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The E and M steps of EM

The lower bound on the log likelihood is given by:
F(gq,0) = (log P(Y, X|0)),y) + Hlg],

EM alternates between:
E step: optimize F(q, 0) wrt distribution over hidden variables holding parameters fixed:

¢M(Y) = argmax F(q(Y),0" V).
q(Y)

M step: maximize F(q, ) wrt parameters holding hidden distribution fixed:

9 .— argmax F(q<k>(Y),9) = argmax (log P(Y,X|0>>q(k:)(y)
9 0



Variational Approximations to the EM algorithm

What if finding expected sufficient stats under P(Y | X, #) is computationally intractable?

Generalised EM algorithm replaces intractable maximisations with gradient M-steps. For the
E-step we could:

e Parameterise ¢ = ¢,(Y) and take a gradient step in p.

e Assume some simplified form for ¢, usually factored: ¢ = []. ¢;(Y;) where Y, partition
Y, and maximise within this form.

In both cases, we assume ¢ € O, and optimise within this class:
VE step: Find ¢'*) within restricted class Q with

Flg™(Y),0%Y) > F(g"V(Y),6%Y)
M step: Find 6(%) with
FlgM(Y),0") > F(g™(Y),6"Y)

This increases a lower bound on the log likelihood (but not necessarily the log likelihood
itself...).



KL divergence

Recall that
F(g,0) = (log P(X,Y10)),~) + Hlg|
= (log P(X|0) +log P(Y X, 0)) vy — {log ¢(Y)) v
= (log P(X[0)),v) — KL[q|| P(Y X, 8)].
Thus,

E step maximise F(q, ) wrt the distribution over latents, given parameters:

¢M(Y) = argmax F(q(Y),0" ).
9(Y)eQ
IS equivalent to:
E step minimise KL|¢||p(Y|X, #)] wrt distribution over latents, given parameters:

q(Y)

dY
Y|X, 00D

¢M(Y) = argmin/q(Y) log
q(Y)eQ p(

So, in each E step, the algorithm is trying to find the best approximation to P(Y |X) in Q.

This is related to ideas in information geometry.



Factored Variational E-step

The most common form of variational approximation partitions Y into disjoint sets Y, with
Q={q|aY)=]]a(Y

In this case the E-step is itself iterative:
(Factored VE step);: maximise F(q, #) wrt ¢;(Y;) given other ¢; and parameters:

¢ (Y,) = argmax F(q,(Y D [ ai(Y;),60%Y)
qi(Y;) J#i

The ¢;s can be updated iteratively until convergence before moving on to the M-step. Al-
ternatively, we can make a single pass over all g; (starting from values at the last step) and
then perform an M-step. Each VE step increases JF, so convergence is still guaranteed.



Factored Variational E-step

The Factored Variational E-step has a general form.

The free energy is:

(qu ) <1OgP(XY\9“)>M +H{an }

— [ ay, ¢,(Y; <10 P(X. Y| >
/ 2:(Ys)(log P( | )Hj¢¢Qj(Yj)+H[qz']+Zj¢iH[Qj]

Now, taking the variational derivative of the Lagrangian (enforcing normalisation of ¢;):

5
F+ A /¢—1>): log P(X, Yo%V —logq;(Y:) — 1+ \
(5%( ( q <g ( | >>H#iqj(Yj> ¢ qi(Y;)

(=0) = g(Y)xexp(log PX, Y]64))
112 45(Y5)

In general, this depends only on the expected sufficient statistics under ¢;. Thus, once again,
we don’t actually need the entire distributions, just the relevant expectations.



Mean-field Approximations

If Y, =y, (I.e., q is factored over all variables) then the variational technique is often called
a mean field approximation.

Suppose P(X,Y ) is an exponential family distribution, e.g. the Boltzmann machine:
P(X,Y) = —eXp (ZVVZ]S s +st)

with some Y = {s;} unobserved while others are observed.

Expectations wrt a fully factored ¢ distribute over all s, € Y
(log P(X,Y))ip, = ZWZ] i)y, T sz(s )
(where ¢; for s; € X is a delta function on observed value).

Thus, we can update each g; in turn given the means of the others. Each variable is seeing
the mean field imposed by its neighbours. We update these fields until they all agree.



Factorial HMMs

' ’_’ The most natural structured approximation in
the FHMM is to factor each chain from the oth-

Qe

a forward-backward algorithm, with a modified
“likelinood” term.

