Neural Electroencephalography (EEQG)
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Neural Spike Waveforms
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Clustering

» Many datasets consist of multiple heterogeneous subsets. Cluster
analysis is a range of methods that reveal this heterogeneity by
discovering clusters of similar points.

» Model-based clustering:

» Each cluster is described using a probability model.

» Model-free clustering:

» Defined by similarity among points within clusters (dissimilarity among points
between clusters).

» Partition-based clustering methods:

» Allocate points into K clusters.
» The number of cluster is usually fixed beforehand or investigated for various
values of K as part of the analysis.

» Hierarchy-based clustering methods:

» Allocate points into clusters and clusters into super-clusters forming a
hierarchy.

» Typically the hierarchy forms a binary tree (a dendrogram) where each
cluster has two “children”.
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Hierarchical Clustering

» Hierarchically structured data can be found everywhere (measurements
of different species and different individuals within species), hierarchical
methods attempt to understand data by looking for clusters.

» There are two general strategies for generating hierarchical clusters.
Both proceed by seeking to minimize some measure of dissimilarity.

» Agglomerative / Bottom-Up / Merging

» Divisive / Top-Down / Splitting
Hierarchical clusters are generated where at each level, clusters are
created by merging clusters at lower levels. This process can easily be
viewed by a dendogram/tree.
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Measuring Dissimilarity
To find hierarchical clusters, we need some way to measure the dissimilarity
between clusters

» Given two points x; and x;, it is straightforward to measure their
diSSimilarity, say d(xi,x_,-) = HX[ — X,”z

» It is unclear however how to extend this to measure dissimilarity between
clusters, D(C;, C;) for clusters C; and C;.

Many such proposals though no concensus as to which is best.
(a) Single Linkage

D(C;, C;) = min (d(x,y)|x € Ci,y € Cj)
X,y

(b) Complete Linkage
D(C;, C;) = max (d(x,y)|x € Ci,y € Cj)

(c) Average Linkage
D(C;, Gj) = avg, , (d(x,y)|x € G,y € Cj)
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Measuring Dissimilarity

Cluster Distance

d15

d13+d14+d15+d23+d24+d25
6
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Hierarchical Clustering on Artificial Dataset
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Hierarchical Clustering on Artificial Dataset

#start afresh
dat=xclara #3000 x 2
library(cluster)

#plot the data

plot (dat, type="n")

text (dat, labels=row.names (dat) )
plot (agnes (dat,method="single"))

plot (agnes (dat, method="complete"))
plot (agnes (dat, method="average"))
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Hierarchical Clustering on Artificial Dataset

Dendrogram of agnes(x = dat, method = "single")

Height
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Hierarchical Clustering on Artificial Dataset

Dendrogram of agnes(x = dat, method = "complete")
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Usi

ng Dendograms

» Different ways of measuring dissimilarity result in different trees.

Dendograms are useful for getting a feel for the structure of
high-dimensional data though they don’t represent distances between
observations well.

Dendograms show hierarchical clusters with respect to increasing values
of dissimilarity between clusters, cutting a dendogram horizontally at a
particular height partitions the data into disjoint clusters which are
represented by the vertical lines it intersects. Cutting horizontally
effectively reveals the state of the clustering algorithm when the
dissimilarity value between clusters is no more than the value cut at.

Despite the simplicity of this idea and the above drawbacks, hierarchical
clustering methods provide users with interpretable dendograms that
allow clusters in high-dimensional data to be better understood.
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Hierarchical Clustering on Indo-European Languages
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K-means

Partition-based methods seek to divide data points into a pre-assigned
number of clusters Cy, ..., Cx where for all k, k" € {1,...,K},

K
Cec{l,...,n}, CiNCv =0 Vk£K, Uc=1{1,....n}.
k=1

For each cluster, represent it using a prototype or cluster centre .
We can measure the quality of a cluster with its within-cluster deviance

W(Ci i) = > IIxi = g 13-
i€Cy

The overall quality of the clustering is given by the total within-cluster
deviance:

K
W= Z W(Ck, /Lk).
k=1

The overall objective is to choose both the cluster centres and allocation of
points to minimize the objective function.

