MS1b Statistical Data Mining
Part 4. Supervised Learning
Ensemble Methods

Yee Whye Teh
Department of Statistics
Oxford

http://www.stats.ox.ac.uk/~teh/datamining.html

QOutline

Supervised Learning: Ensemble Methods
Bagging
Random Forests
Boosting

Qutline

Supervised Learning: Ensemble Methods
Bagging

Bagging

An appeal of trees is their interpretability. Recall classification tree for Pima
Indians example.

library (rpart)
library (MASS)

data (Pima.tr) ## load data
Diabetes <- Pima.tr[, 8] ## response
X <— Pima.tr[,-8] ## predictor
tree <- rpart (Diabetes ~ ., data=X,

control=rpart.control (xval=10))) ## 10-fold CV

> plot (tree); text (tree)

glu< 123.5

age< 28.5 ped< (0.3095

bp>=68

No Yes

Tlué ﬁ brﬁﬁﬁs

No Yes
No Yes

Tree is very interpretable, selecting a subset of all predictor variables.

Is the tree also ‘stable’ under small perturbations of the data or if we have

slightly different training data? Can we do formal ‘significance testing’ as in
linear models? How do we know we are not including irrelevant variables?

To fit the classification tree, we used all observationsi = 1,...,n with n = 200.
What would the tree have looked like for a slightly different set of
observations?

The Bootstrap (Efron, 79) is a natural way to assess the variance of
estimators, fitting the tree repeatedly on so-called bootstrap samples. These
are random sets of size n, where each element is drawn with replacement
from the original n observations {1,...,n}.

> n <— nrow (X)
> subsample <- sample(l:n, n , replace=TRUE)

> sort (subsample)
(1] 2 4 45 6 7 9 10 11 12 12 12 12 13 13 15 15 20

Some of the original observations do not appear in the bootstrap sample (e.g.
i = 1 ori=3); some appear once (e.g. i =2 or i = 5) and some twice or more
often (e.g. i = 4). |

Fit the tree on these resampled observations.

> tree_boot <- rpart(Diabetes ~ ., data=X, subset=subsample,
control=rpart.control (xval=10))) ## 10-fold CV

Doing this twice, we get the two following trees,

(random) subset of the data.

each fitted on a different

glu< I‘123.5 glu< I123.5
ped<(0.348
No
age< 28.5 glu< 1156.5
‘ glu<|94.5
No ‘ ped<|0.421
npreg< 5.5 Yes
No
No Yes lu< [164.5 bmi<[28.65
No Yes
No Yes

No Yes

Classification trees are typically not very stable under subsampling of the
data. This affects both interpretability and also prediction.

We might for example be suspicious of a particular classification (e.g. “No”) if a
large fraction of resampled trees is classifying otherwise (classifying as “Yes”).

Can also look at regression trees.
Take the previous example of the Boston Housing data, trying to predict
median house prices, based on the (univariate) predictor variable crime rate.

crime>=1.918

30 40
|

MEDIAN HOUSE PRICE
20

13.44 24.44

10

LOG(CRIME)

Fit a stump (the simplest tree — just a root node) to the data. This yields the
fitted function Y(x), shown as a red solid line.

We fitted (tree) predictor ¥ (x) on the observations

(Xl,Yl),...,<Xn,Yn), z:l,,n

Assess the variance of the fitted function Y (x) by taking B = 20 random
subsamples of the original data. Fit bootstrap estimators (trees)

Y*b(x), b=1,...,B
where each tree Y* is fitted on the resampled data

(X, Y,),--.,(X;,,Y), i=1,...,n,

each index j;, k = 1,...,n, being chosen at random from the set {1, ..., n}
with replacement.

Trees Y*!, ..., Y*?0 each fitted on a different (random) bootstrap sample of
the original n = 500 observations.