(g T H q" (1)
"{/ ’} Updates within each cham are then found by

" (yin) o< exp ( log Py zy.,) >
H/qm(y?y)

(
exp<ZZlogP ]yt1+ZIOgP:Ut]y )>
3

I1 qm(yi”T)

_|TTL

X exXp Z 1OgP yt ’yt 1 + Z <log P(xt’|y )>
= TPy [Tew < log, p(mt,‘yﬁw
! t

ILa™ ()



Variational Bayesian Learning

Let the hidden latent variables be Y, data X and the parameters 6.

Lower bound the marginal likelihood (Bayesian model evidence) using Jensen’s inequality:

log P(X) = 10g/de9 P(X,Y,0)

P(X,Y,0)

Q(Y,0)
P(X,Y,0)

Q(Y,0)

The saturating Q(Y,0) = P(Y, 0|X) is almost always intractable.
Use a simpler, factorised approximation Q(Y,0) = Qy(Y)Qg(0):

P(X,Y,0)
Qv (Y)Qe(0)

- 10g/dY 0 Q(Y, 0)

> /dY 46 O(Y,0) log

log P(X) > / 1Y 46 Qy(Y)Qo(6) log
= F(Qvy(Y),Q0(0)).

Maximize this lower bound. The resulting value is the Variational Bayesian approximation to
the evidence.



Variational Bayesian Learning

Maximizing this lower bound, F, leads to EM-like updates:

Qy/(Y) ox exp (log P(Y X18)) i E—like step

0

Qék)(9> x P(0)exp (log P<Y’X’9>>Q(k)(Y) M — like step
Y

Maximizing JF is equivalent to minimizing KL-divergence between the approximate posterior,
Q(0)Q(Y) and the true posterior, P(0,Y |X).

log P(X) — F(Qv(Y),Qe(0))
=log P(X) — /Qy( )Qo(0) log DX, Y,9)

Qv(Y)Qo(0)
/ Qy(Y)Qa(0) 10 QY&??&? 1Y d

—KL(Q||P)

dY df




Conjugate-Exponential Families

Let’s focus on conjugate-exponential (CE) models, which satisfy (1) and (2):

e The joint probability over variables is in the exponential family:
P(Y,X|0) = f(Y,X) g(8)exp {¢(0) ' T(Y,X)}

where ¢(0) is the vector of natural parameters, T are sufficient statistics.
e The prior over parameters is conjugate to this joint probability:

PO, v) = h(n,v) g(0)" exp {$(6) v/}

where 1 and v are hyperparameters of the prior.

Conjugate priors are computationally convenient and have an intuitive interpretation:
e 17: number of pseudo-observations

e v: values of pseudo-observations



Variational Bayes for Conjugate-Exponential Families

Given an iid data set X = (X4, ... X,,), if the model is CE then:

(a) Qg(0) is also conjugate:

Qo(0) = h(7,v)9(0)" exp {$(0) v/}
wheren=n+nandv =v+ >  T(Y; X;).
(b) Qv(Y) =], Qv,(Y;) is of the same form as in the E step of regular EM, but using
pseudo parameters computed by averaging over Qg(8):

Qv,(Y) o f(Y:, X;)exp {9(0)' T(Y;, X))} = P(Y,X;,0)

where ¢(0) = ($(0))g,(0).
Key points:

e The approximate parameter posterior is of the same form as the prior, so it is easily
summarized in terms of two sets of hyperparameters, 7 and v;

e The approximate latent variable posterior, averaging over all parameters, is of the same
form as the hidden variable posterior for a single setting of the parameters, so again, it is
easily computed using the usual methods.



The Variational Bayesian EM algorithm

EM

Goal: maximize p(X|0) w.r.t. 6
E Step: compute

QY (Y) = P(Y|X, 0% 1)
M Step:

(k) _
k) — arggnax (log P(Y, X|9>>Q$)(Y)

Properties:

Variational Bayesian EM

Goal: lower bound p(X)
VB-E Step: compute

QY (Y) = P(Y|X, 0"
VB-M Step:

(k)
Ry ' (0) o< exp (log P(Y, X, 9)>Q$)(Y)

e Reduces to the EM algorithm if Q9(0) = 6(0 — 6").

e Free energy increases monotonically.

e Analytical parameter distributions.

e VB-E step has same complexity as corresponding E step.

e We can use the junction tree, belief propagation, Kalman filter, etc, algorithms in the VB-E

step, but using expected natural parameters, 6.




End Notes

Theses on Variational Bayes:

Matthew Beal (2003).
Variational Algorithms for Approximate Bayesian Inference. Gatsby Unit, UCL.

John Winn (2003).
Variational Message Passing and its Applications. Physics, Cambridge.

Alternative view point:

M. J. Wainwright and M. |. Jordan (2008).

Graphical models, exponential families, and variational inference. Foundations and Trends
in Machine Learning, 1:1-305.
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