Supervised Learning

Unsupervised learning:

» To “extract structure” and postulate hypotheses about data generating
process from observations xi, ..., x,.

» Visualize, summarize and compress data.

We have seen how response or grouping variables are used to validate the
usefulness of the extracted structure.

Supervised learning:

» |n addition to the n observations of X, we also have a response variable
Y e).
» Techniques for predicting Y given X.
» Classification: discrete responses, e.g. V = {+1,—1} or {1,...,K}.
» Regression: a numerical value is observed and ) = R.

Given training data (x;,y;), i = 1,...,n, the goal is to accurately predict the
class or response Y on new observations of X.
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Regression Example: Boston Housing

The original data are 506 observations on 13 variables X; medv being the
response variable Y.

crim per capita crime rate by town
zZn proportion of residential land zoned for lots
over 25,000 sg.ft
indus proportion of non-retail business acres per town
chas Charles River dummy variable (= 1 1f tract bounds river;
0 otherwise)
nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
age proportion of owner-occupied units built prior to 1940
dis weighted distances to five Boston employment centers
rad index of accessibility to radial highways
tax full-value property-tax rate per USD 10,000
ptratio pupil-teacher ratio by town
b 1000(B - 0.63) "2 where B 1s the proportion of blacks by tc
lstat percentage of lower status of the population

medv median value of owner-occupied homes 1n USD 1000’s
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Regression Example: Boston Housing

> str (X)

"data.frame’ : 506 obs. of 13 variables:
$ crim : num 0.00632 0.02731 0.02729 0.03237 0.06905
S zn : num 18 0 0 0O O O 12.5 12.5 12.5 12.5
$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.8"
$ chas :int O O O OO0 0 O0O0O0O0 ...
$ nox : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 «(
S rm : num 6.58 6.42 7.18 7.00 7.15
$ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9
$ dis :num 4.09 4.97 4.97 6.06 6.06
$ rad :int 1 2 2 3 3 3 5555 ...
$ tax : num 296 242 242 222 222 222 311 311 311 311
$ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.7
$ black : num 397 397 393 395 397 ...
$ lstat : num 4.98 9.14 4.03 2.94 5.33

> str(Y)

num[1:506] 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9

Goal: predict median house price Y (X), given 13 predictor variables X of a
new district.
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Classification Example: Lymphoma

We have gene expression measurements X of n = 62 patients for p = 4026
genes. For each patient, Y denotes one of two subtypes of cancer. Goal:

predict cancer subtype Y (X) € {0, 1}, given gene expressions of a new

patient.

> str (X)

"data.frame’ :

U

Gene 1
Gene 2
Gene 3
Gene 4
Gene 5
Gene 6
Gene 7
Gene 8
Gene 9
Gene 10
Gene 11
Gene 12

U Uy O U U Uy U O Uy A Ux

> str(Y)
num [1:62]

62 obs.
num -0.
num -0.
num —0.
num —0.
num —1.
num —2.
num -1
num -—1.
num —0.
num -0
num —0.
num -0.

O 0 0120

4026 wvariables:

of

344 -1.188 0
953 -1.286 O
776 -0.588 0
474 -1.588 0
896 —-1.960 -1
075 -2.117 O
.8755 -1.8187
539 -2.433 -0
604 -0.710 -1
.218 =-0.487 -1
340 1.164 1
531 0.488 -0
01 0 0O

.520 -0
.657 -1
.409 -0
.219 0
.695 -0
.121 -0
0.3175
.337 =0
.269 -0
.203 -0
.023 1
.335 0

. 748 -0
.328 -1
.991 -1
.978 -1
.348 -0
.800 0.
0.3873
.522 -0
.832 0
.919 -0
.133 -0
.496 -0

. 868
. 330
.517
.604
.595

651
0

.668
.458
. 848
.541
.358

.0414
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Decision Theory

» Suppose we made a prediction Y € ) based on observation of X.

» How good is the prediction? We can use a loss function L : ) x ) — Rt
to formalize the quality of the prediction.

» Typical loss functions:

» Misclassification loss (or 0-1 loss) for classification

= =b

5 0 Y
L(Y,Y):{l v

ol

» Squared loss for regression

A A

L(Y,Y)= (Y - 7).

» Alternative loss functions are often useful (later). For example, weighted
misclassification error often appropriate. Or log-likelihood loss

(sometimes shortened as log loss) L(Y,p) = —logp(Y), where p(k) is the
estimated probability of class k € ).
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Decision Theory

» For a given loss function L, the risk R of a learner is given by the

expected loss A )
R(Y) = E(L(Y,Y(X))),

where the expectation is with respect to the true (unknown) joint
distribution (X, Y).
» The risk is unknown, but we can estimate it by the empirical risk:

R(Y) ~ ZL vi, Y (xi))
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The Bayes Classifier

» What is the optimal classifier if the joint distribution (X, Y) were known?
» The joint distribution f of X can be written as a mixture

K

FX) =Y AEOPY =k),

k=1

where, fork =1,... K,

» the prior probabilities over classes are P(Y = k) = m,
» and distributions of X, conditional on Y = k, is fi(X).

