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Course Structure

Lectures

» Wednesdays 1100-1200, Weeks 1-8.

» Thursdays 1100-1200, Weeks 1,3,5,7.
Problem Sheets

» 7 problem sheets: due Mondays at noon, Weeks 2-8.
Part C students

» Practical classes: Thursdays 1100-1200, Weeks 2,4,6,8.

» Problem classes: Wednesdays time to be decided, Weeks 2-8.

MSc students

» Miniproject: over Easter break.
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Syllabus |

Part I: Dimensionality Reduction
» Principal Components Analysis
» Multidimensional Scaling
» Isomap
Part II: Clustering
» Hierarchical clustering
» K-means
» Vector Quantization
» Mixture Models
» Probabilistic Latent Variable Models and EM algorithm
Part Ill: Classification and Regression
» Empirical Risk Minimization
» Nearest Neighbours, Prototype Based Methods
» Classification and Regression Trees
» Linear Regression
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Syllabus |l

» Linear Discriminant Analysis
» Quadratic Discriminant Analysis
» Naive Bayes
» Bayesian Methods
» Logistic Regression
» Neural Networks
Part IV: Ensemble Methods
» Bootstrap, Bagging
» Random Forests
» Boosting
R
» Learning how to use R for Data Mining
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What is Data Mining?

Traditional Problems in Applied Statistics

Well formulated question that we would like to answer.
Expensive to gathering data and/or expensive to do computation.
Create specially designed experiments to collect high quality data.

Current Situation
Information Revolution

- improvements in data storage devices (both larger and cheaper).

- powerful data capturing devices (bioassays, microphones, cameras,
satellites).

— lots of data with potentially valuable information available.
— Big Data....
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What is Data Mining?

v

To gain insight from data.
Often working with huge datasets.

» Typically many variables (up to thousands or millions).
» Often, but not always many observations (dozens to millions).

Secondary data sources possibly collected for other purposes.
Uncurated data, missing data, unstructured data, multi-aspect data.
Gain understanding without specific goals.

v

v

v
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Applications of Data Mining

» Pattern Recognition
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- Sorting Cheques

- Reading License Plates

- Sorting Envelopes

- Eye/ Face/ Fingerprint Recognition
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Applications of Data Mining

» Business applications

Help companies intelligently find information

Credit scoring

Predict which products people are going to buy

Recommender systems

Autonomous trading

» Scientific applications

- Predict cancer occurence/type and health of patients/personalized health

- Make sense of complex physical, biological, ecological, sociological
models

...It is just a nice name for multivariate statistics (‘minus model checking’).
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NY Times: Data Mining in Walmart (URL)

12/30/12 The New York Times > Business > Your Money > What Wal-Mart Knows About Customers' Habits

Ehe New Hork Times

Now PLAYIN G

November 14,2004

What Wal-Mart Knows About Customers' Habits

By CONSTANCE L. HAYS

URRICANE FRANCES was on its way, barreling across the Caribbean, threatening a direct hit on

Florida's Atlantic coast. Residents made for higher ground, but far away, in Bentonville, Ark.,
executives at Wal-Mart Stores decided that the situation offered a great opportunity for one of their
newest data-driven weapons, something that the company calls predictive technology.

A week ahead of the storm's landfall, Linda M. Dillman, Wal-Mart's chief information officer, pressed
her staff to come up with forecasts based on what had happened when Hurricane Charley struck several
weeks earlier. Backed by the trillions of bytes' worth of shopper history that is stored in Wal-Mart's
computer network, she felt that the company could "start predicting what's going to happen, instead of
waiting for it to happen," as she put it.

The experts mined the data and found that the stores would indeed need certain products - and not just the
usual flashlights. "We didn't know in the past that strawberry Pop-Tarts increase in sales, like seven times
their normal sales rate, ahead of a hurricane," Ms. Dillman said in a recent interview. "And the pre-
hurricane top-selling item was beer."

Thanks to those insights, trucks filled with toaster pastries and six-packs were soon speeding down
Interstate 95 toward Wal-Marts in the path of Frances. Most of the products that were stocked for the
storm sold quickly, the company said.
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NY Times: Career in Statistics (URL)

12/30/12 For Today's Graduate, Just One Word - Statistics - NYTimes.com

Ehe New JJork Thnes

This copy is for your personal, noncommercial use only. You can order presentation-ready copies for
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article. Visit www.nytreprints.com for samples and additional information. Order a reprint of this article now.

August 6, 2009

For Today’s Graduate, Just One Word: Statistics

By STEVE LOHR

MOUNTAIN VIEW, Calif. — At Harvard, Carrie Grimes majored in anthropology and archaeology and
ventured to places like Honduras, where she studied Mayan settlement patterns by mapping where
artifacts were found. But she was drawn to what she calls “all the computer and math stuff” that was part
of the job.

“People think of field archaeology as Indiana Jones, but much of what you really do is data analysis,” she
said.

Now Ms. Grimes does a different kind of digging. She works at Google, where she uses statistical analysis
of mounds of data to come up with ways to improve its search engine.

Ms. Grimes is an Internet-age statistician, one of many who are changing the image of the profession as a
place for dronish number nerds. They are finding themselves increasingly in demand — and even cool.

“I keep saying that the sexy job in the next 10 years will be statisticians,” said Hal Varian, chief economist
at Google. “And I'm not kidding.”

The rising stature of statisticians, who can earn $125,000 at top companies in their first year after getting
a doctorate, is a byproduct of the recent explosion of digital data. In field after field, computing and the

Web are creating new realms of data to explore — sensor signals, surveillance tapes, social network 14157
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NY Times: R (URL)

12/30/12 R, the Software, Finds Fans in Data Analysts - NYTimes.com

&he New JJork Eimes

This copy is for your personal, noncommercial use only. You can order presentation-ready copies for
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January 7, 2009

Data Analysts Captivated by R’s Power
By ASHLEE VANCE

To some people R is just the 18th letter of the alphabet. To others, it’s the rating on racy movies, a
measure of an attic’s insulation or what pirates in movies say.

Ris also the name of a popular programming language used by a growing number of data analysts inside
corporations and academia. It is becoming their lingua franca partly because data mining has entered a
golden age, whether being used to set ad prices, find new drugs more quickly or fine-tune financial
models. Companies as diverse as Google, Pfizer, Merck, Bank of America, the InterContinental Hotels

Group and Shell use it.

But R has also quickly found a following because statisticians, engineers and scientists without computer
programming skills find it easy to use.

“Ris really important to the point that it’s hard to overvalue it,” said Daryl Pregibon, a research scientist
at Google, which uses the software widely. “It allows statisticians to do very intricate and complicated
analyses without knowing the blood and guts of computing systems.”

