
Supervised Learning

Unsupervised learning:
� To “extract structure” and postulate hypotheses about data generating

process from observations x1, . . . , xn.
� Visualize, summarize and compress data.

We have seen how response or grouping variables are used to validate the
usefulness of the extracted structure.

Supervised learning:
� In addition to the n observations of X, we also have a response variable

Y ∈ Y.
� Techniques for predicting Y given X.

� Classification: discrete responses, e.g. Y = {+1,−1} or {1, . . . ,K}.
� Regression: a numerical value is observed and Y = R.

Given training data (xi, yi), i = 1, . . . , n, the goal is to accurately predict the
class or response Y on new observations of X.
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Regression Example: Boston Housing
The original data are 506 observations on 13 variables X; medv being the
response variable Y.

crim per capita crime rate by town
zn proportion of residential land zoned for lots

over 25,000 sq.ft
indus proportion of non-retail business acres per town
chas Charles River dummy variable (= 1 if tract bounds river;

0 otherwise)
nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
age proportion of owner-occupied units built prior to 1940
dis weighted distances to five Boston employment centers
rad index of accessibility to radial highways
tax full-value property-tax rate per USD 10,000
ptratio pupil-teacher ratio by town
b 1000(B - 0.63)^2 where B is the proportion of blacks by town
lstat percentage of lower status of the population
medv median value of owner-occupied homes in USD 1000’s
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Regression Example: Boston Housing
> str(X)
’data.frame’: 506 obs. of 13 variables:
$ crim : num 0.00632 0.02731 0.02729 0.03237 0.06905 ...
$ zn : num 18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
$ chas : int 0 0 0 0 0 0 0 0 0 0 ...
$ nox : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
$ rm : num 6.58 6.42 7.18 7.00 7.15 ...
$ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
$ dis : num 4.09 4.97 4.97 6.06 6.06 ...
$ rad : int 1 2 2 3 3 3 5 5 5 5 ...
$ tax : num 296 242 242 222 222 222 311 311 311 311 ...
$ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
$ black : num 397 397 393 395 397 ...
$ lstat : num 4.98 9.14 4.03 2.94 5.33 ...

> str(Y)
num[1:506] 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...

Goal: predict median house price Ŷ(X), given 13 predictor variables X of a
new district.
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Classification Example: Lymphoma
We have gene expression measurements X of n = 62 patients for p = 4026
genes. For each patient, Y denotes one of two subtypes of cancer. Goal:
predict cancer subtype Ŷ(X) ∈ {0, 1}, given gene expressions of a new
patient.
> str(X)
’data.frame’: 62 obs. of 4026 variables:
$ Gene 1 : num -0.344 -1.188 0.520 -0.748 -0.868 ...
$ Gene 2 : num -0.953 -1.286 0.657 -1.328 -1.330 ...
$ Gene 3 : num -0.776 -0.588 0.409 -0.991 -1.517 ...
$ Gene 4 : num -0.474 -1.588 0.219 0.978 -1.604 ...
$ Gene 5 : num -1.896 -1.960 -1.695 -0.348 -0.595 ...
$ Gene 6 : num -2.075 -2.117 0.121 -0.800 0.651 ...
$ Gene 7 : num -1.8755 -1.8187 0.3175 0.3873 0.0414 ...
$ Gene 8 : num -1.539 -2.433 -0.337 -0.522 -0.668 ...
$ Gene 9 : num -0.604 -0.710 -1.269 -0.832 0.458 ...
$ Gene 10 : num -0.218 -0.487 -1.203 -0.919 -0.848 ...
$ Gene 11 : num -0.340 1.164 1.023 1.133 -0.541 ...
$ Gene 12 : num -0.531 0.488 -0.335 0.496 -0.358 ...

> str(Y)
num [1:62] 0 0 0 1 0 0 1 0 0 0 ...
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Decision Theory
� Suppose we made a prediction Ŷ ∈ Y based on observation of X.
� How good is the prediction? We can use a loss function L : Y ×Y �→ R

+

to formalize the quality of the prediction.
� Typical loss functions:

� Misclassification loss (or 0-1 loss) for classification

L(Y, Ŷ) =
�

0 Y = Ŷ
1 Y �= Ŷ

.

