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Course Information

� Course webpage:
http://www.stats.ox.ac.uk/~teh/smldm.html

� Lecturer: Yee Whye Teh
� TA for Part C: Thibaut Lienant
� TA for MSc: Balaji Lakshminarayanan and Maria Lomeli
� Please subscribe to Google Group:

https://groups.google.com/forum/?hl=en-GB#!forum/smldm

� Sign up for course using sign up sheets.
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Course Structure
Lectures

� 1400-1500 Mondays in Math Institute L4.
� 1000-1100 Wednesdays in Math Institute L3.

Part C:
� 6 problem sheets.
� Classes: 1600-1700 Tuesdays (Weeks 3-8) in 1 SPR Seminar Room.
� Due Fridays week before classes at noon in 1 SPR.

MSc:
� 4 problem sheets.
� Classes: Tuesdays (Weeks 3, 5, 7, 9) in 2 SPR Seminar Room.
� Group A: 1400-1500, Group B: 1500-1600.
� Due Fridays week before classes at noon in 1 SPR.
� Practical: Week 5 and 7 (assessed) in 1 SPR Computing Lab.
� Group A: 1400-1600, Group B: 1600-1800.
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Course Aims

1. Have ability to use the relevant R packages to analyse data, interpret
results, and evaluate methods.

2. Have ability to identify and use appropriate methods and models for given
data and task.

3. Understand the statistical theory framing machine learning and data
mining.

4. Able to construct appropriate models and derive learning algorithms for
given data and task.

4



What is Machine Learning?

sensory

What's out there?
How does world work?

What's going to happen?
What should i do?

data
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What is Machine Learning?

data

Information
Structure
Prediction
Decisions
Actions

http://gureckislab.org 6



What is Machine Learning?

Machine 
Learning

statistics

computer
science

cognitive
science

psychology

mathematics

engineering
operations
research

physics

biology
genetics

business
finance
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What is the Difference?

Traditional Problems in Applied Statistics
Well formulated question that we would like to answer.
Expensive to gathering data and/or expensive to do computation.
Create specially designed experiments to collect high quality data.

Current Situation
Information Revolution

� Improvements in computers and data storage devices.
� Powerful data capturing devices.
� Lots of data with potentially valuable information available.
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What is the Difference?
Data characteristics

� Size
� Dimensionality
� Complexity
� Messy
� Secondary sources

Focus on generalization performance
� Prediction on new data
� Action in new circumstances
� Complex models needed for good generalization.

Computational considerations
� Large scale and complex systems
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Applications of Machine Learning

� Pattern Recognition

� Sorting Cheques
� Reading License Plates
� Sorting Envelopes
� Eye/ Face/ Fingerprint Recognition
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Applications of Machine Learning

� Business applications
� Help companies intelligently find information
� Credit scoring
� Predict which products people are going to buy
� Recommender systems
� Autonomous trading

� Scientific applications
� Predict cancer occurence/type and health of patients/personalized health
� Make sense of complex physical, biological, ecological, sociological models
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Further Readings, News and Applications

Links are clickable in pdf. More recent news posted on course webpage.
� Leo Breiman: Statistical Modeling: The Two Cultures
� NY Times: R
� NY Times: Career in Statistics
� NY Times: Data Mining in Walmart
� NY Times: Big Data’s Impact In the World
� Economist: Data, Data Everywhere
� McKinsey: Big data: The Next Frontier for Competition
� NY Times: Scientists See Promise in Deep-Learning Programs
� New Yorker: Is “Deep Learning” a Revolution in Artificial Intelligence?
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Types of Machine Learning

Unsupervised Learning
Uncover structure hidden in ‘unlabelled’ data.

� Given network of social interactions, find communities.
� Given shopping habits for people using loyalty cards: find groups of

‘similar’ shoppers.
� Given expression measurements of 1000s of genes for 1000s of patients,

find groups of functionally similar genes.

Goal: Hypothesis generation, visualization.
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Types of Machine Learning

Supervised Learning
A database of examples along with “labels” (task-specific).

� Given network of social interactions along with their browsing habits,
predict what news might users find interesting.

� Given expression measurements of 1000s of genes for 1000s of patients
along with an indicator of absence or presence of a specific cancer,
predict if the cancer is present for a new patient.

� Given expression measurements of 1000s of genes for 1000s of patients
along with survival length, predict survival time.

Goal: Prediction on new examples.
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Types of Machine Learning

Semi-supervised Learning
A database of examples, only a small subset of which are labelled.

Multi-task Learning
A database of examples, each of which has multiple labels corresponding to
different prediction tasks.

Reinforcement Learning
An agent acting in an environment, given rewards for performing appropriate
actions, learns to maximize its reward.
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OxWaSP

Oxford-Warwick Centre for Doctoral Training in Statistics
� Programme aims to produce EuropeÕs future research leaders in

statistical methodology and computational statistics for modern
applications.

� 10 fully-funded (UK, EU) students a year (1 international).
� Website for prospective students.
� Deadline: January 24, 2014
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Exploratory Data Analysis

Notation
� Data consists of p measurements (variables/attributes) on n examples

(observations/cases)
� X is a n × p-matrix with Xij := the j-th measurement for the i-th example

X =





x11 x12 . . . x1j . . . x1p
x21 x22 . . . x2j . . . x2p
...

...
. . .

...
. . .

...
xi1 xi2 . . . xij . . . xip
...

...
. . .

...
. . .

...
xn1 xn2 . . . xnj . . . xnp





� Denote the ith data item by xi ∈ R
p. (This is transpose of ith row of X)

� Assume x1, . . . , xn are independently and identically distributed samples
of a random vector X over Rp.
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Crabs Data (n = 200, p = 5)

Campbell (1974) studied rock crabs of the genus leptograpsus. One species,
L. variegatus, had been split into two new species, previously grouped by
colour, orange and blue. Preserved specimens lose their colour, so it was
hoped that morphological differences would enable museum material to be
classified.

Data are available on 50 specimens of each sex of each species, collected on
sight at Fremantle, Western Australia. Each specimen has measurements on:

� the width of the frontal lobe FL,
� the rear width RW,
� the length along the carapace midline CL,
� the maximum width CW of the carapace, and
� the body depth BD in mm.

in addition to colour (species) and sex.
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Crabs Data I

## load package MASS containing the data
library(MASS)
## look at data
crabs

## assign predictor and class variables
Crabs <- crabs[,4:8]
Crabs.class <- factor(paste(crabs[,1],crabs[,2],sep=""))

## various plots
boxplot(Crabs)
hist(Crabs$FL,col=’red’,breaks=20,xname=’Frontal Lobe Size (mm)’)
hist(Crabs$RW,col=’red’,breaks=20,xname=’Rear Width (mm)’)
hist(Crabs$CL,col=’red’,breaks=20,xname=’Carapace Length (mm)’)
hist(Crabs$CW,col=’red’,breaks=20,xname=’Carapace Width (mm)’)
hist(Crabs$BD,col=’red’,breaks=20,xname=’Body Depth (mm)’)
plot(Crabs,col=unclass(Crabs.class))
parcoord(Crabs)
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Crabs data
sp sex index FL RW CL CW BD

1 B M 1 8.1 6.7 16.1 19.0 7.0
2 B M 2 8.8 7.7 18.1 20.8 7.4
3 B M 3 9.2 7.8 19.0 22.4 7.7
4 B M 4 9.6 7.9 20.1 23.1 8.2
5 B M 5 9.8 8.0 20.3 23.0 8.2
6 B M 6 10.8 9.0 23.0 26.5 9.8
7 B M 7 11.1 9.9 23.8 27.1 9.8
8 B M 8 11.6 9.1 24.5 28.4 10.4
9 B M 9 11.8 9.6 24.2 27.8 9.7
10 B M 10 11.8 10.5 25.2 29.3 10.3
11 B M 11 12.2 10.8 27.3 31.6 10.9
12 B M 12 12.3 11.0 26.8 31.5 11.4
13 B M 13 12.6 10.0 27.7 31.7 11.4
14 B M 14 12.8 10.2 27.2 31.8 10.9
15 B M 15 12.8 10.9 27.4 31.5 11.0
16 B M 16 12.9 11.0 26.8 30.9 11.4
17 B M 17 13.1 10.6 28.2 32.3 11.0
18 B M 18 13.1 10.9 28.3 32.4 11.2
19 B M 19 13.3 11.1 27.8 32.3 11.3
20 B M 20 13.9 11.1 29.2 33.3 12.1
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Univariate Boxplots
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Univariate Histograms
Histogram of Frontal Lobe Size
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Simple Pairwise Scatterplots