It is also free. R is an open-source program, and its popularity reflects a shift in the type of software used

inside corporations. Open-source software is free for anyone to use and modify. LB.M., Hewlett-Packard

and Dell make hillione of dollare 3 vear celline cervere that riin the onen-conrece Tinny oneratine evetem 15/157


http://www.nytimes.com/2009/01/07/technology/business-computing/07program.html?_r=0

Types of Data Mining

Unsupervised Learning
‘Unclassified’ data from which we would like to uncover hidden ‘structure’ or
groupings
- Given detailed phone usage from many people, find interesting groups of
people with similar behaviour.

- Shopping habits for people using loyalty cards: find groups of ‘similar’
shoppers.

- Given expression measurements of 1000s of genes for 100s of patients,
find groups of functionally similar genes.

Goal: Hypothesis generation, visualization.
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Types of Data Mining

Supervised Learning
A database of ‘classified’ examples with predefined groupings
- Given detailed phone usage of many users along with their historic churn,
predict when/if people are going to change contracts again.

- Given expression measurements of 1000s of genes for 100s of patients
along with a binary variable indicating absence or presence of a specific
cancer, predict if the cancer is present for a new patient.

- Given expression measurements of 1000s of genes for 100s of patients
along with survival length, predict survival time.

Goal: Prediction.
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Further Readings

Leo Breiman: Statistical Modeling: The Two Cultures (URL)
NY Times: Big Data’s Impact In the World (URL)

Economist: Data, Data Everywhere (URL)

McKinsey: Big data: The Next Frontier for Competition (URL)

vV v v

v

Other recent news on Big Data, Data Mining, Machine Learning:
» New York Times: Sure, Big Data Is Great. But So Is Intuition (URL)
» New York Times: How Many Computers to Identify a Cat? 16,000 (URL)

» New York Times: Scientists See Promise in Deep-Learning Programs
(URL)

» New Yorker: Is “Deep Learning” a Revolution in Atrtificial Intelligence?
(URL)
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http://www.economist.com/node/15557443
http://www.mckinsey.com/features/big_data
http://www.nytimes.com/2012/12/30/technology/big-data-is-great-but-dont-forget-intuition.html
http://www.nytimes.com/2012/06/26/technology/in-a-big-network-of-computers-evidence-of-machine-learning.html
http://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html
http://www.newyorker.com/online/blogs/newsdesk/2012/11/is-deep-learning-a-revolution-in-artificial-intelligence.html
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Notation

» Data consists of p measurements (variables/attributes) on n examples

(observations/cases)

> X is a n x p-matrix with X;; := the j-th measurement for the i-th example

X2
X
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Crabs Data (n = 200, p = 5)

Campbell (1974) studied rock crabs of the genus leptograpsus. One species,
L. variegatus, had been split into two new species, previously grouped by
colour, orange and blue. Preserved specimens lose their colour, so it was
hoped that morphological differences would enable museum material to be
classified.

Data are available on 50 specimens of each sex of each species, collected on
sight at Fremantle, Western Australia. Each specimen has measurements on
the width of the frontal lip FL, the rear width Rw, and length along the midline
CL and the maximum width cw of the carapace, and the body depth BD in mm.
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Crabs Data

Looking at the crabs dataset, n = 200 measurements on p = 5 morphological
features of crabs

» ’FL frontal lip size (mm)

» 'RW’ rear width (mm)

» 'CL carapace length (mm)

» 'CW’ carapace width (mm)

» 'BD’ body depth (mm)
Also available, the colour ('B’ or ’O’) and sex (M’ or 'F’).
## load package MASS containing the data

library (MASS)
## look at data

crabs

sp sex index FL RW CL Cw BD
1 B M 1 8.1 6.7 16.1 19.0 7.0
2 B M 2 8.8 7.7 18.1 20.8 7.4
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R code

## assign predictor and class variables
Crabs <- crabs[,4:8]
Crabs.class <- factor (paste(crabs[,1],crabs[,2],sep=""))

## plot data using pair plots
plot (Crabs, col=unclass (Crabs.class))

##boxplots
boxplot (Crabs)

## parallel coordinates
parcoord (Crabs)
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Simple Pairwise Scatterplots
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Univariate Boxplots
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Univariate Histograms

Histogram of Frontal Lobe Size
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Parallel Coordinate Plots
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These summary plots are helpful, but do not really help very much if the
dimensionality of the data is high (a few dozen or thousands).
Possible approaches for higher-dimensional problems.

» We are constrained to view data in 2 or 3 dimensions
» Look for ‘interesting’ projections of X into lower dimensions

» Hope that for large p, considering only k < p dimensions is just as
informative
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Principal Components Analysis (PCA)

» Seek to rotate data to a new basis that represents the data in a more
‘interesting’ way.
» PCA considers interesting to be directions with greatest variance.

» Builds up an orthogonal basis where new basis vectors are chosen to
explain the greatest variance in data, the first few PCs should represent
most of the variance-covariance structure in the data, i.e. the subspace
spanned by first k PCs represents the ‘best’ k-dimensional view of the
data.

31/157



Principal Components Analysis (PCA)

» Consider a set of real-valued variables X = (X ...Xl,)T.
» For the 1°" PC, we seek a derived variable of the form

Zy = anXy +auXo + -+ apX, = X'a

where a;; € R are chosen to maximise var(Z,).
» To get a well defined problem, we fix ala; = 1.

» The 1¥ PC attempts to capture the common variation in all variables
using a single derived variable.

» The 2™ PC Z, is chosen to be orthogonal with the 1* and is computed in
a similar way. It will have the largest variance in the remaining p — 1
dimensions, etc.
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Principal Components Analysis (PCA)
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Principal Components Analysis (PCA)

X2
0
1
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Principal Components Analysis (PCA)

PC_2
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How to Obtain the Coefficients?
To find the 1* PC given by Z; = X"a;,

>

Maximise var(Z;) = var(Xa,) = alcov(X)a; ~ alSa, subject to ala; = 1
where S = n~'X"X is a p x p sample covariance matrix of the centred
n x p data matrix X.

Rewriting this as a constrained maximisation problem,

Maximise F (a;) = a]Sa; — A, (aja; — 1) w.rt. a;.

The corresponding vector of partial derivatives yields

F
78 = 2531 — 2/\13].
aal

Setting this to zero reveals the eigenvector equation, i.e. a; must be an
eigenvector of § and )\, the corresponding eigenvector.

Since afSa; = \jala; = )\, the 1¥ PC must be the eigenvector
associated with the largest eigenvalue of S.
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How to Obtain the Coefficients?

How about the 2 PC?