� Squared loss for regression

L(Y, Ŷ) = (Y − Ŷ)2.

� Alternative loss functions are often useful (later). For example, weighted
misclassification error often appropriate. Or log-likelihood loss
(sometimes shortened as log loss) L(Y, p̂) = − log p̂(Y), where p̂(k) is the
estimated probability of class k ∈ Y.
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Decision Theory

� For a given loss function L, the risk R of a learner is given by the
expected loss

R(Ŷ) = E(L(Y, Ŷ(X))),

where the expectation is with respect to the true (unknown) joint
distribution (X, Y).

� The risk is unknown, but we can estimate it by the empirical risk:

R(Ŷ) ≈ Rn(Ŷ) =
1
n

n�

i=1

L(yi, Ŷ(xi)).
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The Bayes Classifier
� What is the optimal classifier if the joint distribution (X, Y) were known?
� The joint distribution f of X can be written as a mixture

f (X) =
K�

k=1

fk(X)P(Y = k),

where, for k = 1, . . . ,K,
� the prior probabilities over classes are P(Y = k) = πk
� and distributions of X, conditional on Y = k, is fk(X).

� The Bayes classifier Ŷ(X) �→ {1, . . . ,K} is the one with minimum risk:

R(Ŷ) =E

�
L(Y, Ŷ(X))

�
= E

�
E[L(Y, Ŷ(x)

��X = x]
�

=

�

X

E

�
L(Y, Ŷ(x))

��X = x
�
f (x)dx

� The minimum risk attained by the Bayes classifier is called Bayes risk.
� Minimizing E[L(Y, Ŷ(x))

��X = x] separately for each x suffices.
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The Bayes Classifier
� Consider the situation of the 0-1 loss.
� The risk simplifies to:

E

�
L(Y, Ŷ(x))

��X = x
�
=

K�

k=1

L(k, Ŷ(x))P(Y = k|X = x)

=1 − P(Y = Ŷ(x)|X = x)

� The risk is minimized by choosing the class with the greatest posterior
probability:

Ŷ(x) = arg max
k=1,...,K

P(Y = k|X = x) = arg max
k=1,...,K

πkfk(x)�K
k=1 πkfk(x)

= arg max
k=1,...,K

πkfk(x).

� The functions x �→ πkfk(x) are called discriminant functions. The
function with maximum value determines the predicted class of x.
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The Bayes Classifier
A simple two Gaussians example: Suppose X ∼ N (µY , 1), where µ1 = −1 and
µ2 = 1 and assume equal priors π1 = π2 = 1/2.

f1(x) =
1

√
2π

exp
�
−
(x − (−1))2

2

�
and f2(x) =

1
√

2π
exp

�
−
(x − 1)2

2

�
.
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Optimal classification is Ŷ(x) = arg max
k=1,...,K

πkfk(x) =

�
1 if x < 0,
2 if x ≥ 0.
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The Bayes Classifier

How do you classify a new observation x if now the standard deviation is still 1
for class 1 but 1/3 for class 2?
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Looking at density in a log-scale, optimal classification is class 2 if and only if
x ∈ [−0.39, 2.15].
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Plug-in Classification
� The Bayes Classifier chooses the class with the greatest posterior

probability

Ŷ(x) = arg max
k=1,...,K

πkfk(x).

� Unfortunately, we usually know neither the conditional class probabilities
nor the prior probabilities.

� We can estimate the joint distribution with:
� estimates π̂k for πk and k = 1, . . . ,K and
� estimates f̂k(x) of conditional class densities,

� The plug-in classifiers chooses the class

Ŷ(x) = arg max
k=1,...,K

π̂kf̂k(x).

� Linear Discriminant Analysis will be an example of plug-in
classification.
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Linear Discriminant Analysis
� LDA is the most well-known and simplest example of plug-in

classification.
� Assume a multivariate Normal form for fk(x) for each class k:

X|Y = k ∼ N (µk,Σ),

� each class can have a different mean µk
� but all classes share the same covariance Σ.