K-means

K n
W= lb—mls = 2 i = e, 13
i=

k=1 icCy
where ¢; = k if and only if i € C;.
» Given partition {C,}, we can find the optimal prototypes easily by
differentiating W with respect to 1:

ow

7—22()6,‘—/1,]():0

1
= = — Xi
D1 =T 2

i€Cy i€Cy

» Given prototypes, we can easily find the optimal partition by assigning
each data point to the closest cluster prototype:

¢ = argmin [|x; — i3
k

But joint minimization over both is computationally difficult.
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K-means K-means on Crabs
The K-means algorithm is a well-known method that locally optimizes the

objective function W.

Iterative and alternating minimization.

1. Randomly fix K cluster centres pu1, ..., k- Looking at the Crabs data again.

2. Foreachi=1,...,n, assign each x; to the cluster with the nearest centre, library (MASS)

library (lattice)

. 2
¢; := argmin ||x; — fu]|; data (crabs)
k
splom(~log(crabs[,4:8]),
3. Set Gy :={i: ¢; =k} for each k. COl:as'numeric (crabs[,11),
4 M lust t to th fth lusters: pch=as.numeric (crabs[,2]),
- Vove cluster centres i, ..., pix 10 the average ot the new clusters: main="circle/triangle is gender, black/red is species")
1
Mk = = X
|(%|§: '
i€Cy
5. Repeat steps 2 to 4 until there is no more changes.

6. Return the partition {Cy, ..., Cx} and means p;, ..., ux at the end.
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K-means K-means on Crabs

circle/triangle is gender, black/red is species

T T
80 55 30
r25Bp25

Some notes about the K-means algorithm. 20 2520

1

» The algorithm stops in a finite number of iterations. Between steps 2 and
3, W either stays constant or it decreases, this implies that we never
revisit the same partition. As there are only finitely many partitions, the
number of iterations cannot exceed this.

» The K-means algorithm need not converge to global optimum. K-means
is a heuristic search algorithm so it can get stuck at suboptimal
configurations. The result depends on the starting configuration. Typically
perform a number of runs from different configurations, and pick best
clustering.
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K-means on Crabs

Apply K-means with 2 clusters and plot results.

cl <- kmeans( log(crabsl[,4:8]), 2, nstart=1l, iter.max=10)
splom(~log(crabs[,4:8]1),

col=clS$cluster+2,
main="blue/green is cluster finds big/small")
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K-means on Crabs

blue/green is cluster finds big/small

T T
30 55 30
r25Bp25
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K-means on Crabs

‘Whiten’ or ‘sphere’! the data using PCA.

pcp <- princomp( log(crabs[,4:8]) )
spc <- pcp$scores $x% diag(l/pcp$sdev)
splom( ~spc[,1:3],
col=as.numeric(crabs[,1]1),
pch=as.numeric (crabsl[,2]),
main="circle/triangle is gender, black/red is species")

And apply K-means again.

cl <- kmeans (spc, 2, nstart=1l, iter.max=20)
splom( ~spc[,1:3],
col=cl$cluster+2, main="blue/green is cluster")

"Apply a linear transformation so that covariance matrix is identity.
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K-means on Crabs

circle/triangle is gender, black/red is species blue/green is cluster

T
re2 o 1 2

= L —
9o

[}

ro V3 0 %) 07

Scatter Plot Matrix Scatter Plot Matrix

Discovers gender difference...
Results depends crucially on sphering the data first.
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K-means on Crabs K-means on Spike Waveforms

Using 4 cluster centers.

circle/triangle is gender, black/red is species colors are clusters

T 5 o oo
F2 [ o 088%
$

An

Scatter Plot Matrix Scatter Plot Matrix

Scatter Plot Matrix
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K-means on Spike Waveforms Stochastic Optimization

» Each iteration of K-means requires a pass through whole dataset. In
extremely large datasets, this can be computationally prohibitive.

