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Integrals in Statistical Modelling

• Parameter estimation

θ̂ = argmax
θ

∫
P (Y|θ)P (X|Y , θ) dY

(or using EM)

θnew = argmax
θ

∫
P (Y|X , θold) logP (X ,Y|θ) dY

• Prediction
p(x|D,m) =

∫
p(θ|D,m)p(x|θ,D,m) dθ

• Model selection or weighting (by marginal likelihood)

p(D|m) =

∫
p(θ|m)p(D|θ,m) dθ

These integrals are often intractable:

• Analytic intractability: integrals may not have closed form in non-linear, non-Gaussian
models⇒ numerical integration.

• Computational intractability: Numerical integral (or sum if Y or θ are discrete) may be
exponential in data or model size.



Examples of Intractability

• Bayesian marginal likelihood/model evidence for Mixture of Gaussians: exact computa-
tions are exponential in number of data points

p(x1, . . . , xN) =

∫
p(θ)

N∏
i=1

∑
si

p(xi|si, θ)p(si|θ) dθ

=
∑
s1

∑
s2

. . .
∑
sN

∫
p(θ)

N∏
i=1

p(xi|si, θ)p(si|θ) dθ

• Computing the conditional probability of a variable in a very large multiply connected
directed graphical model:

p(Xi|Xj = a) =
∑

all settings ofX\{i,j}

p(Xi, X\{i,j}, Xj = a)/p(Xj = a)

• Computing the hidden state distribution in a general nonlinear dynamical system

p(yt|x1, . . . , xT ) ∝
∫
p(yt|yt−1)p(xt|yt)p(yt−1|x1, . . . , xt−1)p(xt+1, . . . , xt|yt)dyt−1



The integration problem

0

0

0

0

We commonly need to compute
expected value integrals of the
form: ∫

F (x) p(x)dx,

where F (x) is some function of
a random variable X which has
probability density p(x).

Three typical difficulties:
left panel: full line is some complicated function, dashed is density;
right panel: full line is some function and dashed is complicated density;
not shown: non-analytic integral (or sum) in very many dimensions



Sampling Methods

The basic idea of sampling methods is to approximate an intractable integral or sum using
samples from some distribution.

Monte Carlo Methods:

• Simple Monte Carlo Sampling

• Rejection Sampling

• Importance Sampling

• . . .

Sequential Monte Carlo Methods:

• Particle Filtering

• . . .

Markov Chain Monte Carlo Methods:

• Gibbs Sampling

• Metropolis Algorithm

• Hybrid Monte Carlo

• . . .



Simple Monte Carlo Sampling

Idea: Sample from p(x), average values of F (x).

Simple Monte Carlo: ∫
F (x)p(x)dx ' 1

T

T∑
t=1

F (x(t)),

where x(t) are (independent) samples drawn from p(x).[
For example: x(t) = G−1(u(t)) with u ∼ Uniform[0, 1] and G(x) =

∫ x
−∞ p(x

′)dx′
]

Convergence to integral due to strong law of large numbers.



Analysis of Simple Monte Carlo

Attractions:

• unbiased:

E

[
1

T

T∑
t=1

F (x(t))

]
= E[F (x)]

• variance goes as 1/T :

E

( 1

T

∑
t

F (x(t))

)2
− E[F (x)]2 =

1

T 2

(
TE
[
F (x)2

]
+ (T 2 − T )E[F (x)]2

)
− E[F (x)]2

=
1

T

(
E[F (x)2]− E[F (x)]2

)
Note: independent of dimension!

Problems:

• It may be difficult or impossible to obtain the samples directly from p(x).

• Regions of high density p(x) may not correspond to regions where F (x) varies a lot (thus
each evaluation might have very high variance).



Importance Sampling

Idea: Sample from a proposal distribution q(x) and weight those samples by p(x)/q(x).

Sample x(t) from q(x):∫
F (x)p(x)dx =

∫
F (x)

p(x)

q(x)
q(x)dx ' 1

T

T∑
t=1

F (x(t))
p(x(t))

q(x(t))
,

where q(x) is non-zero wherever p(x) is; weights w(x(t)) ≡ p(x(t))/q(x(t))
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Analysis of Importance Sampling
Attraction:

• Unbiased: Eq[F (x)w(x)] =
∫
F (x)p(x)/q(x)q(x)dx = Ep[F (x)].