� For an observation x,

logP(Y = k|X = x) = κ+ logπkfk(x)

= κ+ logπk −
1
2
(x − µk)

�Σ−1(x − µk)

The quantity (x − µk)�Σ−1(x − µk) is the square of the Mahalanobis
distance. It gives the distance between x and µk in the metric given by Σ.

� If Σ = Ip and πk =
1
K , Ŷ(x) simply chooses the class k with the nearest (in

the Euclidean sense) mean.
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Linear Discriminant Analysis
� Expanding the discriminant (x − µk)�Σ−1(x − µk),

logP(Y = k|x) = κ+ log(πk)−
1
2
�
µ�

k Σ−1µk − 2µ�

k Σ−1x + x�Σ−1x
�

= κ+ log(πk)−
1
2
µ�

k Σ−1µk + µ�

k Σ−1x

� Setting ak = log(πk)−
1
2µ

�
k Σ−1µk and bk = Σ−1µk, we obtain

logP(Y = k|X = x) = κ+ ak + b�

k x

i.e. a linear discriminant function.
� Consider choosing class k over k�:

ak + b�

k x > ak� + b�k� x ⇔ a� + b�� x > 0

where a� = ak − ak� and b� = bk − bk� .
� The Bayes classifier partitions X into regions with the same class

predictions via separating hyperplanes.
� The Bayes classifier under these assumptions is more commonly known

as the LDA classifier.
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Parameter Estimation
� The final piece of the puzzle is to estimate the parameters of the LDA

model.
� We can achieve this by maximum likelihood.
� EM algorithm is not needed here since the class variables yi are

observed.
� Let nk = #{j : yj = k} be the number of observations in class k.

�(π, (µk),Σ) = κ+
K�

k=1

�

j:yj=k

logπk −
1
2
�
log |Σ|+ (xj − µk)

�Σ−1(xj − µk)
�

Then:

π̂k =
nk

n
µ̂k =

1
nk

�

j:yj=k

xj

Σ̂ =
1
n

K�

k=1

�

j:yj=k

(xj − µ̂k)(xj − µ̂k)
�

� Note: the ML estimate of Σ is not unbiased. For an unbiased estimate we
need to divide by n − K.
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Iris Dataset

library(MASS)
data(iris)
##save class labels
ct <- rep(1:3,each=50)
##pairwise plot
pairs(iris[,1:4],col=ct)
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Iris Dataset
Just focus on two predictor variables.

iris.data <- iris[,3:4]
plot(iris.data,col=ct+1,pch=20,cex=1.5,cex.lab=1.4)
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Iris Dataset

Computing and plotting the LDA boundaries.

##fit LDA
iris.lda <- lda(x=iris.data,grouping=ct)

##create a grid for our plotting surface
x <- seq(-6,6,0.02)
y <- seq(-4,4,0.02)
z <- as.matrix(expand.grid(x,y),0)
m <- length(x)
n <- length(y)

##classes are 1,2 and 3, so set contours at 1.5 and 2.5
iris.ldp <- predict(iris.lda,z)$class
contour(x,y,matrix(iris.ldp,m,n),

levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)
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Iris Dataset
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Fisher’s Linear Discriminant Analysis

� In LDA, data vectors are classified based on Mahalanobis distance from
cluster means, which lie on a K − 1 affine subspace.

� In measuring these distances, directions orthogonal5 to the subspace
can be ignored.

� Projecting data vectors onto the subspace can be viewed as a
dimensionality reduction technique that preserves discriminative
information about (yi)n

i=1.
� As with PCA, we can visualize the structure in the data by choosing an

appropriate basis for the subspace and projecting data onto it.
� Choose a basis by finding directions that are separate classes best.

5Orthogonality defined in terms of the inner product corresponding to Mahalanobis distance:
�x, y� = xΣ−1y.
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Fisher’s Linear Discriminant Analysis

� Find a direction v ∈ R
p to maximize the variance ratio

v�Bv
v�Σv

where

Σ = 1
n−1

�n
i=1(xi − µyi)(xi − µyi)

� (within class covariance)

B = 1
n−1

�K
k=1 nk(µyi − x̄)(µyi − x̄))� (between class covariance)

B has rank at most K − 1.

