MS1b
Statistical Machine Learning and Data Mining

Yee Whye Teh
Department of Statistics
Oxford

http://www.stats.ox.ac.uk/~teh/smldm.html



Course Information

» Course webpage:
http://www.stats.ox.ac.uk/~teh/smldm.html

Lecturer: Yee Whye Teh
TA for Part C: Thibaut Lienant
TA for MSc: Balaji Lakshminarayanan and Maria Lomeli

Please subscribe to Google Group:
https://groups.google.com/forum/?hl=en-GB#! forum/smldm

» Sign up for course using sign up sheets.
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Course Structure

Lectures

» 1400-1500 Mondays in Math Institute L4.
» 1000-1100 Wednesdays in Math Institute L3.

Part C:
» 6 problem sheets.
» Classes: 1600-1700 Tuesdays (Weeks 3-8) in 1 SPR Seminar Room.
» Due Fridays week before classes at noon in 1 SPR.

MSc:
» 4 problem sheets.
» Classes: Tuesdays (Weeks 3, 5, 7, 9) in 2 SPR Seminar Room.
» Group A: 1400-1500, Group B: 1500-1600.
» Due Fridays week before classes at noon in 1 SPR.
» Practical: Week 5 and 7 (assessed) in 1 SPR Computing Lab.
» Group A: 1400-1600, Group B: 1600-1800.



Course Aims

1. Have ability to use the relevant R packages to analyse data, interpret
results, and evaluate methods.

2. Have ability to identify and use appropriate methods and models for given
data and task.

3. Understand the statistical theory framing machine learning and data
mining.

4. Able to construct appropriate models and derive learning algorithms for
given data and task.



What is Machine Learning?

What's out there?

How does world work?

OO What's going to happen?
O What should i do?
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What is Machine Learning?

Information
Structure
Prediction
Decisions
Actions

http://gureckislab.org



What is Machine Learning?




What is the Difference?

Traditional Problems in Applied Statistics

Well formulated question that we would like to answer.
Expensive to gathering data and/or expensive to do computation.
Create specially designed experiments to collect high quality data.

Current Situation
Information Revolution

» Improvements in computers and data storage devices.
» Powerful data capturing devices.

» Lots of data with potentially valuable information available.



What is the Difference?

Data characteristics
» Size
» Dimensionality
» Complexity
» Messy
» Secondary sources

Focus on generalization performance

» Prediction on new data
» Action in new circumstances
» Complex models needed for good generalization.

Computational considerations

» Large scale and complex systems



Applications of Machine Learning

» Pattern Recognition

Character
E candidate

» Sorting Cheques

» Reading License Plates

» Sorting Envelopes

» Eye/ Face/ Fingerprint Recognition
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Applications of Machine Learning

» Business applications

» Help companies intelligently find information

» Credit scoring

» Predict which products people are going to buy
» Recommender systems

» Autonomous trading

» Scientific applications

» Predict cancer occurence/type and health of patients/personalized health
» Make sense of complex physical, biological, ecological, sociological models
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Further Readings, News and Applications

Links are clickable in pdf. More recent news posted on course webpage.

>
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Leo Breiman: Statistical Modeling: The Two Cultures

NY Times: R

NY Times: Career in Statistics

NY Times: Data Mining in Walmart

NY Times: Big Data’s Impact In the World

Economist: Data, Data Everywhere

McKinsey: Big data: The Next Frontier for Competition

NY Times: Scientists See Promise in Deep-Learning Programs

New Yorker: Is “Deep Learning” a Revolution in Artificial Intelligence?
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Types of Machine Learning

Unsupervised Learning
Uncover structure hidden in ‘unlabelled’ data.

» Given network of social interactions, find communities.

» Given shopping habits for people using loyalty cards: find groups of
‘'similar’ shoppers.

» Given expression measurements of 1000s of genes for 1000s of patients,
find groups of functionally similar genes.

Goal: Hypothesis generation, visualization.
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Types of Machine Learning

Supervised Learning
A database of examples along with “labels” (task-specific).

» Given network of social interactions along with their browsing habits,
predict what news might users find interesting.

» Given expression measurements of 1000s of genes for 1000s of patients
along with an indicator of absence or presence of a specific cancer,
predict if the cancer is present for a new patient.

» Given expression measurements of 1000s of genes for 1000s of patients
along with survival length, predict survival time.

Goal: Prediction on new examples.
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Types of Machine Learning

Semi-supervised Learning
A database of examples, only a small subset of which are labelled.

Multi-task Learning

A database of examples, each of which has multiple labels corresponding to
different prediction tasks.

Reinforcement Learning

An agent acting in an environment, given rewards for performing appropriate
actions, learns to maximize its reward.
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OxWaSP

Oxford-Warwick Centre for Doctoral Training in Statistics

» Programme aims to produce EuropeOs future research leaders in
statistical methodology and computational statistics for modern
applications.

» 10 fully-funded (UK, EU) students a year (1 international).
» Website for prospective students.
» Deadline: January 24, 2014
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Exploratory Data Analysis

Notation

» Data consists of p measurements (variables/attributes) on n examples
(observations/cases)

» X is a n x p-matrix with X;; := the j-th measurement for the i-th example

X111 X120 ... X1jo-.. Xip
X21 X220 ... X2j ... AX2p
X =
Xil X2 cee X Xip
B an .X:nz o o e an o o .an ]

» Denote the ith data item by x; € R”. (This is transpose of ith row of X)

» Assume xi,...,x, are independently and identically distributed samples
of a random vector X over R?.
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Crabs Data (n = 200, p = 5)

Campbell (1974) studied rock crabs of the genus leptograpsus. One species,
L. variegatus, had been split into two new species, previously grouped by
colour, orange and blue. Preserved specimens lose their colour, so it was
hoped that morphological differences would enable museum material to be
classified.

Data are available on 50 specimens of each sex of each species, collected on
sight at Fremantle, Western Australia. Each specimen has measurements on:

» the width of the frontal lobe F1,
» the rear width RW,
» the length along the carapace midline CL1,
» the maximum width cw of the carapace, and
» the body depth BD in mm.
in addition to colour (species) and sex.
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Crabs Data |

## load package MASS containing the data
library (MASS)

## look at data

crabs

## assign predictor and class variables
Crabs <- crabs|[,4:8]
Crabs.class <— factor (paste(crabs|[,1],crabs|[,2],sep=""))

## various plots

boxplot (Crabs)

hist (CrabsSFL, col='"red’,breaks=20, xname='Frontal Lobe Size (mm)"’)
hist (CrabsS$SRW, col="red’,breaks=20, xname='Rear Width (mm)"’)

hist (Crabs$CL, col='"red’,breaks=20, xname=' Carapace Length (mm)"’)
hist (Crabs$CW, col='"red’,breaks=20, xname='Carapace Width (mm)"’)
hist (Crabs$BD, col='"red’,breaks=20, xname='Body Depth (mm)’)

plot (Crabs, col=unclass (Crabs.class))

parcoord (Crabs)
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Crabs data
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Univariate Boxplots
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Univariate Histograms
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Simple Pairwise Scatterplots
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Parallel Coordinate Plots
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Visualization and Dimensionality Reduction

These summary plots are helpful, but do not really help very much if the
dimensionality of the data is high (a few dozen or thousands).
Visualizing higher-dimensional problems:

» We are constrained to view data in 2 or 3 dimensions
» Look for ‘interesting’ projections of X into lower dimensions

» Hope that for large p, considering only k < p dimensions is just as
informative.

Dimensionality reduction

» For each data item x; € R”, find a lower dimensional representation
z; € RF with k£ < p.

» Preserve as much as possible the interesting statistical
properties/relationships of data items.
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Principal Components Analysis (PCA)

» PCA considers interesting directions to be those with greatest variance.
» A linear dimensionality reduction technique:

» Finds an orthogonal basis v, v,, ..., v, for the data space such that
» The first principal component (PC) v, is the direction of greatest variance of
data.

» The second PC v, is the direction orthogonal to v, of greatest variance, etc.

» The subspace spanned by the first k PCs represents the 'best’ k-dimensional
representation of the data.

» The k-dimensional representation of x; is:

k

T T

zi=V xi= E Ve Xi
=1

where V ¢ RP*¥,

» For simplicity, we will assume from now on that our dataset is centred, i.e.
we subtract the average x from each x;.
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Principal Components Analysis (PCA)

» Our data set is an iid sample of a random vector X = [X; .. .XP]T.

» Forthe 1 PC, we seek a derived variable of the form
Zy =Xy tviXo + -+ vpX, = v X
where v; = [vi1,...,v1,] € R” are chosen to maximise
Var(Z,).
To get a well defined problem, we fix

v v = 1.