• Variance could be smaller than simple Monte Carlo if

Eq[(F (x)w(x))2]− Eq[F (x)w(x)]2 ≤ Ep[F (x)2]− Ep[F (x)]2

Optimal proposal is “posterior” q(x) = p(x)F (x)/Zq with variance 0—in fact estimate is
constant: F (x)w(x) = Zq = Ep[F (x)].

Problems:

• May be hard to construct q(x) with small variance.

• Variance could be unbounded!

Eq[w(x)] =
∫
q(x)w(x)dx = 1

The weights have variance Var[w(x)] = Eq[w(x)2]− 1, with:

Eq[(w(x)2)] =
∫
p(x)2

q(x)2
q(x)dx =

∫
p(x)2

q(x)
dx

e.g. p(x) = N (0, 1), q(x) = N (1, .1). When this happens, Monte Carlo average may be
dominated by few samples; and none of the high weight samples may be found!



Analysis of Importance Sampling

Unnormalized distributions: say we only know p(x), q(x) up to a constant,

p(x) = p̃(x)/Zp q(x) = q̃(x)/Zq

where Zp, Zq are unknown/too expensive to compute, but we can still sample from q(x).

We can still apply importance sampling with the estimate:∫
F (x)p(x)dx ≈

∑
t F (x

(t))w(x(t))∑
tw(x

(t))
w(x) =

p̃(x)

q̃(x)

But this estimate is only consistent (biased for finite T , converging to true value as T →∞).

Effective sample size of the sample may diagnose effectiveness of importance sampling.
Popular estimate: (

1 + Varsample

[
w(x)

Esample[w(x)]

])−1
=

(∑
tw(x

(t))
)2∑

tw(x
(t))2

Large effective sample size may give no indication of effectiveness (if none of high weight
samples found, or if q places little mass where F (x) is large).



Rejection Sampling

Idea: sample from an upper bound on p(x), rejecting some samples.

• Find a distribution q(x) and a constant c such that ∀x, p(x) ≤ cq(x)

• Sample x∗ from q(x) and accept x∗ with probability p(x∗)/(cq(x∗)).

• Use accepted points as in simple Monte Carlo: 1
T

∑T
t=1 F (x

(t))
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cq(x)

p(x)

dx

If y∗ ∼ Uniform[0, cq(x∗)], we accept x∗ if y∗ ≤ p(x∗). Thus the probability of a point falling
in the box = q(x)dx ∗ p(x)/cq(x) = p(x)/c.

Proposal (x∗, y∗) is a point uniformly drawn from area under the q(x) curve, accepted (x∗, y∗)
from under p(x) curve.



Rejection Sampling

Average acceptance probability is 1/c.

Attraction:

• Unbiased; in fact accepted x∗ is true sample from p(x).

• Diagnostics easier than importance sampling: number of accepted samples is true sam-
ple size.

Problem:

• It may be difficult to find a q(x) with a small c⇒ lots of wasted area.
Examples:
– Compute p(Xi = b|Xj = a) in a directed graphical model: sample from P (X), reject if
Xj 6= a, averaging the indicator function I(Xi = b)

– Compute E(x2|x > 4) for x ∼ N (0, 1)

Unnormalized Distributions: say we only know p(x), q(x) up to a constant,

p(x) = p̃(x)/Zp q(x) = q̃(x)/Zq

where Zp, Zq are unknown/too expensive to compute, but we can still sample from q(x).

We can still apply rejection sampling if we know a c with p̃(x) ≤ cq̃(x). This is still unbiased!



Relationship between Importance and Rejection Sampling
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+

cq(x)

p(x)

dx

If we know a c making q(x) an upper bound on p(x), then importance weights are upper
bounded:

p(x)

q(x)
≤ c

So importance weights have finite variance and importance sampling is well-behaved.

Upper bound condition makes both rejection sampling work and importance sampling well-
behaved.



Learning in Boltzmann Machines

log p(X,Y|θ) =
∑
ij

Wijsisj −
∑
i

bisi − logZ

with Z =
∑

s e
∑
ijWijsisj−

∑
i bisi.

Generalised EM requires gradients for M step:

∇Wij = Ep(Y|X)[sisj]− Ep(X,Y)[sisj]

How do we find the required expectations? Many inference techniques face difficulties.

What is easy is conditional sampling. Given settings of all nodes in the Markov blanket of si
can easily sample si. This suggests an iterative sampling algorithm:

• Choose variable settings randomly (set any clamped nodes to clamped values).

• Cycle through (unclamped) si, choosing si ∼ p(si|s\i).
After enough samples, we might expect to reach the correct distribution.

This is an example of Gibbs Sampling. Also called the heat bath or Glauber dynamics.