40

30

MEDIAN HOUSE PRICE
20
|

10

LOG(CRIME)

The variance of the fit Y* is high in the region where the splitpoint is placed.

|dea of Bagging (Bootstrap Aggregation): average across all B trees fitted on
different bootstrap samples,

B

oo = 5 377

i=1

40
40

30
|
30
|

20
20

MEDIAN HOUSE PRICE
MEDIAN HOUSE PRICE

10
|
10
|

LOG(CRIME) LOG(CRIME)
Empirically, Bagging seems to reduce the variance of Y, e.g.
E(Y—EY))?) > E((Yy — E(Ypag))?)-

Bagged trees are an example of an ensemble of trees, as prediction is

based on many individual predictors.)
In summary, bagging trees has the following algorithm. Let Y be a tree (or

other predictor), based on samples (X;, Y1), ..., (X, Yy).

1. DrawAindices (j1,---,Jn) fromthe set {1,..., n} with replacement. Fit the
tree Y* based on samples

(Xji» Yji)s -5 (XG5 Y).

2. Repeat first step B times to obtain

3. Bagged estimator is

Variance reduction

Suppose, in an ideal world, we could instead base trees Y**, b=1,...,Bonn
samples drawn from the (unknown) joint distribution of (X, Y), instead of
resampling from the original n» observations.

The bagged estimator is then

1 B
YBag — Ezy*’b.
b=1

For B — oo (many bootstrap samples),
?Bag — E(?),

where the expectation is with respect to the random sample of n observations
and Y is the standard estimator (iree) fitted on these n observations.

Now compare the squared error loss of Y., with the loss of the original tree

estimator Y,
E((Y —Y)?),

where both ¥ = Y (x) and Y., = Y3, (x) are evaluated at some x € R? and the
expectation is with respect to a random new observation Y and a new training
sample on which Y is fitted.

Using Y3, — E(Y) for B — oo,

A

E((Y = Y)?) = E((Y = Ypag + Yaag — V)?)
o E((Y — ?Bag)Z) -+ E((?Bag o ?)2)
> E((Y_ IN/Bag)z)'

The (population) bagging estimator Y, thus reduced the squared error loss
by eliminating the variance of ¥ around its mean E(Y).

The variance reduction still applies if the idealized (population) estimate Y3,
is replaced by the actual bagging estimator Y. This variance reduction is
traded for a (small) increase in the bias in the procedure.

Bagging helps thus most for ‘flexible’ estimators ¥ which have a high variance

A

E((Y — E(Y))?).

For trees, this means that bagging has a very beneficial effect on trees with a

large size (number of leaf nodes), whereas the benefit of bagging on trees
with small size is much less pronounced.

Look again at previous example of predicting house prices, using crime rate
as the univariate predictor.

50
|
o)
o
o

crime>!=1 918

40
|

30

MEDIAN HOUSE PRICE
20

13.44 24.44

LOG(CRIME)

Fitting a single tree with depth d = 1 (a stump).

Bagged stumps Y**, b =1,..., 10.

MEDIAN HOUSE PRICE

A stump Y has (relative to larger trees) a low variance (and a high bias).

50

40

30

20

10

o o
o
o o
o 00 o
o QO © °
0 o oo o
o o
o) (]
ol Ao o o 0o
(9] AS (o] (O
o O% [A OO (e]0) o
0% o 00 o© y O
Qb% oQ o
(@] o % o O
%
o b o) o)
Fog
o&@)

LOG(CRIME)

MEDIAN HOUSE PRICE

50

40

30

20

10

Averaged bagged estimator Y.

LOG(CRIME)

Bagging leads to a small but not a dramatic improvement.

Now fit a tree with depth d = 3.

-—3.79!

Q _| 00 o crime>=1.918
LO O O T
O

o _|

<
L
©) crime>=2.695 crime>%—2.647
&
L
2 8
@]
I
zZ
g ° crime<g 2.936 crime<g 2.669 crimex 1.87 crime>4
W «
=

o

| | 77 1166 142 275 2252 34.75 2712 32.38
| T T
-4 -2 0 2 4
LOG(CRIME)

The fit of a single tree has a high variance and will have poor performance

(when trying to predict new observations).

Bagged trees of depth d = 3, Y**, Averaged bagged estimator YBag.
b=1,...,10.

