimr(6) = vVR(fi1)
» We use a base learner to approximate V/R(f,_).

1. With f, = 0, fit a first function to {(x;, —V,L(yi,fo(x:)))i,, yielding & (-).
2. Take gradient descent step:

) =vai(x)
3. Fort=2,3,...,T do:
3.1 Compute empirical gradient u; = 7VfL(y[,f},| (xi))-
3.2 Fitthe gradient (x;, u;)!_,, yielding g(x).

3.3 Set) A
Ji) = fim1(x) + v&i(x)

325

Boosting
» Obtain L,-Boosting when using the quadratic loss function
HEE PPV
R() = >0 =)™

i=1

» Obtain LogitBoost when using the logistic loss function (binary
classification, y; € {—1,1}),

R(F) = > log(1 + exp(~yif(x).
i=1

» Obtain AdaBoost (the original boosting algorithm) when using the
exponential loss (again y; € {—1,1})
1 n
RY) = 5 2o e (x)

Freund and Schapire (1995). 326

Boosting

— 0-1
--- exponential
- hinge
. . logistic
0 Lo -~ truncated quadratic

327

Boosting

library (mboost)

n <- length(y) ## number of observations
Mvec <- 1:500 ## Mvec is vector with various stopping times
nM <- length (Mvec) ## number of possible stopping times
loss <- numeric (nM) ## loss contains the training error
losscv <- numeric(nM) ## losscv contains the validation error
for (mc in 1:nM) { ## loop over stopping times (not efficient)
vhat <- numeric (n) ## yhat are the fitted values
vhatcv <- numeric (n) ## yhatcv the cross-validated fitted values
M <- Mvec[mc] ## use M iterations
vV <= 10 ## 10-fold cross validation
indCV contains the ‘block’ in 1,...,10
each observation falls into
indCV <- sample(rep(l:V,each=ceiling(n/V)), n)
for (cv in 1:V){ ## loop over all blocks
bb <- blackboost (y[indCV!=cv] ~ .,data=x[indCV!=cv,],

control=boost_control (mstop=M))
predict the unused observations
yvhatcv[indCV==cv] <- predict (bb,x[indCV==cv,])
}

losscv[mc] <- sqrt(mean((y-yhatcv)”2)) ## CV test error
bb <- blackboost (y ~ .,data=x,control=boost_control (mstop=M))
yvhat <- predict (bb, x)
loss[mc] <- sqgrt(mean((y-vyhat)”"2)) ## training error
}
328
Boosting

Plot of validation error in red and training error in black as functions of
iteration.

matplot (cbind(loss, losscv), type="p",lwd=2,col=c(1l,2),1lty=1)
abline (h= sqgrt (mean((predict (rf)-y)”"2)),1lwd=1l,1lty=2)

LOSS
5

0 10 20 30 40 50 60

BOOSTING ITERATIONS

329

Machine Learning

» The last 8 weeks has been a whirlwind tour of basic machine learning
techniques:

» Unsupervised learning: PCA, MDS, Isomap, K-means, mixture model, EM
algorithm.

» Supervised learning: LDA, naive Bayes, kNN, decision trees, logistic
regression, SVMs, kernel methods, Gaussian processes, neural networks,
deep learning.

» Conceptual framework: prediction, generalization, overfitting and
regularization.

» Theory: decision theory, statistical learning theory, Bayesian framework.

» Cross validation, model selection, model averaging and model combination
(bagging, random forests, boosting).

» Further explorations:

» Machine learning summer schools, videolectures.net.
» Conferences: NIPS, ICML, UAI, AISTATS.
» Mailing list: ml-news.

330