» Proceed as before but include the additional constraint that the 2"¢ PC
must be orthogonal to the 1* PC

Maximise F (a;) = alSa, — A\, (ala, — 1) — pu (ajay) wirt. a,

» Solving this shows that a, must be the eigenvector of S associated with
the 2" largest eigenvalue, and so on

» The eigenvalue decomposition of S is given by S = AAAT where A is a
diagonal matrix with eigenvalues \; > A\, > --- > )\, >0andAisap x p
orthogonal matrix whose columns are the p eigenvectors of S.
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Properties of the Principal Components

» PCs are uncorrelated

cov(X"a;, X" a;) ~ al Sa; = 0 for i # j.

» The total sample variance is given by

P
Total sample variance = » sy = A + ...+ Ay,

i=1
so the proportion of total variance explained by the k” PC is

Ak
MAX At ot A

k=1,2,...,p
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R code

This is what we have had before:

library (MASS)

Crabs <- crabs|[,4:8]

Crabs.class <- factor (paste(crabs[,1l],crabs[,2],sep=""))
plot (Crabs, col=unclass (Crabs.class))

Now perform PCA analysis with function princomp.
Alternatively, use eigen or svd instead (later).

Crabs.pca <- princomp (Crabs, cor=FALSE)
plot (Crabs.pca)
pairs (predict (Crabs.pca),col=unclass (Crabs.class))
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PCA Example 1: Original crabs data
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PCA Example 1: Rotated crabs data
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PCA Example 1: Crabs Data (n =200, p =5
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PCA Example 2: Yeast Cell Cycle Data (n = 384,
p=17)

Cho et al (1998) present gene expression data on the cell cycle of yeast. They
identify a subset of genes that can be categorised into five different phases of
the cell-cycle. Changes in expression for the genes are measured over two
cell cycles (17 time points).

The data were normalised so that the expression values for each gene has
mean zero and unit variance across the cell cycles.

We visualise the 384 genes in the space of the first two prinicipal components.
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PCA Example 2: Yeast Cell Cycle Data (n = 384,

p=17
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Comments on the use of PCA

» PCA commonly used to project data X onto the first k PCs giving the
‘best’ k-dimensional view of the data.

» PCA commonly used for lossy compression of high dimensional data.
» Emphasis on variance is where the weaknesses of PCA stem from:

» The PCs depend heavily on the units measurement. Where the data matrix
contains measurements of vastly differing orders of magnitude, the PC will
be greatly biased in the direction of larger measurement. It is therefore
recommended to calculate PCs from cor(X) instead of cov(X).

» Robustness to outliers is also an issue. Variance is affected by outliers
therefore so are PCs.

» Although PCs are uncorrelated, scatterplots sometimes reveal structures
in the data other than linear correlation.
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Biplots

» When viewing projections of data matrix X into its PC space, it is
instructive to view the contribution from the original variables to the PCs
that are plot.

» Biplots overlay projection of unit vectors of the original variables into the
PC space

» As PCs are linear combinations of the original variables, it is
straightforward to invert this relationship to yield the contributions of the
original variables to the PCs
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Biplots

Biplots show us an image of the data and unit vectors of the original axes into
the projected space.

» The distance of projected points away from the projected original axes tell
us its original location.

» Unit vectors of the original variables give us a common denominator to
compare how much weighting each PC gives to the original variables.
» It can be shown that cos § (where 6 is the angle that subtends two

projected original axes) approximates the correlation between these
variables.

However, the quality of this image depends on the proportion of variance
explained by the PCs used.
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Biplot Example 1: Fisher’s Iris Data

50 sample from 3 species of iris: iris setosa,
versicolor, and virginica

Each measuring the length and widths of
both sepal and petals

Collected by E. Anderson (1935) and
analysed by R.A. Fisher (1936)

Using again function princomp and biplot.
irisl <- iris

irisl <- irisl[,-5]

biplot (princomp (irisl, cor=T))
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Biplot Example 2: US Arrests

This data set contains statistics, in arrests per 100,000 residents for assault,
murder, and rape in each of the 50 US states in 1973. Also given is the
percent of the population living in urban areas.

pairs (USArrests)
usarrests.pca <- princomp (USArrests, cor=T)
plot (usarrests.pca)

pairs (predict (usarrests.pca))
biplot (usarrests.pca)
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Pairs Plot: US Arrests
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Biplot Example 2: US Arrests
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Biplot Example 3: US State data

This data set contains statistics like illiteracy and life expectancy on 50 US
states.

data (state) ## load state data
state <- state.x77[, 2:7] ## extract useful info
row.names (state)<-state.abb

state[1l:5,] ## lets have a look

Income Illiteracy Life Exp Murder HS Grad Frost

AL 3624 2.1 69.05 15.1 41.3 20
AK 6315 1.5 69.31 11.3 66.7 152
AZ 4530 1.8 70.55 7.8 58.1 15
AR 3378 1.9 70.66 10.1 39.9 65
(072 5114 1.1 71.71 10.3 62.6 20

## calculate the pc’s of the data and show biplot
state.pca <- princomp (state, cor=TRUE)
biplot (state.pca,pc.biplot=TRUE, cex=0.8, font=2, expand=0.9)
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Biplot: US States
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Outline

Dimensionality Reduction

Singular Value Decomposition
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Eigenvalue Decomposition (EVD)

Eigenvalue decomposition places significant role in PCA. PCs are
eigenvectors of X" X and PCA properties are derived from those of
eigenvectors and eigenvalues.

» For any p x p symmetric matrix S (think for example X " X), there exists p

eigenvectors vy, ..., v, that are pairwise orthogonal and p associated
eigenvalues X, ..., \, which satisfy the eigenvalue equation Sv; = \v; Vi.
» S can be written as S = VAV where
» V=1[v,...,n]is ap x p orthogonal matrix

» A=diag{\i,..., \}
» and ifSijERVi,j, N €ERVI

» The relevant R-command is eigen. Look at ?eigen to get help on the
command.
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Singular Value Decomposition (SVD)

The SVD of a matrix X is an equally useful matrix factorisation that is related
to the EVD.

» Though the EVD does not exist for R**? matrices if p # n, SVDs always
exists.
» X can be written as X = UDV " where

» U is an n x n matrix with orthogonal columns.

» Dis an x p matrix with decreasing non-negative elements on the diagonal
(the singular values) and zero off-diagonal elements.

» Vis ap x p matrix with orthogonal columns.

The relevant R-command is svd.
» SVD can be computed using very fast and numerically stable algorithms.
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Some Properties of the SVD

» Let X = UDV be again the SVD of the n x p matrix X.
» Note that

X'X=(ubv")"(ubv")=vD"UTUDV" =VvD DV,

using orthogonality (U U = 1,) of U.

» The eigenvalues of § = XTX are thus the squares of the singular values
of X and the columns of the orthogonal matrix V are the eigenvectors of S.

» We also have
xx" = (upv")y(ubv"T =upv'vD'UT =UDD"UT,
using orthogonality (V'V = 1,) of V.
» Consider the following optimization problem:
rrgn |X —X||*>  s.t. X has maximum rank r < n, p.