50
|
o
o)
50
|
o]
o]
o

30
|
30
|

MEDIAN HOUSE PRICE
20
|

MEDIAN HOUSE PRICE

10
|
10

LOG(CRIME) LOG(CRIME)

As Y has a high variance (and a low bias), bagging leads to a large
improvement.

Even though improvement through bagging is largest in general for trees with
large depths, the optimal tree depth (yielding smallest prediction error when
bagging) is not obvious a priori.

Out-of-bag test error estimation

To answer this question, we need again a good approximation to the test error
(here for the squared error loss function L),

Riest := E(L(Ya ?Bag)>7
where the expectation is with respect to new random pairs (X,Y) and
YBag = Ypag(X), tO
» tune the parameters of the algorithm (e.g. select depth of the tree)

» or assess the true performance (and compare with other approaches).

Could compute generalization error R, by cross-validation (CV), as
discussed previously.

Here schematic illustration of V = 4-fold CV for n = 12 samples.

i=1 =2 =8 i=4 i=5 =6 i=7 i=8 =9 i=10 i=11 i=12

~"®O®O®®O®®®®®O0 00

~®®®®®®000ee®e®

~®®®000®eee®®®®

=000l @®®®®® ® ®

Foreachv=1,...,V,
> fit I?Bag on the training samples, shown as red and filled dots.

» predict with this tree the left-out test observations, shown as white
unfilled circles.

Compute the CV test error by averaging the loss across all test observations.

But to fit f/Bag on the training samples for each v =1, ..., V, need another set
of B bootstrap samples on which the original tree is fitted (and whose average
gives the Yp,, for these training observations).

=1 =2 =3 =4 =5 =6 i=7 1=8 =9 =10 =11 =12
@ O @ O] O @ O] O @ O O O b=1
@ @ O O O O @ @ @ O O O b=2
v=1 @ @ O @® O O O @ @ O O O b=3
@ @ @ O @ @ O @ O O O O b=4
@ @ ® O @ @ O O O O O O b=5
O O @ O] @ O O O O @ @ @ b=1
@ @ @ O @) @ O @) @) @ @ @) b=2
v=2 @ @ O @ @ O O O O O @ O b=3
@ @ @ @® @ O O O O O @ O b=4
@ @ @) @ @) @) O @) @) @ @) @ b=5
O @ @ O O O @® @ @ O @ O b=1
O O @ O O O O] @ @ O] O O b=2
v=3 @® @® @) O @) @) @ ® ® ® @) ® b=3
@ @ @ O O O @® O @ @ O @ b=4
O O @ O O O O O @ O @ @ b=5
O O O @® @ @ @® O @ @ @ O b=1
O O O @® @ @ @® O @ @ O O b=2
v=4 O O O O @ O O @ @ O @ O] b=3
e) O @) O ® ® ® O ® O O ® b=4
O O O @® @ O O @ O O @ @ b=5
Foreachv =1,...,V, the tree needs to be fitted B times. In total, V x B fits

are necessary. This can be very expensive computationally.
= Qut-of-bag estimation !

|dea: test on the “unused” data points in each bootstrap iteration to estimate
the test error.

<

m
(-
0
11
W
m
AN
11
(€]
-
(0)]
m
~
m
(00]
M
©

©®® 0O|0|00|0|®|CS

©®® 0 00®0® e

O
I
—_

b=2

b=3

©®®00®

b=4

b=5

b=6

b=7

O
O®0O|e®e®®®0

SISIOHOIOIONOIONO)
Ol0®0®®®®0
O0®0®®®®®
®©0®0®®0®®
©®0O0®0O®®0
©®0©®0®®0®
©®0©®0®e®®0

b=8

®

b=9
(@ b=10

If fitting B bootstrap estimates Y**, to assess the prediction for i = 1, average
only over such b, where observation i = 1 has not been used in fitting Y**.