» The Bayes classifier Y(X) — {1,...,K} is the one with minimum risk:
R(Y) =E {L(Y, f/(x))} —E [E[L(Y, ¥ (x)|X = x]}
_ /X E[L(Y. ¥(@)|X = x]f()ds

» The minimum risk attained by the Bayes classifier is called Bayes risk.
» Minimizing E[L(Y, ¥(x))|X = x] separately for each x suffices.
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The Bayes Classifier

» Consider the situation of the 0-1 loss.
» The risk simplifies to:

E [L(Y, ¥ (x))|x = x} =" Lk, Y(x)P(Y = kX = x)
=1 —-P(Y =Y(x)|X =x)

» The risk is minimized by choosing the class with the greatest posterior
probability:

Y(x) = argmaxP(¥Y = k|X = x) = argmax ;kak(X)
k=1,....K k=1,...K Y iy Tife(X)
= argmax mgfi(x).
k=1,....K

» The functions x — mfi(x) are called discriminant functions. The
function with maximum value determines the predicted class of x.
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The Bayes Classifier

A simple two Gaussians example: Suppose X ~ N (uy, 1), where uy = —1 and
uy = 1 and assume equal priors m; = m = 1/2.

fl(x):\/lz?exp(—(x_(z_l)y) and fz(x):\/lz?exp(—“_zl)z).

Lo
o

0.4

<
o

0.3

DENSITY
0.2
|
DENSITY

0.1

Optimal classification is Y (x) = arg max mf; (x) = {
k=1,....K
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The Bayes Classifier

How do you classify a new observation x if now the standard deviation is still 1
for class 1 but 1/3 for class 27

1.2
|
5e-01

DENSITY
0.6 0.8 1.0
| |
DENSITY
5e-03 5e-02
| | | |

0.4

0.2

1e-04 5e-04

Looking at density in a log-scale, optimal classification is class 2 if and only if
x € [—0.39,2.15].
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Plug-in Classification

» The Bayes Classifier chooses the class with the greatest posterior
probability

Y(x) = argmaxmfi(x).
k=1,...,.K

» Unfortunately, we usually know neither the conditional class probabilities
nor the prior probabilities.

» We can estimate the joint distribution with:

> estimates 7 for m,and k= 1,...,K and
» estimates fi(x) of conditional class densities,

» The plug-in classifiers chooses the class

Y (x) = arg max 7fi(x).
k=1,...,.K

» Linear Discriminant Analysis will be an example of plug-in
classification.

142



Linear Discriminant Analysis

» LDA is the most well-known and simplest example of plug-in
classification.

» Assume a multivariate Normal form for f.(x) for each class «:
X‘Y =k ~ N(Mkv Z)?

» each class can have a different mean
» but all classes share the same covariance >..

» For an observation x,

logP(Y = k|X = x) = Kk + log mfi (x)

1 _
= K+ logm, — Q(X— ) 2T — )

The quantity (x — ) ' 7' (x — 1) is the square of the Mahalanobis

distance. It gives the distance between x and p; in the metric given by ..
» If =1, and 7, = +, Y(x) simply chooses the class k with the nearest (in
the Euclidean sense) mean.
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Linear Discriminant Analysis
» Expanding the discriminant (x — 1) ' X7 (x — ),
logP(Y = k|x) = k + log(my) — % (1 S e — 2 7+ 1T 27 )

I+ )
= ki log(me) = Sy X7 e+ N7

» Setting a, = log(m;) — %u,jz—luk and b, = X', we obtain
logP(Y =k|X =x) = k+ay + b} x

l.e. a linear discriminant function.
» Consider choosing class k over k’:

ar + b, x > ap + by x & a, +b x>0

where a, = ay — ap and b, = by, — by.
» The Bayes classifier partitions X" into regions with the same class
predictions via separating hyperplanes.

» The Bayes classifier under these assumptions is more commonly known
as the LDA classifier.
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Parameter Estimation

>

The final piece of the puzzle is to estimate the parameters of the LDA
model.

We can achieve this by maximum likelihood.

EM algorithm is not needed here since the class variables y; are
observed.

Let n, = #{j : y; = k} be the number of observations in class «.

U, (), L) =K+ Y > logm — % (log %]+ (x5 — i) " 27" (4 — u))

k=1 j:yj=k

Then:

Note: the ML estimate of Y is not unbiased. For an unbiased estimate we
need to divide by n — K.
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Iris Dataset
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library (MASS)
data(iris)

##save class labels
ct <— rep(l:3,each=50)
##pairwise plot
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Iris Dataset

Just focus on two predictor variables.

iris.data <— iris/|[,3:4]

plot (iris.data,col=ct+1l,pch=20,cex=1.5,cex.lab=1.
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Iris Dataset

Computing and plotting the LDA boundaries.

##fit LDA
iris.lda <- lda(x=i1ris.data,grouping=ct)

##create a grid for our plotting surface
X <- seq(-6,6,0.02)

<- seq(—-4,4,0.02)

<- as.matrix (expand.grid(x,vy),0)
length (x)
<— length (y)

53 N K
AN
[

##classes are 1,2 and 3, so set contours at 1.5 and 2.5
iris.ldp <- predict(iris.lda,z)$class
contour (x,y,matrix(iris.ldp,m,n),

levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)
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Iris Dataset
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Fisher's Linear Discriminant Analysis

» In LDA, data vectors are classified based on Mahalanobis distance from
cluster means, which lie on a K — 1 affine subspace.

» In measuring these distances, directions orthogonal® to the subspace
can be ignored.

» Projecting data vectors onto the subspace can be viewed as a
dimensionality reduction technique that preserves discriminative
information about (y;)"_,.

» As with PCA, we can visualize the structure in the data by choosing an
appropriate basis for the subspace and projecting data onto it.

» Choose a basis by finding directions that are separate classes best.

5Orthogonality defined in terms of the inner product corresponding to Mahalanobis distance:

(x,y) = xX71y.
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Fisher's Linear Discriminant Analysis

» Find a direction v € R? to maximize the variance ratio

v By
vIiYy

where

.= nTll Z?:l(xi — :u)’i)(xi - luyi)—r
K _ —
B = nTll D ket (g, = X) (py, — X))
B has rank at most K — 1.

(within class covariance)

(between class covariance)

Figure from Hastie et al.
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Discriminant Coordinates

» To solve for the optimal v, we first reparameterize it as u = X 2v.

where B* = (X~2)TBY 2.
» The maximization over u is achieved by the first eigenvector u; of B*.

» We also look at the remaining eigenvectors u; associated to the non-zero
. . . . . = 1
eigenvalues and defined the discriminant coordinates as v, = X2 u,.

» The v,’s span exactly the affine subspace spanned by (X~'1;)&_, (these
vectors are given as the “linear discriminants” in the R-function 1da).
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Crabs Dataset

library (MASS)
data (crabs)

## numeric and text class labels
ct <—- as.numeric(crabs[,1l])-1+2% (as.numeric (crabs[,2])-1)

## Projection on Fisher’s linear discriminant directions
print (cb.lda <- lda(log(crabs([,4:8]),ct))
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Crabs Dataset

> > > > > > > > > Call:

lda(log(crabs|[, 4:8]), ct)

Prior probabilities of groups:
0 1 2 3

0.25 0.25 0.25 0.25

Group means:

F'L RW CL CW BD
0 2.564985 2.475174 3.312685 3.462327 2.441351
1 2.852455 2.683831 3.529370 3.649555 2.733273
2 2.0672724 2.443774 3.437968 3.578077 2.560806
3 2.787885 2.489921 3.490431 3.589426 2.701580

Coefficients of linear discriminants:

LD1 LD2 LD3

FLL =31.217207 -2.851488 25.719750

RW -9.485303 —-24.652581 -6.067361

CL -9.822169 38.578804 -31.679288

CW 65.950295 -21.375951 30.600428

BD -17.998493 6.002432 —-14.541487
Proportion of trace:
LD1 LD2 LD3
0.6891 0.3018 0.0091
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Crabs Dataset

cb.ldp <- predict (cb.lda)
egscplot (cb.1ldp$x, pch=ct+1, col=ct+1)
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Crabs Dataset

## display the decision boundaries
## take a lattice of points in LD-space
X <- seq(-6,6,0.02)
<- seq(—-4,4,0.02)
as.matrix (expand.grid(x,vy,0))
<— length (x)
<— length (y)

538 N K
i

## predict onto the grid
cb.ldap <- lda(cb.ldp$x,ct)
cb.ldpp <- predict (cb.ldap, z) $class

## classes are 0,1,2 and 3 so set contours
## at 0.5,1.5 and 2.5
contour (x,y,matrix (cb.ldpp,m,n),
levels=c(0.5,2.5),
add=TRUE, d=FALSE, 1lty=2, lwd=2)
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Crabs Dataset
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Crabs Dataset
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LDA separates the groups better.
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Naive Bayes

» Assume we are interested in classifying documents; e.g. scientific
articles or emails.

» A basic but standard model for text classification consists of considering
a pre-specified dictionary of p words (including say physics, calculus.... or
dollars, sex etc.) and summarizing each document i by a binary vector x;

where
o { 1 if word is present in document
y —

0 otherwise.

» To implement a probabilistic classifier, we need to model f; (x|¢y) for each
classk=1,....K.
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Naive Bayes

» A Naive Bayes approach ignores feature correlations and assumes

fi(x) = f(x|#x) where
P
filxi) = fxldn) = [ [ (d6)™ (1 — dig)' ™
j=1
» Given dataset, the MLE is easily obtained
@ 7 o Zi:yi:kxij
n ¢k] — -

Tk =

» One problem: if word j did not appear in documents labelled as class &
then ¢;; = 0 and

P(Y = k|X = x with jth entry equalto 1) =0

l.e. we will never attribute a new document containing word j to class .

» This problem is called overfitting, and is a major concern in modelling
high-dimensional datasets common in machine learning.
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