Markov chain Monte Carlo (MCMC) methods

Assume we are interested in drawing samples from some desired distribution p∗(X).

We define a Markov chain:

X(0) → X(1) → X(2) → X(3) → X(4) → X(5) . . .

where X(0) ∼ p0 and T (x → x′) = p(X(t) = x′|X(t−1) = x) is the Markov chain transition
probability from x to x′.

Then the marginal distributions are X(t) ∼ pt with the property that:

pt(x
′) =

∑
x

pt−1(x)T (x→ x′)

We say that p∗(X) is an invariant/stationary/equilibrium distribution of the Markov chain de-
fined by T iff:

p∗(x′) =
∑
x

p∗(x)T (x→ x′) ∀x′



Markov chain Monte Carlo (MCMC) methods

A useful condition that implies invariance of p∗(X) is detailed balance:

p∗(x′)T (x′ → x) = p∗(x)T (x→ x′)

We wish to find ergodic Markov chains, which converge to a unique stationary distribution
regardless of the initial conditions p0(x):

lim
t→∞

pt(x) = p∗(x) ∀x

A sufficient condition for the Markov chain to be ergodic is that

T k(x→ x′) > 0 for all x and x′ where p∗(x′) > 0 and some k.

That is, if the equilibrium distribution gives non-zero probability to state x′, then the Markov
chain should be able to reach x′ from any x after some finite number of steps, k.



Gibbs Sampling

A method for sampling from a multivariate distribution, p∗(X)
Idea: sample from the conditional of each variable given the settings of the other variables.

Repeatedly:
1) pick i (either at random or in turn)
2) replace xi by a sample from the conditional dis-
tribution

p(xi|X\i) = p(xi|x1, . . . , xi−1, xi+1, . . . xn)

Gibbs sampling is feasible if it is easy to sample
from the conditional probabilities.
This creates a Markov chain

X(1) → X(2) → X(3) → . . .

Example: 20 (half-) iterations
of Gibbs sampling on a bivari-
ate Gaussian

Under some (mild) conditions, the equilibium distribution, i.e. p(X(∞)), of this Markov
chain is p∗(X).



Detailed balance for Gibbs sampling

We can show that Gibbs sampling has the right stationary distribution p∗(X) by showing that
the detailed balance condition is met.

The transition probabilities are given by:

T (X→ X′) = πip
∗(x′i|X\i)

where πi is the probability of choosing to update the ith variable (to handle rotation updates
instead of random ones, we need to consider transitions due to one full sweep).

Then we have:

T (X→ X′)p∗(X) = πip
∗(x′i|X\i) p∗(xi|X\i)p∗(X\i)︸ ︷︷ ︸

p∗(X)and

T (X′ → X)p∗(X′) = πip
∗(xi|X′\i) p∗(x′i|X′\i)p∗(X′\i)︸ ︷︷ ︸

p∗(X′)

But X′\i = X\i so detailed balance holds.



Gibbs Sampling in Graphical Models

Initialize all variables to some settings. Sample each variable conditional on other variables
(equivalently, conditional on its Markov blanket).

The BUGS software implements this algorithm for very general probabilistic models (but not
too big ones).



The Metropolis-Hastings algorithm
Gibbs sampling can be slow (p∗(xi) may be well determined by X\i), and conditionals may
be intractable. Global transition might be better but harder to sample.

Idea: Propose a change to current state; accept or reject.
(A kind of rejection sampling)

Each step: Starting from the current state X,

1. Propose a new state X′ using a proposal distribution
S(X′|X) = S(X→ X′).

2. Accept the new state with probability:
min

(
1, p∗(X′)S(X′ → X)/p∗(X)S(X→ X′)

)
;

3. Otherwise retain the old state.

Example: 20 iterations of global metropolis sampling from bivariate Gaussian; rejected
proposals are dotted.

• Metropolis algorithm was symmetric S(X′|X) = S(X|X′). Hastings generalised.

• Local (changing one or few xi’s) vs global (changing all X) proposal distributions.

• Efficiency dictated by balancing between high acceptance rate and large step size.

• May adapt S(X→ X′) to balance these, but stationarity only holds once S is fixed.

• Note, we need only to compute ratios of probabilities (no normalizing constants).



Detailed balance for Metropolis-Hastings

The transition kernel is:

T (X→ X′) = S(X→ X′)min

(
1,
p∗(X′)S(X′ → X)

p∗(X)S(X→ X′)

)
with T (X→ X) the expected rejection probability.

Without loss of generality we assume p∗(X′)S(X′ → X) ