
SMLDM HT 2014 - MSc Problem Sheet 2
1. In lectures we derived the M step updates for a mixture of Gaussians, for the mixing proportions

and cluster means, assuming the common covariance σ2I is fixed and known. What happens to
the algorithm if we set σ2 to be very small? How does the resulting algorithm as σ2 → 0 relate to
K-means?

Answer: In the E step, the posterior probabilities are:

q(zi = k) ∝ πkf(xi|φk, σ2) ∝ πk exp(− 1

2σ2
‖xi − φk‖22) = πk exp(−1

2
‖xi − φk‖22)1/σ

2

When σ2 is small, σ−2 is very large, so that the exponentiated term will be dominated by the k
such that φk is closest to xi by Euclidean distance. Thus,

q(zi = k) =

{
1 for k such that ‖xi − φk‖ < ‖xi − φc‖ for all c 6= k.
0 otherwise

If there is another φc at same distance to xi, q(zi) will spread probability mass equally among all
such components. This looks exactly like the cluster assignment step of K-means. The M step is
exactly the mean update step, thus K-means can be understood as an EM algorithm for a mixture
of Gaussians with infinitesimally small σ2.

2. In lectures we derived the M step updates for a mixture of Gaussians, for the mixing proportions
and cluster means, assuming the common covariance σ2I is fixed and known. If σ2 is in fact not
know and to be learnt as well, derive an M step update for σ2.

Answer: Differentiating the free energy with respect to ν = σ2 (you can also differentiate with
respect to σ or σ2, just bit more algebra),

∇νF(θ, q) =

n∑
i=1

K∑
k=1

q(zi = k)∇ν
(
−p

2
log(2π/ν)− ν 1

2
‖xi − φk‖22

)

=
n∑
i=1

K∑
k=1

q(zi = k)

(
p

2

1

ν
− 1

2
‖xi − φk‖22

)
= 0

σ2 =

∑n
i=1

∑K
k=1 q(zi = k)‖xi − φk‖22

np

3. Consider two univariate normal distributions N (µ, σ2) with known parameters µA = 10 and
σA = 5 for class A and µB = 20 and σB = 5 for class B. Suppose class A represents the random
score X of a medical test of normal patients and class B represents the score of patients with
a certain disease. A priori there are 100 times more healthy patients than patients carrying the
disease.

(a) Find the optimal decision rule in terms of misclassification error (0-1 loss) for allocating a
new observation x to either class A or B.

Answer: The optimal decision for X = x is to allocate to class

argmaxk∈{A,B}πkfk(x).
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The patients should be classified as healthy iff

πA
1√

2πσA
exp(−(x− µA)2

2σ2A
) ≥ πB

1√
2πσB

exp(−(x− µB)2

2σ2B
),

that is, using σA = σB , iff

−2σ2A log(πA/πB) + (x− µA)2 ≤ (x− µB)2.

The decision boundary is attained for equality, that is if x fulfills

2x(µB − µA) + µ2A − µ2B − 2σ2A log(πA/πB) = 0.

For the given values, this implies that the decision boundary is at

x = (50 log 100− 100 + 400)/(2 · 10) ≈ 26.51,

that is all patients with a test score above 26.51 are classfied as having the disease.

(b) Repeat (a) if the cost of a false negative (allocating a sick patient to group A) is θ > 1
times that of a false positive (allocating a healthy person to group B). Describe how the rule
changes as θ increases. For which value of θ are 84.1% of all patients with disease correctly
classified?

Answer: The optimal decision minimizes E(L(Y, Ŷ (x))|X = x). It is hence optimal to
choose class A (healthy) over class B if and only if

P (Y = A|X = x) ≥ θP (Y = B|X = x).

Using the same argument as above, the patients should be classified as healthy now iff (ig-
noring again the common denominator

∑
k∈{A,B} πkfk(x)),

πA
1√

2πσA
exp(−(x− µA)2

2σ2A
) ≥ θπB

1√
2πσB

exp(−(x− µB)2

2σ2B
).

The decision boundary is now attained if x fulfills

2x(µB − µA) + µ2A − µ2B − 2σ2A log(πA/(θπB)) = 0.

For increasing values of θ, patients with decreasingly smaller test scores are classified as
having the disease.

84.1% of all patients carrying the disease are correctly classified if the decision boundary is at
the 15.9%-quantile of theN (µB, σ

2
B)-distribution, which is at q = 20+5Φ−1(0.159) ≈ 15.

This decision boundary is attained if

15 = q = (50 log(100/θ)− 100 + 400)/20,

which implies that for

θ = 100 exp(−20q − 300

50
) = 100,

approximately 84.1% of all patients are correctly classified as carrying the disease.

4. For a given loss function L, the risk R is given by the expected loss

R(Ŷ ) = E(L(Y, Ŷ (X))),

where Ŷ = Ŷ (X) is a function of the random predictor variable X .
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(a) Consider a regression problem and the squared error loss

L(Y, Ŷ (X)) = (Y − Ŷ (X))2.

Derive the expression of Ŷ = Ŷ (X) minimizing the associated risk.

Answer: We have

R = E
((

Y − Ŷ (X)
)2)

=

∫
E
((

Y − Ŷ (X)
)2∣∣∣∣X = x

)
fX (x) dx

so minimizing the risk can be achieved by minimizing for any x

E
((

Y − Ŷ (X)
)2∣∣∣∣X = x

)
= E

(
Y 2
∣∣X = x

)
− 2Ŷ (x)E (Y |X = x) + Ŷ (x)2 .

This is clearly minimized for the conditional mean:

Ŷ (X) = E (Y |X) .

(b) What if we use the `1 loss instead?

L(Y, Ŷ (X)) = |Y − Ŷ (X)|.

Answer: As before, we want to find Ŷ (x) to minimize

E
(
|Y − Ŷ (x)|

∣∣X = x
)

Differentiating the expression with respect to Ŷ (x),

E
(

sign(Y − Ŷ (x))
∣∣X = x

)
= −P(Y < Ŷ (x)|X = x) + P(Y > Ŷ (x)|X = x)

which occurs when P(Y < Ŷ (x)|X = x) = P(tY > Ŷ (x)|X = x) = .5, i.e. at the median
conditional on X = x.

5. Show that under a Naı̈ve Bayes model, the Bayes classifier Ŷ (x) minimizing the total risk for the
0− 1 loss function has a linear discriminant function of the form

Ŷ (x) = arg max
k=1,2

αk + β>k x.

and find the values of αk, βk. (Use notation from lecture slides).

Answer: The Bayes classifier is given in this discrete state space as

Ŷ (x) = arg max
k=1,2

πkP(X = x|Y = k) = arg max
k=1,2

log πk + logP(X = x|Y = k)

Now,

logP(X = x|Y = k) =

p∑
j=1

xij log φkj + (1− xij) log(1− φkj)

=

p∑
j=1

log(1− φkj) + xij log
φkj

1− φkj
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So that the discriminant functions are linear, with:

αk = log πk +

p∑
j=1

log(1− φkj)

βkj = log
φkj

1− φkj

for each k and j.

6. Suppose we have a two-class setup with classes−1 and 1, that isY = {−1, 1} and a 2-dimensional
predictor variable X . We find that the means of the two groups are at µ̂−1 = (−1,−1)> and
µ̂1 = (1, 1)> respectively. The a priori probabilities are equal.

(a) Applying LDA, the covariance matrix is estimated to be, for some value of 0 ≤ ρ ≤ 1,

Σ̂ =

(
1 ρ
ρ 1

)
.

Find the decision boundary as a function of ρ.

Answer: The constant a∗ = a1 − a−1 is given by, using equal a priori probabilities,

a∗ = µ̂T1 Σ̂−1µ̂1 − µ̂T2 Σ̂−1µ̂2.

Hence a∗ = 0. The constant b∗ = b1 − b−1 is on the other hand

b∗ = Σ̂−1(µ1 − µ−1) = Σ̂−1(2, 2)> = 2/(1 + ρ)(1, 1)>,

Class 1 is chosen over class -1 for x = (x(1), x(2))> if and only if a∗ + b>∗ x > 0, that is iff

2

1 + ρ
(x(1) + x(2)) > 0.

Equivalently, iff
x(1) + x(2) > 0,

which could have been guessed as the solution initially.

(b) Suppose instead that, we model each class with its own covariance matrix. We estimate the
covariance matrices for group -1 as

Σ̂−1 =

(
5 0
0 1/5

)
,

and for group 1 as

Σ̂1 =

(
1/5 0
0 5

)
.

Describe the decision rule and draw a sketch of it in the two-dimensional plane.

Answer: As in (a), the classification is group 1 if and only if

(x− µ̂1)T Σ̂−11 (x− µ̂1) < (x− µ̂−1)T Σ̂−1−1(x− µ̂−1).

The difference with LDA in (a) is that Σ̂1 6= Σ̂−1.
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Let, as in the lectures, ak = µ̂Tk Σ̂−1k µ̂k and similarly for bk (for terms linear in x) and ck (for
terms quadratic in x) for k = 1, 2.

The constant a∗ = a1 − a−1 is again 0. The term b1 is now

bT1 x = −2µ̂T1 Σ̂−11 x = −2(5x(1) + x(2)/5).

and
bT−1x = −2µ̂T−1Σ̂

−1
2 x = 2(x(1)/5 + 5x(2)).

The quadratic terms are

xT c1x = xT Σ̂−11 x = 5(x(1))2 + (x(2))2/5

and
xT c−1x = xT Σ̂−1−1x = (x(1))2/5 + 5(x(2))2.

The observations x is thus classified as belonging to group 1 if and only if

5(x(1))2 + (x(2))2/5− 2(5x(1) + x(2)/5) < (x(1))2/5 + 5(x(2))2 + 2(x(1)/5 + 5x(2)).

Bringing all terms to the left side and dividing by 5−1/5, the classification is group 1 if and
only if

(x(1))2 − (x(2))2 − ·13

6
(x(1) + x(2)) < 0.

Here, we thus obtain linear decision boundaries, even though we are using QDA (which
typically produces quadratic decision boundaries). The decision boundaries are shown in
the figure below, along with the group means.
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