FL
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Parallel Coordinate Plots

FL RW CL CW BD
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Visualization and Dimensionality Reduction

These summary plots are helpful, but do not really help very much if the
dimensionality of the data is high (a few dozen or thousands).
Visualizing higher-dimensional problems:

� We are constrained to view data in 2 or 3 dimensions
� Look for ‘interesting’ projections of X into lower dimensions
� Hope that for large p, considering only k � p dimensions is just as

informative.

Dimensionality reduction
� For each data item xi ∈ R

p, find a lower dimensional representation
zi ∈ R

k with k � p.
� Preserve as much as possible the interesting statistical

properties/relationships of data items.
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Principal Components Analysis (PCA)

� PCA considers interesting directions to be those with greatest variance.
� A linear dimensionality reduction technique:
� Finds an orthogonal basis v1, v2, . . . , vp for the data space such that

� The first principal component (PC) v1 is the direction of greatest variance of
data.

� The second PC v2 is the direction orthogonal to v1 of greatest variance, etc.
� The subspace spanned by the first k PCs represents the ’best’ k-dimensional

representation of the data.
� The k-dimensional representation of xi is:

zi = V�xi =
k�

�=1

v�� xi

where V ∈ R
p×k.

� For simplicity, we will assume from now on that our dataset is centred, i.e.
we subtract the average x̄ from each xi.
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Principal Components Analysis (PCA)

� Our data set is an iid sample of a random vector X = [X1 . . .Xp]
�.

� For the 1st PC, we seek a derived variable of the form

Z1 = v11X1 + v12X2 + · · ·+ v1pXp = v�1 X

where v1 = [v11, . . . , v1p]� ∈ R
p are chosen to maximise

Var(Z1).

To get a well defined problem, we fix

v�1 v1 = 1.

� The 2nd PC is chosen to be orthogonal with the 1st and is computed in a
similar way. It will have the largest variance in the remaining p − 1
dimensions, etc.
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Principal Components Analysis (PCA)

−4 −2 0 2 4

−4
−2

0
2

4

X1

X2

−4 −2 0 2 4
−4

−2
0

2
4

PC_1

PC
_2

28



Deriving the First Principal Component
� Maximise, subject to v�1 v1 = 1:

Var(Z1) = Var(v�1 X) = v�1 Cov(X)v1 ≈ v�1 Sv1

where S ∈ R
p×p is the sample covariance matrix, i.e.

S =
1

n − 1

n�

i=1

(xi − x̄)(xi − x̄)� =
1

n − 1

n�

i=1

xix�i =
1

n − 1
X�X.

� Rewriting this as a constrained maximisation problem,

L (v1, λ1) = v�1 Sv1 − λ1
�
v�1 v1 − 1

�
.

� The corresponding vector of partial derivatives yields
∂L(v1, λ1)

∂v1
= 2Sv1 − 2λ1v1.

� Setting this to zero reveals the eigenvector equation, i.e. v1 must be an
eigenvector of S and λ1 the corresponding eigenvalue.

� Since v�1 Sv1 = λ1v�1 v1 = λ1, the 1st PC must be the eigenvector
associated with the largest eigenvalue of S.
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Deriving Subsequent Principal Components
� Proceed as before but include the additional constraint that the 2nd PC

must be orthogonal to the 1st PC:

L (v2, λ2, µ) = v�2 Sv2 − λ2
�
v�2 v2 − 1

�
− µ

�
v�1 v2

�
.

� Solving this shows that v2 must be the eigenvector of S associated with
the 2nd largest eigenvalue, and so on

� The eigenvalue decomposition of S is given by

S = VΛV�

where Λ is a diagonal matrix with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0

and V is a p × p orthogonal matrix whose columns are the p eigenvectors
of S, i.e. the principal components v1, . . . , vp.
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Properties of the Principal Components
� PCs are uncorrelated

Cov(X�vi,X�vj) ≈ v�i Svj = 0 for i �= j.

� The total sample variance is given by

p�

i=1

Sii = λ1 + . . .+ λp,

so the proportion of total variance explained by the kth PC is

λk

λ1 + λ2 + . . .+ λp
k = 1, 2, . . . , p

� S is a real symmetric matrix, so eigenvectors (principal components) are
orthogonal.

� Derived variables Z1, . . . , Zp have variances λ1, . . . , λp.
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R code

This is what we have had before:

library(MASS)
Crabs <- crabs[,4:8]
Crabs.class <- factor(paste(crabs[,1],crabs[,2],sep=""))
plot(Crabs,col=unclass(Crabs.class))

Now perform PCA with function princomp. (Alternatively, solve for the PCs
yourself using eigen or svd).

Crabs.pca <- princomp(Crabs,cor=FALSE)
plot(Crabs.pca)
pairs(predict(Crabs.pca),col=unclass(Crabs.class))
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Original Crabs Data
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PCA of Crabs Data
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PC 2 vs PC 3
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PCA on Face Images

http://vismod.media.mit.edu/vismod/demos/facerec/basic.html 36



PCA on European Genetic Variation

http://www.nature.com/nature/journal/v456/n7218/full/nature07331.html 37



Comments on the use of PCA

� PCA commonly used to project data X onto the first k PCs giving the
k-dimensional view of the data that best preserves the first two moments.

� Although PCs are uncorrelated, scatterplots sometimes reveal structures
in the data other than linear correlation.

� PCA commonly used for lossy compression of high dimensional data.
� Emphasis on variance is where the weaknesses of PCA stem from:

� The PCs depend heavily on the units measurement. Where the data matrix
contains measurements of vastly differing orders of magnitude, the PC will
be greatly biased in the direction of larger measurement. It is therefore
recommended to calculate PCs from Corr(X) instead of Cov(X).

� Robustness to outliers is also an issue. Variance is affected by outliers
therefore so are PCs.
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Eigenvalue Decomposition (EVD)

Eigenvalue decomposition plays a significant role in PCA. PCs are
eigenvectors of S = 1

n−1 X�X and PCA properties are derived from those of
eigenvectors and eigenvalues.

� For any p × p symmetric matrix S, there exists p eigenvectors v1, . . . , vp
that are pairwise orthogonal and p associated eigenvalues λ1, . . . , λp
which satisfy the eigenvalue equation Svi = λivi ∀i.

� S can be written as S = VΛV� where
� V = [v1, . . . , vp] is a p × p orthogonal matrix
� Λ = diag {λ1, . . . , λp}
� If S is a real-valued matrix, then the eigenvalues are real-valued as well,

λi ∈ R ∀i
� To compute the PCA of a dataset X, we can:

� First estimate the covariance matrix using the sample covariance S.
� Compute the EVD of S using the R command eigen.
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Singular Value Decomposition (SVD)

Though the EVD does not always exist, the singular value decomposition is
another matrix factorization technique that always exist, even for non-square
matrices.

� X can be written as X = UDV� where
� U is an n × n matrix with orthogonal columns.
� D is a n × p matrix with decreasing non-negative elements on the diagonal

(the singular values) and zero off-diagonal elements.
� V is a p × p matrix with orthogonal columns.

� SVD can be computed using very fast and numerically stable algorithms.
The relevant R command is svd.
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Some Properties of the SVD
� Let X = UDV� be the SVD of the n × p data matrix X.
� Note that

(n − 1)S = X�X = (UDV�)�(UDV�) = VD�U�UDV� = VD�DV�,

using orthogonality (U�U = In) of U.
� The eigenvalues of S are thus the diagonal entries of 1

n−1 D2 and the
columns of the orthogonal matrix V are the eigenvectors of S.

� We also have

XX� = (UDV�)(UDV�)� = UDV�VD�U� = UDD�U�,

using orthogonality (V�V = Ip) of V.
� SVD also gives the optimal low-rank approximations of X:

min
X̃

�X̃ − X�
2 s.t. X̃ has maximum rank r < n, p.

This problem can be solved by keeping only the r largest singular values
of X, zeroing out the smaller singular values in the SVD.
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Biplots

� PCA plots show the data items (as rows of X) in the PC space.
� Biplots allow us to visualize the original variables (as columns X) in the

same plot.
� As for PCA, we would like the geometry of the plot to preserve as much

of the covariance structure as possible.
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Biplots
Recall that X = [X1, . . . ,Xp]� and X = UDV� is the SVD of the data matrix.

� The PC projection of xi is:

zi = V�xi = DU�

i = [D11Ui1, . . . ,DkkUik]
�.

� The jth unit vector ej ∈ R
p points in the direction of Xj. Its PC projection is

V�
j = V�ej, the jth row of V.

� The projection of the variable indicates the weighting each PC gives to
the original variables.

� Dot products between the projections gives entries of the data matrix:

xij =
p�

k=1

UikDkkVjk = �DU�

i ,V�

j �.

� Distance of projected points from projected variables gives original
location.

� These relationships can be plotted in 2D by focussing on first two PCs.
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Biplots
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Biplots
� There are other projections we can consider for biplots:

xij =
p�

k=1

UikDkkVjk = �DU�

i ,V�

j � = �D1−αU�

i ,DαV�

j �.

where 0 ≤ α ≤ 1. The α = 1 case has some nice properties.
� Covariance of the projected points is:

1
n − 1

n�

i=1

U�

i Ui =
1

n − 1
I.

Projected points are uncorrelated and dimensions are equi-variance.
� The covariance between Xj and X� is:

Var(XjX�) =
1

n − 1
�DV�

j ,DV�

� �

So the angle between the projected variables gives the correlation.
� When using k < p PCs, quality depends on the proportion of variance

explained by the PCs.
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Biplots
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biplot(pc,scale=0)
biplot(pc,scale=1)
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Iris Data

50 sample from 3 species of iris: iris setosa,
versicolor, and virginica

Each measuring the length and widths of
both sepal and petals

Collected by E. Anderson (1935) and
analysed by R.A. Fisher (1936)

Using again function princomp and biplot.

iris1 <- iris
iris1 <- iris1[,-5]
biplot(princomp(iris1,cor=T))
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Iris Data
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US Arrests Data

This data set contains statistics, in arrests per 100,000 residents for assault,
murder, and rape in each of the 50 US states in 1973. Also given is the
percent of the population living in urban areas.

pairs(USArrests)
usarrests.pca <- princomp(USArrests,cor=T)
plot(usarrests.pca)

pairs(predict(usarrests.pca))
biplot(usarrests.pca)
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US Arrests Data Pairs Plot
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US Arrests Data Biplot

−0.2 −0.1 0.0 0.1 0.2 0.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

Comp.1

C
om

p.
2

AlabamaAlaska

Arizona

Arkansas

California

Colorado
Connecticut

Delaware

Florida

Georgia

Hawaii

Idaho

Illinois

Indiana Iowa
Kansas

Kentucky
Louisiana

MaineMaryland

Massachusetts

Michigan

Minnesota

Mississippi

Missouri

Montana

Nebraska

Nevada

New Hampshire

New Jersey

New Mexico

New York

North Carolina

North Dakota

Ohio

Oklahoma

Oregon Pennsylvania

Rhode Island

South Carolina

South DakotaTennessee

Texas

Utah

Vermont

Virginia

Washington

West Virginia

Wisconsin

Wyoming

−5 0 5

−5
0

5

Murder

Assault

UrbanPop

Rape

51



Multidimensional Scaling

Suppose there are n points X in R
p, but we are only given the n × n matrix D of

inter-point distances.

Can we reconstruct X?
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Multidimensional Scaling

Rigid transformations (translations, rotations and reflections) do not change
inter-point distances so cannot recover X exactly. However X can be
recovered up to these transformations!

� Let dij = �xi − xj�2 be the distance between points xi and xj.

d2
ij = �xi − xj�

2
2

= (xi − xj)
�(xi − xj)

= x�i xi + x�j xj − 2x�i xj

� Let B = XX� be the n × n matrix of dot-products, bij = x�i xj. The above
shows that D can be computed from B.

� Some algebraic exercise shows that B can be recovered from D if we
assume

�n
i=1 xi = 0.
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Multidimensional Scaling

� If we knew X, then SVD gives X = UDV�. As X has rank k = min(n, p),
we have at most k singular values in D and we can assume U ∈ R

n×k,
D ∈ R

k×p and V ∈ R
p×p.

� The eigendecomposition of B is then:

B = XX� = UDD�U� = UΛU�.