» The 2" PC is chosen to be orthogonal with the 1* and is computed in a
similar way. It will have the largest variance in the remaining p — 1
dimensions, etc.
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Principal Components Analysis (PCA)
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Deriving the First Principal Component
» Maximise, subject to v,/ v; = 1:

Var(Z;) = Var(v, X) = v/ Cov(X)v, = v, Sv,

where § € RP*? |s the sample covariance matrix, i.e.

1 & | 1
S = Z(xi —X)(x — %) = E:x,-xiT = X'X.
i—=1

n—li_1 n—1+4 n—1

» Rewriting this as a constrained maximisation problem,
,C (Vl, )\1) = VISVl — )\1 (Vil_vl — 1) .

» The corresponding vector of partial derivatives yields

8£(v1 ’ )\1)
6’v1

= 2SV1 — 2)\1121.

» Setting this to zero reveals the eigenvector equation, i.e. v must be an
eigenvector of S and )\, the corresponding eigenvalue.

» Since v/ Sv; = A\v/ vi = )\, the 1¥ PC must be the eigenvector
associated with the largest eigenvalue of S.
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Deriving Subsequent Principal Components

» Proceed as before but include the additional constraint that the 24 PC
must be orthogonal to the 1% PC:

L(va, Ay, 1) = vasz — A\ (vavz — 1) — I (vlTvz) .

» Solving this shows that v, must be the eigenvector of S associated with
the 2"¢ largest eigenvalue, and so on

» The eigenvalue decomposition of S is given by
S=VAV'
where A is a diagonal matrix with eigenvalues
AMZ>2A2>-2>2X020

and V is a p x p orthogonal matrix whose columns are the p eigenvectors
of S, i.e. the principal components v;,....v,.
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Properties of the Principal Components

» PCs are uncorrelated

COV(XTV,',XTVJ') ~ V;I_SVJ' = ( for i #]

» The total sample variance is given by
P
ZSii:)\l—l-...—l-)\p,
i—=1

so the proportion of total variance explained by the k™ PC is

Ak
)\1—|—)\2—|—...—|—)\p

k=1,2,...,p

» S is areal symmetric matrix, so eigenvectors (principal components) are
orthogonal.

» Derived variables Z;, . .., Z, have variances A, ..., \,.
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R code

This is what we have had before:

library (MASS)

Crabs <- crabs|[,4:8]

Crabs.class <- factor (paste(crabs|[,1],crabs[,2],sep=""))
plot (Crabs, col=unclass (Crabs.class))

Now perform PCA with function princomp. (Alternatively, solve for the PCs
yourself using eigen or svd).

Crabs.pca <- princomp (Crabs, cor=FALSE)
plot (Crabs.pca)
pairs (predict (Crabs.pca),col=unclass (Crabs.class))
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Original Crabs Data
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PCA of Crabs Data
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PC2vs PC3
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PCA on Face Images

http://vismod.media.mit.edu/vismod/demos/facerec/basic.html
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PCA on European Genetic Variation

S

0.01 1

T IT GH

IT T

L .

.ﬂ
& &
=

Morth-south in PC1-PC2 space \

T™H

3
5
-

003-002-001 0 0.01 0.02 0.03
East-wast in PC1-PC2 space

LLESY | - O French-speaking Swiss m French
T i 6 < German-speaking Swiss German
A Malian-speaking Swiss Italian

http://www.nature.com/nature/journal/v456/n7218/full/nature07331.html

37



Comments on the use of PCA

» PCA commonly used to project data X onto the first k PCs giving the

k-dimensional view of the data that best preserves the first two moments.

» Although PCs are uncorrelated, scatterplots sometimes reveal structures
in the data other than linear correlation.

» PCA commonly used for lossy compression of high dimensional data.
» Emphasis on variance is where the weaknesses of PCA stem from:

» The PCs depend heavily on the units measurement. Where the data matrix
contains measurements of vastly differing orders of magnitude, the PC will
be greatly biased in the direction of larger measurement. It is therefore
recommended to calculate PCs from Corr(X) instead of Cov(X).

» Robustness to outliers is also an issue. Variance is affected by outliers
therefore so are PCs.
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Eigenvalue Decomposition (EVD)

Eigenvalue decomposition plays a significant role in PCA. PCs are
eigenvectors of S = R%IXTX and PCA properties are derived from those of

eigenvectors and eigenvalues.