@ 0®0®®®®® 0k

90

Recall that, for B bootstrap samples Y*?, the bagged estimator at observation
i is given by Y; := Yp,(X;),

Instead, let now

R 1 .

yoob — E YHP(X),

l |Bl| - ()
beB;

where the sum is only taken over the set

B; = {b: X; is not in training set} C {1,...,B}.

The estimate of the test error is then computed, as usual, by

ﬁtest — n_l ZL(Y,, ?iOOb)'
i=1

> i

®© O ©® 0O ®®0 ®0O®® @ b
—= 0 ®©® ® ® ®® O ®® 0O O bs

—= 0 @© ®©®®® O ® ® ® ® ® O b

© ®® ®0®® O ®® ®O0 O bs

© ® ® ® ® ® ® OO ® O O bs

©@ ®@®@ OO 00 ®® O O O b=
—= 0 0 @®®®® O 00 @ ® @® bs

©® ®@ OO0 0 @ ®®0O ® @ b
—= 00 0000 ®©® @ ® ® ® ® @ b0

In this example with B = 10 and n = 12, to get prediction for i = 1, average

only over trees Y**(X,) with b € {3,4,8,10}, e.g.

?*’b(Xl).

2

be{3,4,8,10}

1
4

1

YO

—> 0 0O @0 ®® 0O ®0O @ ® @ >

O @®® ® e ®@©® 0O @® ® O O bs

SECORONONONORONONONONONON

© ® ©® ®® ® O ©® @® ® O O bs

© ® ® ® ®®® OO ®O0 O b

©@ ®@®@ OO OO0 ®®O O O b7
—= 00 @©®®® O 00 ® ® @ bs

©® ®@ OO0 00 @ e®®O0 ® @® b

—= 0 O 0 00 @

For predicting observation i = 2, average onl

b e {2,8,10).

>

Z ?*’b(Xz).

be{2,8,10}

yoob __ 1
3
We clearly need to average over many bootstrap samples in practice to get

YO

2

accurate results, e.g. |B;| needs to be reasonably large forall i =1, ..

., 1.

What is the relation between |B;| and B?

The probability 7°°” of an observation NOT being included in a bootstrap
sample (ji, .. .,j,) (@and hence being ‘out-of-bag’) is,as all jy fork=1,....n
are drawn with replacement from {1, ..., n},

b T 1. oo N
T = 11:_]1:(1 ~) =7 exp(—1) ~ 0.367,
Hence E(|B;|) = exp(—1)-B~ 0367 -Bforalli=1,...,n.
In practice, number of bootstrap samples B is typically between 200 and 1000,
meaning that the number |B;| of out-of-bag samples will be approximately in
the range 70 — 350. The obtained test error estimate is asymptotically
unbiased for large number B of bootstrap samples and large sample size n.

Apply out of bag estimation to select optimal tree depth and assess
performance of bagged trees for Boston Housing data.

Use the entire dataset with p = 13 predictor variables. Fit first an ordinary tree
of depthd € {1,2,3,...,30}.

n <- nrow (BostonHousing) ## n samples

X <- BostonHousing[, —14]
Y <- BostonHousing[, 14]

maxdepth <- 3 ## fit here trees of depth 3
use function ‘rpart’ to fit tree
tree <- rpart(Yy ~ ., data=X ,

control=rpart.control (maxdepth=maxdepth,minsplit=2))

Plot trees of depth d =3 and d = 5.

plot (tree,
text (tree,

margin=.1, uniform=TRUE)

Istat>=14.4

cex=1.3)
rm< 6.543
' rme< 6.543
Istat>=3.88
Istat>=14.4 Istat>=3.88
crim>x5.583 Istat>7.57 tax>=417.5 rm< 6.935
crim>+5.583 Istat>=7.57 tax>=417.5 rm< 6.935

12.07 17.35 20.97 24.01 20.33 31.82 32 45.83

Istat>325.12age>E84.1dis>=1.438>=359.5 crim>17.02rm< 6.791 | rm>=B.037
32

rm>=StaB6: 150 826 6.08Tn< GriBarPIAtE Sk MBE:3=p e 08Re>E B 383.8
27.9

7.42.83.78.8.16 2028 1828.7822 24.08727.90.41 51 428 22.2894.28.8 3742.2889.62

Bagging with B = 100 bootstrap samples, computing the out-of-bag (OOB)
estimate of prediction error.