� This eigendecomposition can be obtained from B without knowledge of X!
� Let x̃�i = UiΛ

1
2 be the ith row of UΛ

1
2 . Pad x̃i with 0s so that it has length p.

x̃�i x̃j = UiΛU�

j = bij = x�i xj

and we have found a set of vectors with dot-products given by B.
� The vectors x̃i differs from xi only via the orthogonal matrix V so are

equivalent up to rotation and reflections.
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US City Flight Distances

We present a table of flying mileages between 10 American cities, distances
calculated from our 2-dimensional world. Using D as the starting point, metric
MDS finds a configuration with the same distance matrix.

ATLA CHIG DENV HOUS LA MIAM NY SF SEAT DC
0 587 1212 701 1936 604 748 2139 2182 543
587 0 920 940 1745 1188 713 1858 1737 597
1212 920 0 879 831 1726 1631 949 1021 1494
701 940 879 0 1374 968 1420 1645 1891 1220
1936 1745 831 1374 0 2339 2451 347 959 2300
604 1188 1726 968 2339 0 1092 2594 2734 923
748 713 1631 1420 2451 1092 0 2571 2408 205
2139 1858 949 1645 347 2594 2571 0 678 2442
2182 1737 1021 1891 959 2734 2408 678 0 2329
543 597 1494 1220 2300 923 205 2442 2329 0
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US City Flight Distances

library(MASS)

us <- read.csv("http://www.stats.ox.ac.uk/
~teh/teaching/smldm/data/uscities.csv")

## use classical MDS to find lower dimensional views of the data
## recover X in 2 dimensions

us.classical <- cmdscale(d=us,k=2)

plot(us.classical)
text(us.classical,labels=names(us))
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US City Flight Distances
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Lower-dimensional Reconstructions

In classical MDS derivation, we used all eigenvalues in the
eigendecomposition of B to reconstruct

x̃i = UiΛ
1
2 .

We can use only the largest k < min(n, p) eigenvalues and eigenvectors in the
reconstruction, giving the ‘best’ k-dimensional view of the data.

This is analogous to PCA, where only the largest eigenvalues of X�X are
used, and the smallest ones effectively suppressed.

Indeed, PCA and classical MDS are duals and yield effectively the same
result.
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Crabs Data
library(MASS)
Crabs <- crabs[,4:8]
Crabs.class <- factor(paste(crabs[,1],crabs[,2],sep=""))

crabsmds <- cmdscale(d= dist(Crabs),k=2)
plot(crabsmds, pch=20, cex=2,col=unclass(Crabs.class))
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Crabs Data
Compare with previous PCA analysis.
Classical MDS solution corresponds to the first 2 PCs.
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Example: Language data
Presence or absence of 2867 homologous traits in 87 Indo-European
languages.

> X[1:15,1:16]
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16

Irish_A 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Irish_B 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Welsh_N 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Welsh_C 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Breton_List 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Breton_SE 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Breton_ST 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Romanian_List 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vlach 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Italian 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ladin 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Provencal 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
French 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Walloon 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
French_Creole_C 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Example: Language data
Using MDS with non-metric scaling.

MDS (i.e. cmdscale) which minimizes (d2
ij − d̃2

ij)
2. Sammon thereby puts

more weight on reproducing the separation of points which are close by
forcing them apart. Projection by MDS(Jaccard/sammon) with cluster dis-
covery by k-means (Jaccard): There is an obvious east to west (top-left to
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bottom-right) separation of languages in the MDS and the clusters in the
MDS grouping agree with the clusters discovered by agglomerative clus-
tering and k-means. The two clustering methods group languages slightly
differently with k-means splitting the Germanic languages.

## (alternative/MDS) make a field to display the clusters
## use MDS - sammon does this nicely
di.sam <- sammon(D,magic=0.20000002,niter=1000,tol=1e-8)
eqscplot(di.sam$points,pch=km$cluster,col=km$cluster)
text(di.sam$points,labels=row.names(X),pos=4,col=km$cluster)

5
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Varieties of MDS

Generally, MDS is a class of dimensionality reduction techniques which
represents data points x1, . . . , xn ∈ R

p in a lower-dimensional space
z1, . . . , zn ∈ R

k which tries to preserve inter-point (dis)similarities.
� It requires only the matrix D of pairwise dissimilarities

dij = d(xi, dj).

For example we can use Euclidean distance dij = �xi − xj�2. Other
dissimilarities are possible. Conversely, it can use a matrix of similarities.

� MDS finds representations z1, . . . , zn ∈ R
k such that

d(xi, xj) ≈ d̃ij = d̃(zi, zj),

where d̃ represents dissimilarity in the reduced k-dimensional space, and
differences in dissimilarities are measured by a stress function S(dij, d̃ij).
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Varieties of MDS
Choices of (dis)similarities and stress functions lead to different objective
functions and different algorithms.

� Classical - preserves similarities instead

S(Z) =
�

i�=j

(sij − �zi − z̄, zj − z̄�)2

� Metric Shepard-Kruskal

S(Z) =
�

i�=j

(dij − �zi − zj�2)
2

� Sammon - preserves shorter distances more

S(Z) =
�

i �=j

(dij − �zi − zj�2)2

dij

� Non-Metric Shepard-Kruskal - ignores actual distance values, only ranks

S(Z) = min
g increasing

�

i �=j

(g(dij)− �zi − zj�2)
2
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Nonlinear Dimensionality Reduction

Two aims of different varieties of MDS:
� To visualize the (dis)similarities among items in a dataset, where these

(dis)disimilarities may not have Euclidean geometric interpretations.
� To perform nonlinear dimensionality reduction.

Many high-dimensional datasets exhibit low-dimensional structure (“live on a
low-dimensional menifold”).
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Isomap

Isomap is a non-linear dimensional reduction technique based on classical
MDS. Differs from other MDSs in its estimate of distances dij.

1. Calculate distances dij for i, j = 1, . . . , n between all data points, using the
Euclidean distance.

2. Form a graph G with the n samples as nodes, and edges between the
respective K nearest neighbours.

3. Replace distances dij by shortest-path distance on graph dG
ij and perform

classical MDS, using these distances.

converts distances to inner products (17 ),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).
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Examples from Tenenbaum et al. (2000).
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Handwritten Characters

tion to geodesic distance. For faraway points,
geodesic distance can be approximated by
adding up a sequence of “short hops” be-
tween neighboring points. These approxima-
tions are computed efficiently by finding
shortest paths in a graph with edges connect-
ing neighboring data points.

The complete isometric feature mapping,
or Isomap, algorithm has three steps, which
are detailed in Table 1. The first step deter-
mines which points are neighbors on the
manifold M, based on the distances dX (i, j)
between pairs of points i, j in the input space

X. Two simple methods are to connect each
point to all points within some fixed radius !,
or to all of its K nearest neighbors (15). These
neighborhood relations are represented as a
weighted graph G over the data points, with
edges of weight dX(i, j) between neighboring
points (Fig. 3B).

In its second step, Isomap estimates the
geodesic distances dM (i, j) between all pairs
of points on the manifold M by computing
their shortest path distances dG(i, j) in the
graph G. One simple algorithm (16 ) for find-
ing shortest paths is given in Table 1.

The final step applies classical MDS to
the matrix of graph distances DG " {dG(i, j)},
constructing an embedding of the data in a
d-dimensional Euclidean space Y that best
preserves the manifold’s estimated intrinsic
geometry (Fig. 3C). The coordinate vectors yi

for points in Y are chosen to minimize the
cost function

E ! !#$DG% " #$DY%!L2 (1)

where DY denotes the matrix of Euclidean
distances {dY(i, j) " !yi & yj!} and !A!L2

the L2 matrix norm '(i, j Ai j
2 . The # operator

Fig. 1. (A) A canonical dimensionality reduction
problem from visual perception. The input consists
of a sequence of 4096-dimensional vectors, rep-
resenting the brightness values of 64 pixel by 64
pixel images of a face rendered with different
poses and lighting directions. Applied to N " 698
raw images, Isomap (K" 6) learns a three-dimen-
sional embedding of the data’s intrinsic geometric
structure. A two-dimensional projection is shown,
with a sample of the original input images (red
circles) superimposed on all the data points (blue)
and horizontal sliders (under the images) repre-
senting the third dimension. Each coordinate axis
of the embedding correlates highly with one de-
gree of freedom underlying the original data: left-
right pose (x axis, R " 0.99), up-down pose ( y
axis, R " 0.90), and lighting direction (slider posi-
tion, R " 0.92). The input-space distances dX(i, j )
given to Isomap were Euclidean distances be-
tween the 4096-dimensional image vectors. (B)
Isomap applied to N " 1000 handwritten “2”s
from the MNIST database (40). The two most
significant dimensions in the Isomap embedding,
shown here, articulate the major features of the
“2”: bottom loop (x axis) and top arch ( y axis).
Input-space distances dX(i, j ) were measured by
tangent distance, a metric designed to capture the
invariances relevant in handwriting recognition
(41). Here we used !-Isomap (with ! " 4.2) be-
cause we did not expect a constant dimensionality
to hold over the whole data set; consistent with
this, Isomap finds several tendrils projecting from
the higher dimensional mass of data and repre-
senting successive exaggerations of an extra
stroke or ornament in the digit.
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Faces

tion to geodesic distance. For faraway points,
geodesic distance can be approximated by
adding up a sequence of “short hops” be-
tween neighboring points. These approxima-
tions are computed efficiently by finding
shortest paths in a graph with edges connect-
ing neighboring data points.

The complete isometric feature mapping,
or Isomap, algorithm has three steps, which
are detailed in Table 1. The first step deter-
mines which points are neighbors on the
manifold M, based on the distances dX (i, j)
between pairs of points i, j in the input space

X. Two simple methods are to connect each
point to all points within some fixed radius !,
or to all of its K nearest neighbors (15). These
neighborhood relations are represented as a
weighted graph G over the data points, with
edges of weight dX(i, j) between neighboring
points (Fig. 3B).

In its second step, Isomap estimates the
geodesic distances dM (i, j) between all pairs
of points on the manifold M by computing
their shortest path distances dG(i, j) in the
graph G. One simple algorithm (16 ) for find-
ing shortest paths is given in Table 1.

The final step applies classical MDS to
the matrix of graph distances DG " {dG(i, j)},
constructing an embedding of the data in a
d-dimensional Euclidean space Y that best
preserves the manifold’s estimated intrinsic
geometry (Fig. 3C). The coordinate vectors yi

for points in Y are chosen to minimize the
cost function

E ! !#$DG% " #$DY%!L2 (1)

where DY denotes the matrix of Euclidean
distances {dY(i, j) " !yi & yj!} and !A!L2

the L2 matrix norm '(i, j Ai j
2 . The # operator

Fig. 1. (A) A canonical dimensionality reduction
problem from visual perception. The input consists
of a sequence of 4096-dimensional vectors, rep-
resenting the brightness values of 64 pixel by 64
pixel images of a face rendered with different
poses and lighting directions. Applied to N " 698
raw images, Isomap (K" 6) learns a three-dimen-
sional embedding of the data’s intrinsic geometric
structure. A two-dimensional projection is shown,
with a sample of the original input images (red
circles) superimposed on all the data points (blue)
and horizontal sliders (under the images) repre-
senting the third dimension. Each coordinate axis
of the embedding correlates highly with one de-
gree of freedom underlying the original data: left-
right pose (x axis, R " 0.99), up-down pose ( y
axis, R " 0.90), and lighting direction (slider posi-
tion, R " 0.92). The input-space distances dX(i, j )
given to Isomap were Euclidean distances be-
tween the 4096-dimensional image vectors. (B)
Isomap applied to N " 1000 handwritten “2”s
from the MNIST database (40). The two most
significant dimensions in the Isomap embedding,
shown here, articulate the major features of the
“2”: bottom loop (x axis) and top arch ( y axis).
Input-space distances dX(i, j ) were measured by
tangent distance, a metric designed to capture the
invariances relevant in handwriting recognition
(41). Here we used !-Isomap (with ! " 4.2) be-
cause we did not expect a constant dimensionality
to hold over the whole data set; consistent with
this, Isomap finds several tendrils projecting from
the higher dimensional mass of data and repre-
senting successive exaggerations of an extra
stroke or ornament in the digit.
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Other Nonlinear Dimensionality Reduction Techniques

� Locally Linear Embedding.
� Laplacian Eigenmaps.
� Maximum Variance Unfolding.
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