» For any p x p symmetric matrix S, there exists p eigenvectors vy, ..., v,
that are pairwise orthogonal and p associated eigenvalues A, ..., \,
which satisfy the eigenvalue equation Sv; = \;v; Vi.

» S can be written as S = VAV where

» V=|vi,...,v]isap x p orthogonal matrix

» A =diag{)i,..., \}
» |f S'is a real-valued matrix, then the eigenvalues are real-valued as well,

N € RV
» To compute the PCA of a dataset X, we can:

» First estimate the covariance matrix using the sample covariance S.
» Compute the EVD of S using the R command eigen.
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Singular Value Decomposition (SVD)

Though the EVD does not always exist, the singular value decomposition is
another matrix factorization technique that always exist, even for non-square
matrices.

» X can be written as X = UDV " where

» U is an n x n matrix with orthogonal columns.

» D is an x p matrix with decreasing non-negative elements on the diagonal
(the singular values) and zero off-diagonal elements.
» Vis ap x p matrix with orthogonal columns.

» SVD can be computed using very fast and numerically stable algorithms.
The relevant R command is svd.

40



Some Properties of the SVD

» Let X = UDV' be the SVD of the n x p data matrix X.
» Note that

m—1DS=X'X=(ubv")"(ubpv'y=vD'U'UDV' =VvD'DV",

using orthogonality (U' U = I,,) of U.
1

» The eigenvalues of S are thus the diagonal entries of ——D* and the
columns of the orthogonal matrix V are the eigenvectors of S.

» We also have
XX' =(upv")upv"')' =ubv'vD'U' =UDD'U",

using orthogonality (V'V = 1,) of V.
» SVD also gives the optimal low-rank approximations of X:

min ||X — X||*  s.t. X has maximum rank r < n, p.
X

This problem can be solved by keeping only the r largest singular values
of X, zeroing out the smaller singular values in the SVD.
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Biplots

» PCA plots show the data items (as rows of X) in the PC space.
» Biplots allow us to visualize the original variables (as columns X) in the
same plot.

» As for PCA, we would like the geometry of the plot to preserve as much
of the covariance structure as possible.

42



Biplots

Recall that X = [X;,...,X,]" and X = UDV' is the SVD of the data matrix.
» The PC projection of x; is:

zi=V'x;=DU' =[DUy,...,DuUsl".

» The jth unit vector e; € R” points in the direction of X;. Its PC projection is
V" =V'e, the jth row of V.

» The projection of the variable indicates the weighting each PC gives to
the original variables.

» Dot products between the projections gives entries of the data matrix:

p
xj =Y UsDuVie = (DU, V7).
k=1

» Distance of projected points from projected variables gives original
location.

» These relationships can be plotted in 2D by focussing on first two PCs.
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Biplots
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Biplots

» There are other projections we can consider for biplots:

p
Xij = Z UDi Vi = (DU, VJT> = <D1_anT:DanT>-
k=1

where 0 < o < 1. The a = 1 case has some nice properties.
» Covariance of the projected points is:

1 < 1
U'U; = I.
n—llz_; ! n—1

Projected points are uncorrelated and dimensions are equi-variance.
» The covariance between X; and X, is:

Var(X;Xy) =

1

So the angle between the projected variables gives the correlation.

» When using k < p PCs, quality depends on the proportion of variance
explained by the PCs.
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Biplots

pc <— princomp (X)
biplot (pc, scale=0)
biplot (pc, scale=1)
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Iris Data

50 sgmple from 3 species of iris: Iris setosa, 2 Potals
versicolor, and virginica e ¢ 4

Each measuring the length and widths of
both sepal and petals

Collected by E. Anderson (1935) and
analysed by R.A. Fisher (1936)

Using again function princomp and biplot.

irisl <— 1iris
irisl <-— irisl[,-5]
biplot (princomp (irisl, cor=T))



Iris Data
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US Arrests Data

This data set contains statistics, in arrests per 100,000 residents for assault,
murder, and rape in each of the 50 US states in 1973. Also given is the
percent of the population living in urban areas.

pairs (USArrests)
usarrests.pca <- princomp (USArrests, cor=T)
plot (usarrests.pca)

palirs (predict (usarrests.pca))
biplot (usarrests.pca)
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US Arrests Data Pairs Plot
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US Arrests Data Biplot
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Multidimensional Scaling

Suppose there are n points X in R”, but we are only given the n x n matrix D of
Inter-point distances.