» Stochastic optimization: update cluster means after assigning each data
point to the closest cluster.
» Repeat forr = 1,2,. .. until satisfactory convergence:

1. Pick data item x; either randomly or in order.

1lib MASS
tbrary( ) 2. Assign x; to the cluster with the nearest centre,

library(lattice)
spikespca <- read.table("spikes.txt") C[::mgmmHXr—udﬁ
cl <- kmeans (data, 6,nstart=20) K
splom(data, col=cl$cluster) 3. Update cluster centre:
Mk = g+ o (i — )
where «, > 0 are step sizes.
» Algorithm stochastically minimizes the objective function. Convergence
requires slowly decreasing step sizes:

o0 oo
E oy = 00 E a? < oo

=1 =1
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Vector Quantization

» A related algorithm developed in the signal processing literature for lossy
data compression.

» If K < n, we can store the codebook of codewords 1, ..., ux, and each
vector x; is encoded using ¢;, which only requires [log K] bits.

» As with K-means, K must be specified. Increasing K improves the quality
of the compressed image but worsens the data compression rate, so
there is a clear tradeoff.

» Some audio and video codecs use this method.

» Stochastic optimization algorithm for K-means was originally developed
for VQ.
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VQ Image Compression

3 x 3 block VQ: View each block of 3 x 3 pixels as single observation

X, X, Xy X, X3 X X; Xy Xy Xy Xy Xy Xy Xy X5 Xy Xpp Npg Xy Xpg Xy Xy Xy Xy Xps Xpg Xy
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VQ Image Compression

Original image (24 bits/pixel, uncompressed size 1,402 kB)
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VQ Image Compression

Codebook length 1024 (1.11 bits/pixel, total size 88kB)
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VQ Image Compression

Codebook length 128 (0.78 bits/pixel, total size 50kB)
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VQ Image Compression

Codebook length 16 (0.44 bits/pixel, total size 27kB)
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K-means Additional Comments
» Sensitivity to distance measure. Euclidean distance can be greatly

affected by measurement unit and by strong correlations. Can use
Mahalanobis distance,

e =yl = /(6= )M (x )

where M is positive semi-definite matrix, e.g. sample covariance.

Other partition based methods. There are many other partition based
methods that employ related ideas. For example K-medoids differs from
K-means in requiring cluster centres y; to be an observation x;2,
K-medians (use median in each dimension) and K-modes (use mode).
Determination of K. The K-means objective will always improve with
larger number of clusters K. Determination of K requires an additional
regularization criterion. E.g., in DP-means?®, use

K
W= 33" - ml3+ 2K

k=1 ieCy
2See also Affinity propagation.
3DP-means paper.
Probabilistic Methods
» Algorithmic approach:
Algorithm

Data s Analysis/

Interpretation

» Probabilistic modelling approach:

Generative
Model

Unobserved | ——>
process <
Analysis

Interpretation

Data

105



Mixture Models

» Mixture models suppose that our dataset was created by sampling iid
from K distinct populations (called mixture components).

» Typical samples in population k can be modelled using a distribution
F(¢y) with density f(x|¢x). For a concrete example, consider a Gaussian
with unknown mean ¢, and known symmetric covariance oI,

_» 1
flalon) = o exp (51— ulE)
g
» Generative process: fori =1,2,...,n:
» First determine which population item i came from (independently):
Z; ~ Discrete(m, ..., Tk) ie. P(Zi=k) =m

where mixing proportions are 7, > 0 for each k and Z,’le me = 1.
> IfZ =k, then X; = (Xa,...,X;) " is sampled (independently) from
corresponding population distribution:

XilZi = k ~ F(¢x)

» We observe that X; = x; for each i, and would like to learn about the
unknown parameters of the process.
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Mixture Models

» Unknowns to learn given data are

» Parameters: «, ..., 7k, ¢1,..., ¢k, as well as
> Latent variables: zi, . . . , zk.

» The joint probability over all cluster indicator variables {Z;} are:
n n K
n zi=k
2z = [T = [T T =™
i=1 i=1 k=1
» The joint density at observations X; = x; given Z; = z; are:

HHf (xi] g ) 2E=R)

i=1 k=1

px((x)izi|(Zi

» So the joint probability/density* is:

K

= T T sl

i=1 k=1

pXZ (xlazl i= 1

4In this course we will treat probabilities and densities equivalently for notational simplicity. In
general, the quantity is a density with respect to the product base measure, where the base
measure is the counting measure for discrete variables and Lebesgue for continuous variables.
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Mixture Models - Posterior Distribution

» Suppose we know the parameters (7, ¢x)x_,.

» Z;is a random variable, so the posterior distribution given data set X tells
us what we know about it:

O = plz: = k) = P =Km) i lo)

p(x) i mf (xily)

where the marginal probability is:
K
Z xt|¢l

» The posterior probability Q; of Z; = k is called the responsibility of
mixture component k for data point x;.

» The posterior distribution softly partitions the dataset among the
components.

Mixture Models - Maximum Likehood

» How can we learn about the parameters 6 = (., ¢;)_, from data?

» Standard statistical methodology asks for the maximum likelihood
estimator (MLE).

» The log likelihood is the log marginal probability of the data:

Zlomef (xi] ;)

E((Wk’@)f:l)- log p ()i [( 7Tka¢>k i=1)

Vo b (7, Dr)izr) = Z mv
i=1 2uj=1 T \Xi|®j

= Z Qi Vg, log f (xi|px)

i=1

br lng(x,' | ¢k)

» A difficult equation to solve, as Q; depends implicitly on ¢...
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Mixture Models - Maximum Likehood Mixture Models - Maximum Likehood

Z Qi V4, log f(xi|dx) = 0 » For the mixing proportions, we can similarly derive an estimator.
i=1 » Include a Lagrange multiplier A to enforce constraint ), m, = 1.

» What if we ignore the dependence of Q; on the parameters? Viog (g((m“ oK) — )\(Zle 7 — 1))
» Taking the mixture of Gaussian with covariance oI as example, kf milde)
Z Tk (Xi| Pk

> 0uVa (~5i2mo™] - 51l o) = Zjm o)
i1=1 i 1 _ Z Qik _ )\WkW/yLE? _ Z,‘:n] Qik
= Z Ou(xi — i) = p (X, Quxi) — o (320, Qi) =0 =l
i=1
wiEr Doy Qi » Again makes sense: the estimate is simply (our best guess of) the
ko= ST Ou proportion of data points coming from population «.
Mixture Models - Maximum Likehood Mixture Models - The EM Algorithm

_ . _ . _ » Putting all the derivations together, we get an iterative algorithm for
» The estimate is a weighted average of data points, where the estimated learning about the unknowns in the mixture model.

mean of cluster k uses its responsibilities to data points as weights. . I
P P g » Start with some initial parameters ((”, ¢\”))K_

gy iy Qi » lterate forz=1,2,...
Y Ok » Expectation Step:
i= f—l) (r—1)
0" .= fxildy ")
i i o zK COfCalo )
» Makes sense: Suppose we knew that data point x; came from population j=17j !
z.. Then Q.. = 1 and Qy = 0 for k # z; and: > Maximization Step:
TMLE — Lig=ibi 0 = S o o i Qi L0 x;
Zi:z,:k 1 n Zl 1 Q(t)
» Our best guess of the originating population is given by Q. » Will the algorithm converge?

» What does it converge to?
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Likelihood Surface for a Simple Example

195

145

-105

-155

\71\ . \\

-155 -105 -55 -05
my,

45

95 145 195

(left) n = 200 data points from a mixture of two 1D Gaussians with
m =m =0.5,0=5and u; =10, u; = —10.
(right) Log likelihood surface ¢ (i1, 112), all the other parameters being

assumed known.

Example: Mixture of 3 Gaussians

An example with 3 clusters.
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Example: Mixture of 3 Gaussians

After 1st E and M step.

Iteration 1
(V] ..
..... .: (]
o ek o
- B o8
@ o
o.. e ©
: ® oo ¢ ° 4 °®
® o ® 0 ° e
o | ® . .,.'.‘. ® .."&.. °
ey e
®e [ °® °
e o ® °
5 0 5 10
data[,1]
Example: Mixture of 3 Gaussians
After 2nd E and M step.
Iteration 2
0 o o
N g o
o ® o0
: o °0° °° ® o
S5 o o ® .: 2e
w o ® ® . %.~ ... ®
®eoe ?: oe ‘t:
e®® o @ ®
5 0 5 0

data[,1]
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Example: Mixture of 3 Gaussians
After 3rd E and M step.

datal,2]

Iteration 3

-5
1

: ® ©e ° ° @ )
° .,..ﬁ: o @ .:.o . o
® %:. o %:“.'
T ©6 ° oo °
..... ®
5 0 5 0

data[,1]

Example: Mixture of 3 Gaussians
After 4th E and M step.

datal,2]

Iteration 4

-5
1

° . .
® ?'C:.‘:.. °
oo {?

T T T
0 5 10

data[,1]
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Example: Mixture of 3 Gaussians

After 5th E and M step.

Iteration 5
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The EM Algorithm

data[,1]
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» In a maximum likelihood framework, the objective function is the log

likelihood,

00) => log»  mf (xil¢y)
i=1 j=1

Direct maximization is not feasible.
» Consider another objective function F(6, gq) such that:

F(6,q) < £(0) for all 6, g,

max F(0,q) =£(0)

F(6,q) is a lower bound on the log likelihood.
» We can construct an alternating maximization algorithm as follows:
Fort=1,2... until convergence:

g := argmax F(0~Y ¢)
q

90 .— argmax F (0, q(t))
0
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EM Algorithm

» The lower bound we use is called the variational free

energy.

» g is a probability mass function for some distribution over (Z;) and

F(0,q) =Eqllog p((xi, 2)i=1) — log q((zi)izs)]

n K
=E, [(Z Z 1(z = k) (log m + logf(xi|¢k)))

i=1 k=1

— log q(Z)}

=> 4(2) Kzzﬂ(a = k) (log ¢ + logf(xmék))) - logq(Z)}
z i=1

=1 k=1

Using z := (z;)!_, to shorten notation.

EM Algorithm - Solving for ¢

» Introducing Lagrange multiplier to enforce >, g(z) = 1, and setting

derivatives to 0,

n K
Vo F(0,9) => > 1(z = k) (log m + logf(xi|¢x))

i=1 k=1

M;

(log 7;, + logf (x;
i=1

[T maf (xil o H
Zz’ H? 1 7T f ¢ Zk ﬂ—kf<xl

q"(z) =

» Optimal ¢* is simply the posterior distribution.
» Plugging in optimal ¢* into the variational free energy,

n K
0,q") =Y log ) mf(xldr) = €(0)
i=1 k=1

—logg(z) — 1 — A

:)) —logg(z) =1 -A=0

Hp zilxi, )
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EM Algorithm - Solving for 6

» Setting derivative with respect to ¢, to 0,

Vo F(0,q) = Zq ) 1z = k)V, logf(xi|x)
i=1

= ZQ(Zi = k)Vg, logf(xi|dx) =0

i=1

» This equation can be solved quite easily. E.g., for mixture of Gaussians,
¢* _ Z?:l q(Zi = k)xi
¢ 2:1:1 q(zi = k)

v

If it cannot be solved exactly, we can use gradient ascent algorithm:

¢ =i +ay_ qlz = k)Vy, logf (x| ér)

i=1

v

This leads to generalized EM algorithm. Further extension using
stochastic optimization method leads to stochastic EM algorithm.
Similar derivation for optimal 7, as before.

v

EM Algorithm

» Start with some initial parameters ("), ¢\")K_.
» lterate forr=1,2,...:
» Expectation Step:

D (-1)
gz = k) := Flild )

7 = Epqp,00-0) [z = k)]
Z}KI j(r l)f( |¢](r 1)) p(zil )

» Maximization Step:

0 _ 24" (@=k) 0 _ 214" (@ = k)
ﬂ-/{ = y =
n i1V (@ =k)

» Each step increases the log likelihood:

0001y = ]:(9(1*1)761(0) < ]:(9(07q(1>) < f(g(t)’q(ﬂrl)) = 0(6M).

» Additional assumption, that V2F (0, ¢)) are negative definite with
eigenvalues < —e < 0, implies that #) — #* where #* is a local MLE.

124

125



Notes on Probabilistic Approach and EM Algorithm

Some good things:

» Guaranteed convergence to locally optimal parameters.

» Formal reasoning of uncertainties, using both Bayes Theorem and
maximum likelihood theory.

» Rich language of probability theory to express a wide range of generative
models, and straightforward derivation of algorithms for ML estimation.

Some bad things:
» Can get stuck in local minima so multiple starts are recommended.
» Slower and more expensive than K-means.

» Choice of K still problematic, but rich array of methods for model
selection comes to rescue.
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Flexible Gaussian Mixture Models
» We can allow each cluster to have its own mean and covariance structure

allows greater flexibility in the model.

Different covariances Different, but diagonal covariances
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Probabilistic PCA

» A probabilistic model related to PCA has the following generative model:
fori=1,2,...,n:
» Letk < n,p be given.
» Let Y; be a k-dimensional normally distributed random variable with 0 mean
and identity covariance:
Y; ~ N(0, 1)

» We model the distribution of the ith data point given Y; as a p-dimensional
normal:
Xi ~ N(p+ LY:, 0°1)
where the parameters are a vector p € R”, a matrix L € R”* and o* > 0.
» EM algorithm can be used for ML estimation, but PCA can more directly
give a MLE (note this is not unique).
» Let \; > --- > )\, be the eigenvalues of the sample covariance and let
V € RP>** have columns given by the eigenvectors of the top k
eigenvalues. Let R € R** be orthogonal. Then a MLE is:

MLE = 2\MLE
1 =X (U ) = 1,1/( Zj‘;k+| )\j
1

LME = vdiag((A — (0)ME) L (N — (0)ME) R

Mixture of Probabilistic PCAs

» We have learnt two types of unsupervised learning techniques:

» Dimensionality reduction, e.g. PCA, MDS, Isomap.
» Clustering, e.g. K-means, linkage and mixture models.

» Probabilistic models allow us to construct more complex models from
simpler pieces.

» Mixture of probabilistic PCAs allows both clustering and dimensionality
reduction at the same time.

Z; ~ Discrete(my, . .., Tk)
Y ~ N(0,1,)
Xi|Zi =k, Y; = yi ~ N (g + Lyi, 0°1,)

» Allows flexible modelling of covariance structure without using too many
parameters.

Ghahramani and Hinton 1996
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Mixture of Probabilistic PCAs

» PCA can reconstruct x given low dimensional embedding z, but is linear.
» |somap is non-linear, but cannot reconstruct x given any z.
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» We can learn a probabilistic mapping between the k-dimensional Isomap
embedding space and the p-dimensional data space.

» Demo: [Using LLE instead of Isomap, and Mixture of factor analysers
instead of Mixture of PPCAs.]
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Further Readings—Unsupervised Learning

Hastie et al, Chapter 14.
James et al, Chapter 10.
Venables and Ripley, Chapter 11.

Tukey, John W. (1980). We need both exploratory and confirmatory. The
American Statistician 34 (1): 23-25.
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