B <= 100
prediction_oob <- rep(0,length(Y)) ## vector with oob predictions
numbertrees_oob <- rep(0,length(Y)) ## how many oob trees
for each sample ?
for (b in 1:B) { ## loop over bootstrap samples
subsample <- sample(l:n,n,replace=TRUE) ## "in-bag" samples
outofbag <- (1l:n) [-subsample] ## "out-of-bag" samples

fit tree on "in-bag" samples
treeboot <- rpart (¥ ~ ., data=X, subset=subsample,
control=rpart.control (maxdepth=maxdepth,minsplit=2))

predict on oob-samples
prediction_oob[outofbag] <- prediction_oobl[outofbag] +
predict (treeboot, newdata=X[outofbag,])
numbertrees_oob[outofbag] <- numbertrees_oob|[outofbag] + 1
}
final oob-prediction is average across all "out-of-bag" trees
prediction_oob <- prediction_oob / numbertrees_oob

Plot out-of-bag predictions.

plot (prediction_oob, Y,

For depth d = 1.

ACTUAL

50

40

x1ab="PREDICTED", vylab="ACTUAL")

[e]e}

oO@XOO O O

Q@ OO0 O

20

25

PREDICTED

30

ACTUAL

For depth d = 10.

I I I I
10 20 30 40

PREDICTED

Out-of-bag estimates of test error
E((Y - Y)?)

as a function of tree depth d. Table shows CV-mean squared error loss (with
out-of-bag prediction for the bagged estimator).
tree depth d 1 2 3 4 5 10 30
single tree Y 60.7 448 328 312 277 265 273
bagged trees Vg, | 43.4 27.0 22.8 215 20.7 20.1 20.1
Without bagging, the optimal tree depth seems to be d = 10. With bagging,
we could also take the depth up to d = 30.
Bagging strongly improves performance.
On the other hand, bagged trees cannot be displayed as nicely as single trees
and some of the interpretability of trees is lost.

For classification, it is easily possible to construct (artifical) examples where
bagging leads to a deterioration of performance.
Consider a two-class problem Y € {0, 1}. Suppose all labels are truly Y =1
and there is a random predictor ¥ which predicts

| 1 with probability 0.3
| 0 with probability 0.7

N>

This classifier would have a misclassification error of 0.7.

Now bag this classifier by taking a mean Yz,, = 3_,_, ¥** and classify by
majority decision among all bagged trees, i.e. classify as Y = 1 if and only if
YBag > 0.5.

The misclassification error of the bagged trees is now 1 and bagging made a
bad predictor even worse.

Bagging trees typically improves prediction for real-life datasets. Consider the

following datasets.

TABLE 1
Data set descriptions

Training Test
Data set Sample size Sample size Variables Classes
Cancer 699 — 9 2
Ionosphere 351 — 34 2
Diabetes 768 — 8 2
Glass 214 — 9 6
Soybean 683 — 35 19
Letters 15,000 5000 16 26
Satellite 4,435 2000 36 6
Shuttle 43,500 14,500 9 7
DNA 2,000 1,186 60 3
Digit 7,291 2,007 256 10

Both trees and bagged trees (Forests) are fitted on these data.

The misclassification errors on the test sets for single trees and bagged trees
(‘Forests’).

TABLE 2
Test set misclassification error (%)

Data set Forest Single tree
Breast cancer 2.9 5.9
Ionosphere 5.5 11.2
Diabetes 24.2 25.3
Glass 22.0 30.4
Soybean 5.7 8.6
Letters 3.4 12.4
Satellite 8.6 14.8
Shuttle x103 7.0 62.0
DNA 3.9 6.2
Digit 6.2 17.1

from Breiman: ‘Statistical Modelling: the two cultures’.
Note that ‘Forests’ are not standard bagged trees, but so-called Random
Forests, which employ additional randomization (more later).

