
SMLDM HT 2014 - Part C Problem Sheet 5
1. An exponential family is a family of distributions parameterized by a d-dimensional vector θ, and

has density of the form:
p(x; θ) = h(x) exp

(
θ>S(x)−A(θ)

)
where h(x) is a function that depends only on x, S : Rp → Rd is the sufficient statistics function,
and

A(θ) = log

∫
Rp
h(x) exp

(
θ>S(x)

)
dx

is a normalization constant. Exponential families can be defined over other spaces as well, in
which case Rp above is replaced by some other space X.

(a) Write the Bernoulli, normal and Poisson distributions in exponential family form, identifying
the functions h, S and A.

Answer: Bernoulli:

p(x;φ) = φx(1−φ)1−x = exp(x log φ+(1−x) log(1−φ)) = exp(x log
φ

1− φ
+log(1−φ))

So S(x) = x, θ = log φ
1−φ , h(x) = 1 and

A(θ) = − log(1− s(θ)) = − log(s(−θ)) = log(1 + exp(θ))

Normal:

p(x;µ, σ2) =
1√
2πσ2

e−
1

2σ2
(x−µ)2 = e−

1
2σ2

x2+ 1
σ2
xµ− 1

2σ2
µ2− 1

2
log(2πσ2)

So S(x) = [x, x2]>, θ = [µ/σ2,−1/2σ2]>, h(x) = 1 and A(θ) = 1
2σ2µ

2 + 1
2 log(2πσ

2),
which we’ll need to express as function of θ.

Poisson:

p(x;λ) =
e−λ

x!
λx = e−λ−log x!+x log λ

so S(x) = x, h(x) = 1/x!, θ = log λ and A(θ) = λ = eθ.

(b) Show that

∇θA(θ) = E[S(X)] ∇2
θA(θ) = Cov[S(X), S(X)]

where X is a random variable with distribution given by the exponential family distribution
with parameter θ.

Answer: The first derivative is:

∇θA(θ) =
∫
h(x) exp(θ>S(x))S(x)dx∫
h(x) exp(θ>S(x))dx

= E[S(X)]
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The second derivative is:

∇2
θA(θ) =

∫
h(x) exp(θ>S(x))S(x)S(x)>dx∫

h(x) exp(θ>S(x))dx

−
∫
h(x) exp(θ>S(x))S(x)dx∫
h(x) exp(θ>S(x))dx

∫
h(x) exp(θ>S(x))S(x)>dx∫

h(x) exp(θ>S(x))dx

=E[S(X)S(X)>]− E[S(X)]E[S(X)]> = Cov[S(X), S(X)]

(c) Suppose given a dataset (xi)ni=1 we wish to perform maximum likelihood estimation of
θ. Explain why this is a convex optimization problem. Under what conditions is the ML
estimator uniquely defined?

Answer: The log likelihood is

n∑
i=1

log h(xi) + θ>S(xi)−A(θ)

=

(
n∑
i=1

log h(xi)

)
+ θ>

(
n∑
i=1

S(xi)

)
− nA(θ)

So first term doesn’t depend on θ, second is linear in θ, and third is concave in θ, since second
derivative of A is positive semidefinite. Thus the objective is concave. The ML estimator is
uniquely defined if the second derivative is positive definite. This happens if the entries of
S(x) are linearly independent, that is, a vector λ has λ>S(x) = 0 for all x if and only if
λ = 0.

2. Consider the following maximum-entropy problem. Suppose we have a dataset (xi)ni=1, from
which we can calculate a number of statistics, say

Tj =
1

n

n∑
i=1

Sj(xi)

for j = 1, . . . , d, and functions Sj : Rp → R. For example, when p = 1, we can take S1(x) = x,
S2(x) = x2. We wish to find the density f(x) which maximizes the differential entropy

H[f ] = −
∫
Rp
f(x) log f(x)dx

subject to the constraints: ∫
Rp
f(x)Sj(x)dx = Tj

(a) Formulate the maximum entropy problem as a convex optimization problem, and show that
the maximum entropy problem is equivalent to the problem of maximum likelihood estima-
tion in an exponential family.

Answer: This is a convex optimization problem because the entropy is concave, which we
want to maximize. Negating, the negative entropy is to be minimized and it is convex. The
constraints are linear in f(x).
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The Lagrangian is

L(f, λ, γ) =
∫
Rp
f(x) log f(x)dx+

d∑
j=1

λj

(
Tj −

∫
Rp
f(x)Sj(x)dx

)
+ γ

(
1−

∫
Rp
f(x)dx

)

with Lagrange multipliers λ and γ. Solving for f , the derivative wrt f(x) is

0 = log f(x) + 1−
d∑
j=1

λjSj(x)− γ (1)

f(x) = eγ−1 exp

 d∑
j=1

λjSj(x)


So f(x) is an exponential family distribution with sufficient statistics S(x) = [S1(x), . . . , Sd(x)]

>

and parameters λ, and eγ−1 is the normalization constant, i.e.

e1−γ =

∫
Rp

exp

 d∑
j=1

λjSj(x)

 dx (2)

The dual objective is obtained by substituting (1) back into the Lagrangian,

−
∫
Rp
f(x)dx+

d∑
j=1

λjTj + γ

=

d∑
j=1

λjTj + γ − 1

=
d∑
j=1

λjTj − log

∫
Rp

exp

 d∑
j=1

λjSj(x)

 dx by (2)

We wish to maximize this dual objective. If we multiply by n, the dataset size, and take Tj
to be the empirical mean of Sj(x) under the dataset, this is the objective function we would
get under ML estimation.

(b) Suppose that we are not certain about the statistics collected, and wish to introduce a degree
of uncertainty into our method. Say we relax our equality constraints by interval constraints,

Tj − C ≤
∫
Rp
f(x)Sj(x)dx ≤ Tj + C

for a positive numberC > 0. Show that this problem is equivalent to a regularized maximum
likelihood estimation problem in an exponential family, with an L1 regularization.

Answer: These are inequality constraints, so we will need to introduce Lagrange multipliers
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λ+j ≥ 0, λ−j ≥ 0 for both sides of the inequalities. The Lagrangian is

L(f, λ+, λ−, γ) =
∫
Rp
f(x) log f(x)dx

+

d∑
j=1

λ+j

(
Tj − C −

∫
Rp
f(x)Sj(x)dx

)

+

d∑
j=1

λ−j

(∫
Rp
f(x)Sj(x)dx− Tj − C

)

+ γ

(
1−

∫
Rp
f(x)dx

)
Again setting the derivative wrt f(x) to zero, we find that

f(x) = eγ−1 exp

 d∑
j=1

(λ+j − λ
−
j )Sj(x)


which is of exponential family form, with parameters λj = λ+j −λ

−
j . Substituting back into

the Lagrangian, we get the dual objective which is to be maximized:

d∑
j=1

λjTj − log

∫
Rp

exp

 d∑
j=1

λjSj(x)

 dx− C

 d∑
j=1

λ+j + λ−j


Multiplying by n, the dataset size again, the first two terms are again the log likelihood. The
last term is

−nC

 d∑
j=1

λ+j + λ−j


The claim is now that the sum inside is ‖λ‖1, so we get the L1 regularization term. Here we
can use the complementary slackness property, which gives, for each j,

λ+j

(
Tj − C −

∫
Rp
f(x)Sj(x)dx

)
= 0

λ−j

(∫
Rp
f(x)Sj(x)dx− Tj − C

)
= 0

Now λ+j > 0 implies that the integral equals Tj − C, so it cannot equal Tj + C, so that
λ−j = 0. Likewise, λ−j > 0 impiles λ+j = 0. Hence λ+j + λ−j = |λj |.

3. Let (xi, yi)ni=1 be our dataset, with xi ∈ Rp and yi ∈ R. Linear regression can be formulated as
empirical risk minimization, where the model is to predict y as x>β, and we use the squared loss:

Remp(β) =
n∑
i=1

1

2
(yi − x>i β)2
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(a) Show that the optimal parameter is

β̂ = (X>X)−1X>Y

where X is a n× p matrix with ith row given x>i , and Y is a n× 1 matrix with ith entry yi.

Answer: We can write the empirical risk as

1

2
‖Y −Xβ‖22

Differentiating wrt β and setting to 0,

(Y −Xβ)>X = 0

Y>X− β>(X>X) = 0

β̂ = (X>X)−1X>Y

(b) Consider regularizing our empirical risk by incorporating a L2 regularizer. That is, find β
minimizing

C

2
‖β‖22 +

n∑
i=1

1

2
(yi − x>i β)2

Show that the optimal parameter is given by the ridge regression estimator

β̂ = (CI + X>X)−1X>Y

Answer: The objective becomes:

1

2
‖Y −Xβ‖22 +

C

2
‖β‖22

Again differentiating and setting derivative to 0,

(Y −Xβ)>X + Cβ> = 0

Y>X− β>(CI + X>X) = 0

β̂ = (CI + X>X)−1X>Y

(c) Suppose we wish to introduce nonlinearities into the model, by transforming x 7→ φ(x).
Show how this transformation may be achieved using the kernel trick. That is, let Φ be a
matrix with ith row given by φ(xi)>. The optimal parameters β̂ would then be given by
(previous part):

β̂ = (CI + Φ>Φ)−1Φ>Y

Express the predicted y values on the training set, Φβ̂, only in terms of Y and the Gram
matrix G = ΦΦ>, with Gij = φ(xi)

>φ(xj) = κ(xi, xj) where κ is some kernel function.

Compute an expression for the value of y0 predicted by the model at a test vector x0.
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You will find the Woodbury matrix inversion formula useful:

(A+ UBV )−1 = A−1 −A−1U(B−1 + V A−1U)−1V A−1

where A and B are square invertible matrices of size n × n and p × p respectively, and U
and V are n× p and p× n rectangular matrices.

Answer: Using Φ instead of X, we would get

β̂ = (CI + Φ>Φ)−1Φ>Y

instead. Multiply by Φ,

Φβ̂ =Φ(CI + Φ>Φ)−1Φ>Y

=Φ(C−1I − C−1Φ>(I + Φ(C−1I)Φ>)−1ΦC−1)Φ>Y

=C−1(ΦΦ> −ΦΦ>(CI + ΦΦ>)−1ΦΦ>)Y

=C−1(G−G(CI +G)−1G)Y

Finally, for a test vector x0, let φ0 = φ(x). Then the prediction is φ>0 β̂, which gives

C−1(φ>0 Φ> − φ>0 Φ>(CI +G)−1G)Y

where we note that φ>0 Φ> is a row vector with ith entry κ(x0, xi).

In particular, the nonlinear model can be “kernelized” and all computations can be carried
out without explicit computation of φ(x).
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