Can we reconstruct X?
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Multidimensional Scaling

Rigid transformations (translations, rotations and reflections) do not change
inter-point distances so cannot recover X exactly. However X can be
recovered up to these transformations!

» Let d; = ||x; — xj||» be the distance between points x; and x;.

di = |lxi — x5
= (u—x)" (x—x)
T

_ T T
= X XXX —2x %

» Let B =XX' be the n x n matrix of dot-products, b; = x,' x;. The above
shows that D can be computed from B.

» Some algebraic exercise shows that B can be recovered from D if we
assume >, x; = 0.
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Multidimensional Scaling

If we knew X, then SVD gives X = UDV'. As X has rank k = min(n, p),
we have at most k singular values in D and we can assume U € R"*¥,
D € R**P and V € RP>*P,

The eigendecomposition of B is then:

B=XX' =UDD'U" = UAU".

This eigendecomposition can be obtained from B without knowledge of X!
Let &, = U;A: be the ith row of UAz. Pad %; with Os so that it has length p.

T~ _ T _ . T
X; xj—U,-AU]- = bjj = X; X;j

and we have found a set of vectors with dot-products given by B.

The vectors x; differs from x; only via the orthogonal matrix V so are
equivalent up to rotation and reflections.
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US City Flight Distances

We present a table of flying mileages between 10 American cities, distances
calculated from our 2-dimensional world. Using D as the starting point, metric

MDS finds a configuration with the same distance matrix.

ATLA CHIG
0 587
587 O
1212 920
701 940
1936 1745
604 1188
748 713
2139 1858
2182 1737
543 597

DENV
1212
920

879
831
1726
1631
949
1021
1494

HOUS
701
940
879
0
1374
968
1420
1645
1891
1220

LA
1936
1745
831
1374

2339
2451
347
959
2300

MIAM
604
1188
1726
968
2339
0
1092
2594
277134
923

NY
748
713
1631
1420
2451
1092
0
2571
2408
205

SE
2139
1858
949
1645
347
2594
2571

673
2442

SEAT
2182
1737
1021
1891
959

2734
2408
678

2329

DC
543
597
1494
1220
2300
923
205
2442
2329
0
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US City Flight Distances

library (MASS)

us <- read.csv("http://www.stats.ox.ac.uk/
~teh/teaching/smldm/data/uscities.csv")

## use classical MDS to find lower dimensional views of the data
## recover X in 2 dimensions

us.classical <- cmdscale (d=us, k=2)

plot (us.classical)
text (us.classical, labels=names (us))
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US City Flight Distances

1000
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-1000 -500
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Lower-dimensional Reconstructions

In classical MDS derivation, we used all eigenvalues in the
eigendecomposition of B to reconstruct

% = UA2,
We can use only the largest £ < min(n, p) eigenvalues and eigenvectors in the
reconstruction, giving the ‘best’ k-dimensional view of the data.

This is analogous to PCA, where only the largest eigenvalues of X' X are
used, and the smallest ones effectively suppressed.

Indeed, PCA and classical MDS are duals and yield effectively the same
result.
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Crabs Data

library (MASS)
Crabs <- crabs|[,4:8]
Crabs.class <- factor (paste(crabs[,1],crabs[,2],sep=""))

crabsmds <- cmdscale (d= dist (Crabs),b k=2)
plot (crabsmds, pch=20, cex=2,col=unclass(Crabs.class))
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Crabs Data

Compare with previous PCA analysis.
Classical MDS solution corresponds to the first 2 PCs.
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Example: Language data
Presence or absence of 2867 homologous traits in 87 Indo-European
languages.

> X[1:15,1:16]
V1l V2 V3 v4 V5 Ve V7 V8 V9 V10 V11 Vv12 V13

Irish_ A o o o o0 1 OO 0 0 © 0 0 0

Irish B

Welsh N

Welsh C

Breton_List

Breton SE

Breton_ST

Romanian List

Vlach

Italian

Ladin

Provencal

F'rench

Walloon

French Creole C

O O O O O OO O oo o oo o
kAP PERPRPRPRPRPEPOOOO o O
O O O O O OO O oo o oo o
O O O OO OO oo oo ko
SO oo ococoocoocokrr PP PEr oo
O O O O O OO O oo o oo o
O O O O O OO O oo o oo o
O O O O O OO O oo o oo o
O O O O O OO OO o oo o
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O O O O O OO O oo ooo oo
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Example: Language data
Using MDS with non-metric scaling.