Figure from Hastie et al. 151



Discriminant Coordinates

� To solve for the optimal v, we first reparameterize it as u = Σ
1
2 v.

v�Bv
v�Σv

=
u�(Σ−

1
2 )�BΣ−

1
2 u

u�u
=

u�B∗u
u�u

where B∗ = (Σ−
1
2 )�BΣ−

1
2 .

� The maximization over u is achieved by the first eigenvector u1 of B∗.
� We also look at the remaining eigenvectors ul associated to the non-zero

eigenvalues and defined the discriminant coordinates as vl = Σ−
1
2 ul.

� The vl’s span exactly the affine subspace spanned by (Σ−1µk)K
k=1 (these

vectors are given as the “linear discriminants” in the R-function lda).
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Crabs Dataset

library(MASS)
data(crabs)

## numeric and text class labels
ct <- as.numeric(crabs[,1])-1+2*(as.numeric(crabs[,2])-1)

## Projection on Fisher’s linear discriminant directions
print(cb.lda <- lda(log(crabs[,4:8]),ct))
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Crabs Dataset
> > > > > > > > > Call:
lda(log(crabs[, 4:8]), ct)

Prior probabilities of groups:
0 1 2 3

0.25 0.25 0.25 0.25

Group means:
FL RW CL CW BD

0 2.564985 2.475174 3.312685 3.462327 2.441351
1 2.852455 2.683831 3.529370 3.649555 2.733273
2 2.672724 2.443774 3.437968 3.578077 2.560806
3 2.787885 2.489921 3.490431 3.589426 2.701580

Coefficients of linear discriminants:
LD1 LD2 LD3

FL -31.217207 -2.851488 25.719750
RW -9.485303 -24.652581 -6.067361
CL -9.822169 38.578804 -31.679288
CW 65.950295 -21.375951 30.600428
BD -17.998493 6.002432 -14.541487

Proportion of trace:
LD1 LD2 LD3

0.6891 0.3018 0.0091
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Crabs Dataset
cb.ldp <- predict(cb.lda)
eqscplot(cb.ldp$x,pch=ct+1,col=ct+1)
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Crabs Dataset
## display the decision boundaries
## take a lattice of points in LD-space
x <- seq(-6,6,0.02)
y <- seq(-4,4,0.02)
z <- as.matrix(expand.grid(x,y,0))
m <- length(x)
n <- length(y)

## predict onto the grid
cb.ldap <- lda(cb.ldp$x,ct)
cb.ldpp <- predict(cb.ldap,z)$class

## classes are 0,1,2 and 3 so set contours
## at 0.5,1.5 and 2.5
contour(x,y,matrix(cb.ldpp,m,n),

levels=c(0.5,2.5),
add=TRUE,d=FALSE,lty=2,lwd=2)
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Crabs Dataset
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Crabs Dataset
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Naïve Bayes

� Assume we are interested in classifying documents; e.g. scientific
articles or emails.

� A basic but standard model for text classification consists of considering
a pre-specified dictionary of p words (including say physics, calculus.... or
dollars, sex etc.) and summarizing each document i by a binary vector xi
where

xij =

�
1 if word j is present in document
0 otherwise.

� To implement a probabilistic classifier, we need to model fk(x|φk) for each
class k = 1, ...,K.
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Naïve Bayes

� A Naïve Bayes approach ignores feature correlations and assumes
fk(x) = f (x|φk) where

fk(xi) = f (xi|φk) =
p�

j=1

(φkj)
xij (1 − φkj)

1−xij

� Given dataset, the MLE is easily obtained

π̂k =
nk

n
φ̂kj =

�
i:yi=k xij

nk

� One problem: if word j did not appear in documents labelled as class k
then φ̂kj = 0 and

P(Y = k|X = x with jth entry equal to 1) = 0

i.e. we will never attribute a new document containing word j to class k.
� This problem is called overfitting, and is a major concern in modelling

high-dimensional datasets common in machine learning.
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