This problem can be solved by keeping only the r largest singular values
of X, zeroing out the smaller singular values in the SVD.
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Outline

Dimensionality Reduction

Multidimensional Scaling
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Multidimensional Scaling (MDS)

MDS is a class of methods based on representing high-dimensional data in a
lower dimensional space so that inter-point distances are preserved as “best”
as possible. MDS effectively “squeezes” a high-dimensional cloud of points
into a smaller number of dimensions, generally 2 or 3.

Given xi, ..., x, € R”, we can obtain a matrix of pairwise distances D with
entries d; = d(x;, x;) using some measure of dissimilarity d. For example
Euclidean distance d; = ||x; — x;||>. In most applications, only D is available.
MDS finds representations z;, ..., z, € R* such that

d<xi7xj) ~ d(zi7 Zj)7
where d represents dissimilarity in the original p-dimensional space and d

represents dissimilarity in the reduced k-dimensional space. The ‘best’ values
of z; are chosen to minimise some stress function.
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Metric vs Non-Metric Stress Functions

Metric
Where closeness is considered geometrically, Euclidean distance
dij = ||x; — x||» is commonly measured with the classical stress function

Smetric(dij ;ilj) = Z (dij - dij)z
i#j

Non-Metric

Sometimes it is more important to retain the ordering of d; as good as
possible rather than the actual values assigned. Non-metric stress functions
have been developed for ordered distances

- ] ~\2
Shon-metric (dij, d,jj) = IMINg monotone ﬁ Zi;ﬁj (g(dlf/') - dlfi)
7]y
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Solving the Metric MDS Problem

Suppose we only have an n x n matrix of Euclidean distances D = (dj;) but not
the points X themselves. The Classical MDS problem is to find a configuration
of n points in p-dimensional space that yields the same Euclidean distance
matrix as X.

Infinitely many solutions exist as the distance matrix is invariant to rigid
motions (rotations, reflections and translations).

As distances are Euclidean, can write d; = ||x; — x;||» for some points
X1,...,x;, € R, where

2
djj

i — (15

= (5 —x)x—x)"

T T T
= xx +xx — 22X (1)
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Solving the Metric MDS Problem

We define matrix B with entries b; = xiij, we can compute D from B but also
B from D. From this, it is possible to recover a configuration which solves this

problem.
Writing (1) in terms of b;, we have
dij = bii + by — 2b; (2)

= If two configurations of n objects in p-dimensional space have identical
matrix B = XX ', then they also share the same distance matrix D.

We can also compute b;; in terms of d;; assuming > . x; = 0 (problem sheet).
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Solving the Metric MDS Problem

If two configurations of n objects in p-dimensional space have identical matrix
B = XX, then they also share the same distance matrix D.

Considering the eigendecomposition of B, we see that B = XX = ULU " for
some orthogonal matrix U with columns U = (uy, ..., u,) and diagonal matrix
L with entries \j, ..., \,.

So if n > p we can write

X: [\/TlUla-“a\/;Up]

i.e. we have found a p-dimensional configuration of n points X with the same
distance matrix D as X.

"f X = UDV'T is again the SVD of X, then XX = UDDT UT. The matrix U is thus the same in
the EVD of XX T and the n x n-matrix L = DD has the same diagonal entries as the p x p-matrix
A=D"Dinthe SVD of X" X.

64 /157



MDS Example: US City Flight Distances

We present a table of flying mileages between 10 American cities, distances
calculated from our 2-dimensional world. Using D as the starting point, metric
MDS finds a configuration with the same distance matrix.

ATLA CHIG
0 587
587 0
1212 920
701 940
1936 1745
604 1188
748 713
2139 1858
2182 1737
543 597

DENV
1212
920

879
831
1726
1631
949
1021
1494

HOUS
701
940
879

1374
968

1420
1645
1891
1220

LA
1936
1745
831
1374

2339
2451
347
959
2300

MIAM
604
1188
1726
968
2339

1092
2594
2734
923

NY
748
713
1631
1420
2451
1092

2571
2408
205

SF
2139
1858
949
1645
347
2594
2571

678
2442

SEAT
2182
1737
1021
1891
959

2734
2408
678

2329

DC
543
597
1494
1220
2300
923
205
2442
2329
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MDS Example: US City Flight Distances

library (MASS)

us <- read.csv("http://www.stats.ox.ac.uk/
~teh/teaching/datamining/data/uscities.csv")

## use the classical stress function
## to find lower dimensional views of the data
## recover X in 2 dimensions

us.classical <- cmdscale (d=us, k=2)

plot (us.classical)
text (us.classical, labels=names (us))
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MDS Example: US City Flight Distances
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T
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Lower-dimensional Reconstructions

Having managed to reconstruct a set of p-dimensional points with the same
distance matrix D, we would like to find lower dimensional representations
which minimise the stress function Smetric.

If the SVD of X is given by X = UDV'T, then

B=XX' =UDD'U=ULU"

Generally the representation of X (chosen so that X and X have the same
distance matrix) can be written as

X =/ \Ui,..., /AU

where r is the rank of B.

Setting the smallest eigenvalues to zero reveals the ‘best’ k-dimensional view
of the data (where k is the number of non-zero eigenvalues), minimizing the
stress function (proof not given).

This is analogous to PCA, where the smallest eigenvalues of X' X are
effectively suppressed. Indeed, both PCA and MDS under Euclidean distance
are dual and yield effectively the same result (yet MDS can also be applied to
distance matrices not generated under Euclidean distance measure).
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MDS Example: Virus Data

A data set on 39 viruses with rod-shaped particles affecting various crops
(tobacco, tomato, cucumber and others), described by Fauquet et al. (1988).
These are Tobamoviruses with monopartite genomes spread by contact.

There are 18 measurements on each virus, the number of amino acid
residues per molecule of coat protein; the data come from a total of 26
sources.

We want to investigate whether there are subgroups within this group of
viruses.
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MDS Example: Virus Data

Metric Scaling

B’ 55

37
3253

3B 534

1
25" 54,

19
D W e

27 o

26

Kruskal’s MDS

2753

26

36 2
38,
2° 21
3 5%
i
120
23884
T T L
-5 0

Distance-based representations of the Tobamovirus group of viruses (the
variables were scaled before Euclidean distance was used).
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MDS Example: Virus Data

MDS reveals some clear subgroups within the Tobamoviruses.

Viruses 7 (cucumber green mottle mosaic virus) and 21 (pepper mild mottle
virus) have been clearly separated from the other viruses in the non-metric
MDS plot, which is not the case in the metric version.

Ripley (1996) states that the non-metric MDS plot shows interpretable
groupings. The upper right is the cucumber green mottle virus, the upper left
is the ribgrass mosaic virus. The one group of viruses at the bottom, namely
8,9,19,20,23,24, are the tobacco mild green mosaic and odontoglossum
ringspot viruses.
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Example: Crabs data

library (MASS)
Crabs <- crabs|[,4:8]
Crabs.class <- factor (paste(crabs[,1l],crabs([,2],sep=""))

crabsmds <- cmdscale (d= dist (Crabs), k=2)
plot (crabsmds, pch=20, cex=2)
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Example: Crabs data

First two MDS components.

~
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Example: Crabs data

With grouping information.

MDS 2

L
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Example: Crabs data
Compare with previous PCA analysis.

MDS solution corresponds to the first 2 PCs as metric scaling was used.

Comp.1

Comp.5
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Example: Crabs data
Use Kruskals non-metric multi-dimensional scaling instead.

crabsmds <- 1soMDS (d= dist (Crabs),b k=2)
plot (crabsmds$points, pch=20, cex=2)

MDS 2

-30 -20 -10 0 10 20

MDS 1
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Example: Crabs data

With grouping information.
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Example: Language data
Presence or absence of 2867 homologous traits in 87 Indo-European
languages.

> X[1:15,1:16]
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13

Irish_A o 0 o o 1 0 0 0 o0 0 0 0

Irish B

Welsh_N

Welsh_C

Breton_List

Breton_SE

Breton_ST

Romanian_List

Vlach

Italian

Ladin

Provencal

French

Walloon

French_Creole_C

O O O O O OO0 oo o oo
PR RPRPRPRPPROOOOOO
O O O O O OO0 o oo oo
O O O O OO0 okr ko
ool olNolololNolNoel il el eR
O O O O O OO0 oo oo
O O O O O OO0 oOoo oo oo
O O O O O OO0 o o oo
O O O O O OO0 oo o oo
O O O O O OO0 o oo oo
e eolNeolNolNolNololNolNolNololNolNolNo
O O O O O OO0 oo oo
ocNeoNeoNeoNolNolNolNolNolNolNolNolNolNolNo
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Example: Language data
Using MDS with non-metric scaling.

-0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

& Panjabi_s© Gypsy_Gk
O Bengali ¢ Lahnda X Ossetic
< Gujarati - ¢> Hindi K T o b
< Nepalichistarathi < Singhalese
& Khaskura Kashmiri 3 Afghan
© ® Armeniark Bpluchi

R® Armenian_Mod % Wakhi

& Albanian_K

& Albanian C o\ aMacedonian
& Albanian_T A Catalan

X Lusatian
< Albanian_Top X Czech E  x Lugg,,gﬁ[bwmaﬂa" A Sardinian N A Provencal
in A Fren

A Ladi
X Ukrainian -
& Albanian_G X Czech A Sardinian_C A Frenck Frod

Slovenar
X Byelorussigiovak x " A Sardinjanyjan & Walloon

« Poidh Russian
@ HTTiTe A Spanish Portugu
A Viach A Brazilian
X Lithuanian_O A Romanian_List

@ TOCHARIAN,B ithyanian ST .
L Lalvian
® TOCHARIAN_A

Breton_S
+ Frisian ° e
e198 ST]
ﬁDutCI’LL\S( ° BQ(W?‘RE"
V Greek yiGreek_K 4 Danish T Flemish
+ Afrikaans O Welsh C
v Gv'e%‘%e’;‘l'(- o + Riksmal O Welsh_N
X erman_ST
 Greek_od + sweaish L TEBET, puien

+ Faroese O lrish_B

+ leelardifeliscigh e, e Tma © Irish_A
T T
-0.5 0.0 0.5
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Outline

Dimensionality Reduction

Isomap
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lsomap

Isomap is useful for non-linear dimension reduction

1. Calculate distances d;; fori,j = 1,...,n between all data points, using the
Euclidean distance.

2. Form a graph G with the n samples as nodes, and edges between the
respective K nearest neighbors (in Euclidean metric).

3. Replace distances d;; by ‘shortest-path’ distance dl? 2 and perform
classical MDS, using these distances.

Examples from Tenenbaum et al. (2000)

2The path-distance in the graph is, for a given path i; — i, — ... — i,, between two nodes i,
and i, that follows the edges of the graph, the sum of the original dlstances > ! digiy 1, - The
shortest path distance between two points i and j is the minimal path distance along aII paths
starting in i and ending in ;.
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Embedding Handwritten Characters

B Bottom loop articulation
. . E .

|

Top arch articulation

Mm =
L)
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Embedding Faces

-n n_ -_ En ._
m_ @ m o o
ﬂ_ a_d_ a2
H_ _N_ ._b__ﬂ__ E_
5. am g

u_ L =8 .

-

Left-right pose

JTET Lighting direction

< sod umop-dn
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Outline

Clustering
Introduction
Hierarchical Clustering
K-means
Vector Quantisation
Probabilistic Methods
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Outline

Clustering
Introduction
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Clustering

» Cluster analysis is a range of methods that reveal structural information
about high-dimensional data directly.

» Given a set of unclassified points X, cluster analysis seeks to arrange
them into clusters based on some notion of between cluster and within
cluster distance/dissimilarity.

» Partition based methods:

» Allocate points into K clusters.
» The number of cluster is usually fixed beforehand or investigated for various
values of K as part of the analysis.

» Hierarchical clustering methods:

» Allocate points into clusters and clusters into super-clusters forming a
hierarchy.

» Typically the hierarchy forms a binary tree (a dendrogram) where each
cluster has two “children”.
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Outline

Clustering

Hierarchical Clustering
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Hierarchical Clustering Methods

» Hierarchically structured data can be found everywhere (measurements
of different species and different individuals within species), hierarchical
methods attempt to understand data by looking for clusters.

» There are two general strategies for generating hierarchical clusters.
Both proceed by seeking to minimize some measure of dissimilarity.

» Agglomerative / Bottom-Up / Merging

» Divisive / Top-Down / Splitting
Hierarchical clusters are generated where at each level, clusters are
created by merging clusters at lower levels. This process can easily be
viewed by a dendogram/tree.
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Agglomerative Strategies

» The essence of agglomerative strategies is very simple: starting with
each observation as a separate cluster, recursively merge the two most
similar clusters (with the smallest dissimilarity) until we are left with a
single cluster.

» The way in which we measure dissimilarity between clusters affects the
resulting dendograms in a predictable way. If clusters exist however, it is
clear by inspecting the dendograms using whatever way we measure
dissimilarity between clusters.
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Measuring Dissimilarity

To find hierarchical clusters, we need some way to measure the dissimilarity
between clusters

» Given two points x; and x;, it is straightforward to measure their
dissimilarity, say d(x;,x;) = ||x; — x;|».

» It is unclear however how to extend this to measure dissimilarity between
clusters, D(C;, C;) for clusters C; and C;.

Many such proposals though no concensus as to which is best.
(a) Single-Link Clustering

D(C;, C;) = min (d(x,y)|x € Ci,y € C))
X,y

(b) Complete-Link Clustering

D(C;, C;) = max (d(x,y)|x € Ci,y € C))
Xy

(c) Group-Average Clustering

D(C;, C)) = avg, (d(x,y)|x € Ci,y € C)
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Measuring Dissimilarity

Cluster Distance

dz4

d16

d13+d14+d15+d23+d24+d25
6
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Hierarchical Clustering Example: Artificial Dataset

80
1
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1

40

V2
20
1

770 2940

2377

2663

-20 0 20 40 60 80 100
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Hierarchical Clustering Example: Artificial Dataset

Dendrogram of agnes(x = dat, method = "single")
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Hierarchical Clustering Example: Artificial Dataset

oo = ")

Mﬁ”'u‘ il

L)
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Hierarchical Clustering Example: Artificial Dataset

agnes(x = dat, method = "average")

y
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R Code

#start afresh
dat=xclara #3000 x 2
library (cluster)

#plot the data
plot (dat, type="n")
text (dat, labels=row.names (dat) )

plot (agnes (dat, method="single"))

plot (agnes (dat, method="complete"))
plot (agnes (dat, method="average"))
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Divisive Strategies

» Divisive strategies work in the opposite direction: starting with a single
cluster which holds every observation, we recursively proceed as follows.
For all clusters, partition the one that results in the greatest increase in
dissimilarity that can arise when it is split in two. This recurses until each
observation is a cluster on its own.

» If there are s observations in any cluster, there are 2°~' — 1 possible ways
of partitioning it into two non-empty sets, a computationally infeasible
task. Approximate methods are employed to tackle this problem which
search though a subset of these possibilities.

» Divisive approaches are better than agglomerative approaches at
showing structure near the top of the tree and so are preferred when
interest is focused on partitioning data into a relatively small numbers of
clusters.

» Divisive approaches are less known and so are much less used than
agglomerative strategies.
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Using Dendograms

» Different ways of measuring dissimilarity result in different trees.

» Dendograms are useful for getting a feel for the structure of
high-dimensional data though they don’t represent distances between
observations well.

» Dendograms show hierarchical clusters with respect to increasing values
of dissimilarity between clusters, cutting a dendogram horizontally at a
particular height partitions the data into disjoint clusters which are
represented by the vertical lines it intersects. Cutting horizontally
effectively reveals the state of the clustering algorithm when the
dissimilarity value between clusters is no more than the value cut at.

» Despite the simplicity of this idea and the above drawbacks, hierarchical
clustering methods provide users with interpretable dendograms that
allow clusters in high-dimensional data to be better understood.
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cancer study. Color coded expression values for 500 randomly chosen genes

Gene expression values taken of 4026 genes of 62 patients in a lymphoma
look as follows.

Example: Lymphoma Gene Expression Data

GENES
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Example: Lymphoma Gene Expression Data

Figure was generated by R code:

load(file="1lymphoma.rda")
library (fields)

X <= lymphoma.x

X <- scale (X)

X <= X[,sample(l:ncol (X),400)]

for (k in l:nrow (X)) XI[k,] <- pmin(2,pmax (-2,X[k,]))

indn <- sample (l:nrow (X),nrow (X))
image.plot (l:ncol (X),l:nrow(X),t (X[indn, 1),

col=tim.colors (200),
x1lab="GENES", ylab="PATIENTS", cex.lab=1.4)
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Example: Lymphoma Gene Expression Data

Now lets do hierarchical clustering with function hclust.

dd <- dist (t (X))
hh <- hclust (dd, method="average")

ddn <- dist (X)
hhn <- hclust (ddn,method="average")

plot (hh)
plot (hhn)

...or a bit more fancy

plot (hh, cex.lab=1.3,xlab="",ylab="HEIGHT", sub="")
plot (hhn, cex.lab=1.3,xlab="",ylab="HEIGHT", sub="")
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Example: Lymphoma Gene Expression Data
Using hierarchical clustering with average linkage for the 62 patients yields:

Cluster Dendrogram

20 25
1

HEIGHT

15

10
L
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Example: Lymphoma Gene Expression Data
Using hierarchical clustering on the genes (instead of patients):




Example: Lymphoma Gene Expression Data

Can order the patients according to the ordering implied by hclust.

ord <- hhS$order
ordn <- hhn$order

image.plot (1l:ncol (X),l:nrow(X),t (X[ordn,]),
col=tim.colors (200),cex.lab=1.4,
x1ab="GENES",ylab="PATIENTS")

image.plot (l:ncol (X),l:nrow(X),t (X[ordn,ord]),
col=tim.colors (200),cex.lab=1.4,
x1ab="GENES",ylab="PATIENTS")

for (k in l:nrow (X))
text ( ncol (X)-200, k, labels= "",cex=0)

for (k in l:nrow (X))
mtext ( (lymphoma.y[ordn]) [k],side=4,at=k,cex=1.1)
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Example: Lymphoma Gene Expression Data

Using the ordering of patients implied by hierarchical clustering yields the
following expression matrix.

PATIENTS




Example: Lymphoma Gene Expression Data
Using the ordering of patients and genes implied by hierarchical clustering
yields the following expression matrix.

o MR At R
R M el
s Hﬁ\ H\f S, e
V ol 'N :I"” 'M“ H‘." '% 1
- g liptine
D, bt ) i ||
N g i i b A
[ S liie] B
| r! 'Y\w W '.|[.|I: .||1,‘ IW e
2 }:.l"j Fils Lx'f*f ‘fﬁl
A ML Y el §

100 200 300

N
3
3

Different subtypes of lymphoma cancer (coded here as classes 0,1,2) are

discovered in this way! 106/ 157



Example: Lymphoma Gene Expression Data
Or simply use command heatmap (X) .

b ik A

I e
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Outline

Clustering

K-means
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K-means

Partition methods seek to divide examples into a pre-assigned number of

clusters Cy,...,Cx where for all k, k' € {1,...,K},
> Cp C{x1,..., %}
» CNCr=0 Vk#K
» UK Co={x1,. .., )

For Euclidean space, we can assign a centre r; to each cluster in order to
measure within-cluster deviance

We(re) = D Il — rell3.

i:x; €Cy
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K-means

The overall objective is to choose both the cluster centres and allocation of
points to minimize total within-cluster deviance given by

K
W= We(n).
k=1
Given the contents of a cluster, simple differentiation of W, () with respect to

r. shows that within-cluster deviance is least when

where |Ci| = #{i : x; € C} is the number of members of cluster .
The hard part is the combinatorial task of allocating points to clusters.
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K-means

The K-means algorithm is a well-known method that heuristically minimizes W

to partition xy, ..., x, into K clusters for some K.
1. Randomly fix K cluster centres ry, ..., rk.
2. Foreachi=1,...,n, assign each x; to the cluster with the nearest centre,

x, €C & ||x,-—rk||§||x,-—r,/(H Vk’;ﬁk

w

. Move cluster centres ry, . .., r¢ to the average of the new clusters.
. Repeat 2 and 3 until there is no change.
. Return the partitions Cy, ..., Cx at the end.

(G2
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Some Properties

Some notes about the K-means algorithm.

» The algorithm stops in a finite number of iterations. Between steps 2
and 3, W either stays constant -in which case we stop- or it decreases,
this implies that we never revisit the same partition. As there are only
finitely many partitions, the number of iterations cannot exceed this.

» The K-means algorithm need not converge to a globally optimal
assighment. K-means is a heuristic search algorithm so it can get stuck
at suboptimal configurations. The result depends on the starting
configuration.

» Other partition based methods. There are many other partition based
methods that employ related ideas for example K-medoids differs from
K-means in requiring cluster centres r; to be an observation x;.
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Example: Crabs

Looking at the Crabs data again.

library (MASS)
library (lattice)
data (crabs)

splom(~log(crabs[,4:8]),
col=as.numeric (crabs(,1]),
pch=as.numeric(crabsl[,2]1),
main="circle/triangle is gender, black/red is species")
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Example: Crabs

circle/triangle is gender, black/red is species
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Scatter Plot Matrix
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Example: Crabs

Apply kmeans with 2 clusters and plot results.

cl <- kmeans( log(crabs[,4:8]), 2, nstart=1l, iter.max=10)
splom(~log(crabs[,4:8]),

col=clS$cluster+2,
main="blue/green is cluster finds big/small")
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Example: Crabs

blue/green is cluster finds big/small
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Scatter Plot Matrix
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Example: Crabs

Sphere the data.

pcp <- princomp( log(crabs[,4:8]) )
spc <— pcpS$scores %$*% diag(l/pcpS$Ssdev)
splom( ~spc[,1:31],
col=as.numeric (crabs(,1]),
pch=as.numeric(crabsl[,2]1),
main="circle/triangle is gender, black/red is species")
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Example: Crabs

circle/triangle is gender, black/red is species

Scatter Plot Matrix
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Example: Crabs

And apply K-means again.
cl <- kmeans (spc, 2, nstart=1, iter.max=20)

splom( ~spc[,1:31],
col=clS$cluster+2, main="blue/green is cluster")
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Example: Crabs

blue/green is cluster
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Example: Crabs

circle/triangle is gender, black/red is species blue/green is cluster
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Scatter Plot Matrix

Scatter Plot Matrix

Discovers gender difference...
Results depends crucially on sphering the data first.
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Example: Crabs
Using 4 cluster centers.

colors are clusters
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Example: Crabs

circle/triangle is gender, black/red is species colors are clusters

Scatter Plot Matrix Scatter Plot Matrix
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Outline

Clustering

Vector Quantisation
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Vector Quantisation

» Originally developed by the signal processing community for data
compression (audio, image and video compression), the VQ idea has
been picked up the statistics community and extended to tackle a variety
of tasks (including clustering and classification).

» VQ s a simple idea for summarising data by use of codewords.

» The algorithm is very closely related to the K-means algorithm, yet works
sequentially through the data when updating cluster centers.
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Vector Quantisation

» Given p-dimensional data, a finite set of vectors Y = {y,...,yx} of the
same dimensionality must be found. Vectors y, are called codewords and
Y the codebook.

» All n observations are mapped to the indices of the code book using the
following rule,
xi =y e |xi—yl < | —yw| VK.
» Such a mapping induces a partition of R? into Voronoi regions defined as
Vi={xeR: |x—y| < |x — yw|VK'}

where UX_, v, = R and V;’s are disjoint except for boundaries.
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Voronoi Regions
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Finding a Useful Codebook

» As with K-means, a predefined number of K codewords must be found.
They should be chosen to give the greatest compression in the data with
minimal loss in data quality.

» Where we have more codewords than clusters, it is easy to see that we
should simply place codewords at the center of areas of high density, i.e.
good codebooks find cluster centers.
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Vector Quantisation

The following iterative algorithm finds a good approximate solutions to this
problem.

1. Randomly choose K observations to initialise the codebook.
2. Sample an observation x and let V.. be the Voronoi region where it falls.
3. Update the codebook

Ye = Yet O((l‘) [x - yc]
Yk = w Vk#ec.

a(t) quantifies the amount by which y. moves towards of the x and
decays over time to 0.

4. Repeat 2-3 until there is no change.
5. Return the codebook ¥ = {yi,...,yx}
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Compression

» For compression purposes, any observation x € R? is now just mapped to

the set {1, ..., K} of codewords, according to which Voronoi region the
observation falls into.
» If a large number of observations x1, ..., x, needs to be transferred,

alternatively the vector of corresponding codewords in {1,...,K}" can be
transferred to achieve a compression (with a certain loss of information).
Some audio and video codecs use this method.

» As with K-means, K must be specified. Increasing K ‘improves the quality
of the compressed image’ but worsens the ‘data compression rate’, so
there is a clear tradeoff. (For clustering, the choice of K is harder and
does not have an entirely satisfactory answer).
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Example: Image Compression

3 x 3 block VQ: View each block of 3 x 3 pixels as single observation

\t/
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Example: Image Compression

Original image (24 bits/pixel, uncompressed size 1,402 kB)
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Example: Image Compression

Codebook length 1024 (1.11 bits/pixel, total size 88kB)
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Example: Image Compression

Codebook length 128 (0.78 bits/pixel, total size 50kB)
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Example: Image Compression

Codebook length 16 (0.44 bits/pixel, total size 27kB)
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Outline

Clustering

Probabilistic Methods
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Probabilistic Methods

» So far, we have found clusters in high-dimensional data by posing
sensible partition based problems and hierarchical clustering problems
which were tackled with heuristic approaches.

» Probabilistic methods attempt to find clusters in high-dimensional data
using a model based approach by fitting mixture models to data.

» Though well founded in probabilistic arguments, such an approach
comes at the expense of greater computation.

» Such methods can work well if good models are proposed (or if the
distribution of the data is close to the proposed model in a suitable
sense).

» We again need to specify/estimate the number of clusters K.
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Mixture Models

» Probabilistic methods for clustering work by seeking to model the
distribution of points in R” using mixture models. In doing so, areas of
high density (i.e. clusters) can be accurately described.

» Mixture models have densities of the form

K

f(x10) = Z (x|ex)

for some densities f;(x|¢x) and priors over these densities my, ..., g
which satisfy m, > 0 vk and S"p_, m = 1.

» We want to estimate the unknown parameters 6 = {7, ¢x }+_, given x,.,.
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Mixture Models

» To make things easier, let f(x|0) = f(X|pr, Xk) ~ N, (1, Xie) where

Xy, i) = ! X_.u’k)TEk_l(X_“’k)}'

1
@y 5] exp{_z(

» Posing a Gaussian Mixture Model corresponds to assuming that each of
the K clusters that we intend to model...
» is Gaussian with different means p, and covariance structures .
» and each observation x comes from cluster k with probability 7.
» Allowing each cluster to have its own mean and covariance structure
allows greater flexibility in the model.
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Different covariances

Identical covariances
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Fitting Gaussian Mixture Models
» To fit such a model, we need to estimate the parameters
0= {71—/(7 K, Ek}szl

from the data.

» We can do this by maximum likelihood choosing ¢ to maximise
L(9) =TT\, f(x:|0) or equivalently £(8) = >"7_, logf(x;|0) where

00) = > log (mifu, 3 (%) + - -+ Tifpuem, (%1)) -

i=1

» Differentiating to maximise such a log-likelihood analytically or even
numerically is difficult as there are too many unknowns to handle
simultaneously.

» The Expectation-Maximisation (EM) Algorithm is a very popular method
to help find maximum likelihood estimates in the presence of unobserved
variables.
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Likelihood Surface for a Simple Example
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(left) n = 200 data points from a mixture of two 1D Gaussians with

m =m =0.5, 01 =0, =5and u; = —uy = 10. (right) Log-Likelihood surface
£ (u1, p2) , all the other parameters being assumed known.
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The EM Algorithm

» EM is a very popular approach to maximize ¢ () in this missing data
context.

» The key idea is to introduce explicitly the unobserved cluster labels z;
which indicate from which cluster data x; is coming from.

» If the cluster labels where known then we would estimate 6 by
maximizing the so-called complete likelihood

b (0) = ZIOgP(XnZiW)

= ZIOg o f X1|¢z,)
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Maximization of Complete Likelihood

» We have

<Z log 7Tz X1|¢ ))

iizi=k

[ EMa

ny log (mi) + Z log f (xi|éx)

1 i:zi=k

»
Il

where . = 3, _, 1 is the number of observations assigned to cluster k.
» We would obtain the MLE for the complete likelihood

~ ny
Tk =—,
n

d)k —arg(;nax Z log f (xi|ox)

i=l:z;=k
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Finite Mixture of Scalar Gaussians

> In this case, ¢ = (u,0?)

and 6 = {ﬂ'k,,uk, 0'2}][((:1.
» The resulting MLE estimate of the complete likelihood is

~ ng
T = —
n
n
- 1
Mk = ’/T E Xi,
ki:l:z,-:k
1 n
~2 ~\2
Or = - E (xi — k)
ng .
i=1:zi=k

» Problem: We don’t have access to the cluster labels!
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Expectation-Maximization
EM is an iterative algorithm which generates a sequence of estimates {6}

such that , (9(’)> » (90_1)) |
At iteration ¢, we compute
F (0,671
_E[ (0)] X1y 00 ﬂ

= Z )4 (Zl:n‘xlzn (l l)) (Z]Og )4 X17Z1|9 >

za€{1,2,..., K}

n K
:Z ZP (Zi = K| X[va(t_l)> log p (xi,zi = k[ 0)

i=1 k=l

and set

00 = axgénax F (0, 0“‘”)
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Expectation-Maximization

We have
n K
F (9,9(t_1)) = ZP (Zi = k|Xi|9(t_l)> log p(xi,zi = k| 0)
=1 k=1
n K
=> > (Zi = k|Xi79(t_l)) {log m + logf (xi|¢x)}
=1 k=1
K n
:Z p (zi = k|x,~,9(t1)>> {IOgﬂk +logf (Xi|¢k)}
=1 \i=1
We obtain
~0 _ Zizp (2 =Kx,0)
k n )
o) = argmax 3" p(z =K x,00"") logf (xilén)
b=
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Finite mixture of scalar Gaussians

In this case, the EM algorithm iterates

~(1) _ Z?:lp (zi = k|xi’9(t—l))

= _

~(1) o Xip (Zi = k| x;, 9(#1))

My = = - ’
S p (2 =k x;,00-D)

2
e Sip(a= k% 600) (x - )

o Z?:1P(Zi =k|xi,9(f—1))

with

B (il dx)
P (@ = ki 6) = = Flen)
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Proof of Convergence for EM Algorithm

Proposition: ¢ (§0F1)) > ¢ (") for 60+ = argmax F (6,60").
6
Proof: We have

14 (Xl:n7Z1:n| 9)

P (x1.4|0) & p (X1 0) =

Zl:n 97X in) =
p( 1 | 1 ) p(ZI:n|07X13n)

thus
é (9) = 1ng (Xlzn| 9) = logp (Xlzn7Z1:n| 9) - 10gp (len‘ 0; Xl:n)
and for any value )

¢ (9) = Zp (Zl:nl 9(1)’ Xl:n) logp (Xlszl:n' 9)

2l

:]—'(979(1))

- Zp (Zl:n| H(Z)axl:n) 10gp (Zl:n‘ 9,X1;n) .

2l

p (Xlznazlzn‘ 9)

149 /157



Proof of Convergence for EM Algorithm

We want to show that ¢ (9+1) > ¢ (1)) for the EM, so if we prove that

Zp (Zl:nl 0(0’ Xl:n) ]Ogl’ (Zl:nl 9(1-"-1)7 Xl:n)
2l:n

S Z[’ (Zl:nla(t)axlzn) 10g]7 (len|9(t)axl:n>
2

then we are done. We have

IN

(r+1)
) tog P20
i (st g L

2l
(1+1)
0) P (Z]:n| 0 7X1:n)
tog 3 p (21l 0 x1) = T Wensen

Zl:n

log 1 =0.
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Example: Mixture of 3 Gaussians

An example with 3 clusters.
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Example: Mixture of 3 Gaussians

After 1st E and M step.

Iteration 1

data[,2]

-5
|

data[,1]

152/157



Example: Mixture of 3 Gaussians

After 2nd E and M step.

Iteration 2
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data[,1]
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Example: Mixture of 3 Gaussians

After 3rd E and M step.

Iteration 3

data[,2]

-5
e

data[,1]
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Example: Mixture of 3 Gaussians

After 4th E and M step.

Iteration 4
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Example: Mixture of 3 Gaussians

After 5th E and M step.

Iteration 5

data[,2]
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Pros and Cons of the EM Algorithm

Some good things about EM
» no learning rate (step-size) parameter
» automatically enforces parameter constraints
» very fast for low dimensions
» each iteration guaranteed to improve likelihood
Some bad things about EM
» can get stuck in local minima so multiple starts are recommended
» can be slower than conjugate gradient (especially near convergence)
> requires expensive inference step
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