-0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

& Panjabi_sf> Gypsy_Gk

¢ Bengali O Lahnda % Ossetic
Gujarati Hindi i
© e < Hind * Taﬁglbemiaﬂémbziri
< Nepalighistarathi & Singhalese
& Khaskura Kashmiri 3 Afghan
o X Armeniar Bluchi
X Armenian_Mod * Wakhi
& Albanian_K
<& Albanian_C x_ BulgatfaMacedonian
& Albanian_T /\ Catalan
X X Lusati .
& Albanian_Top X Czech E % Lus:%?;#Tbocroatlan A Sardinian_N A Provencal
X Ukrainian - A Ladin A Freng
$ Albanian_G X Czech A Sal’dlnlan7C A FI’enChA Frer
Slovenian L
X Bye|oru%i%vak X A Sardlnﬁnl_té"anA Walloon
X Russian
X Polish
@ HITTITE A Spanis& Pprtugu(
A Vlach A\ Brazilian
% Lithuanian_O /\ Romanian_List
® TOCHARIAN)@Lithuani%&]_LSa}' o
Vi
@ TOCHARIAN_A
- O Breton_S¥
— Frisian
BrtGHe198: ST
Dutch_List © -
V Greek filGreek K -+ Danish + Flemish
Greek ML —+ Afrikaans O Welsh_C
v ;eGr_eek b + Riksmal S O Welsh_N
_ . .German_ST
v Greek_Mod + Swedish I ~+ Penn_Dutch . .
-+ Faroese O lIrish_B
—+ lcelandif§igdigh_Up . O lrish_A
* e EnBI'—?I]JI%-II;itaki
[ [ [
-0.5 0.0 0.5

62



Varieties of MDS

Generally, MDS is a class of dimensionality reduction techniques which
represents data points x;,...,x, € R” in a lower-dimensional space
z1, - - ., 2, € R* which tries to preserve inter-point (dis)similarities.

» |t requires only the matrix D of pairwise dissimilarities
dij — d(x,-, dj)

For example we can use Euclidean distance d;; = ||x; — x;j||». Other
dissimilarities are possible. Conversely, it can use a matrix of similarities.

» MDS finds representations z;, ..., z, € R* such that
d(xi, %) = dyj = d(z1,3),

where d represents dissimilarity in the reduced k-dimensional space, and
differences in dissimilarities are measured by a stress function S(d;;, d;;).

63



Varieties of MDS

Choices of (dis)similarities and stress functions lead to different objective
functions and different algorithms.
» Classical - preserves similarities instead

S(Z) => (si—(z—%5—2)

ij
» Metric Shepard-Kruskal
S(Z) = (dy — ||z — zl12)

i#j
» Sammon - preserves shorter distances more

S(Z) _ Z (dlj o ||Zi - Zj“2>2

d
i /

» Non-Metric Shepard-Kruskal - ignores actual distance values, only ranks

S(Z) = min > (g(dy) = ||z — z}2)°

g increasing

i7]
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Nonlinear Dimensionality Reduction

Two aims of different varieties of MDS:

» To visualize the (dis)similarities among items in a dataset, where these
(dis)disimilarities may not have Euclidean geometric interpretations.

» To perform nonlinear dimensionality reduction.

Many high-dimensional datasets exhibit low-dimensional structure (“live on a
low-dimensional menifold”).

high-dim distribution high-dim samples estimated manifold
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lsomap

Isomap is a non-linear dimensional reduction technique based on classical
MDS. Differs from other MDSs in its estimate of distances d;.

1. Calculate distances d;; fori,j = 1,...,n between all data points, using the
Euclidean distance.

2. Form a graph G with the n samples as nodes, and edges between the
respective K nearest neighbours.

3. Replace distances d;; by shortest-path distance on graph dg and perform
classical MDS, using these distances.

A B Cc

Examples from Tenenbaum et al. (2000).
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Handwritten Characters

.

Bottom loop articulation

azmzz
| =
lll

o

uonenole yose dog
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Faces

mm @ H_ E. =
ﬂ- ﬂ_ﬂ_ ﬂm H_
E_ n_ hm > | E_
I_ ! .mm [ 85
3 ®m B o3

-

Left-right pose

< - asod umop-dn

FRETT Lighting direction

68



Other Nonlinear Dimensionality Reduction Techniques

» Locally Linear Embedding.
» Laplacian Eigenmaps.
» Maximum Variance Unfolding.
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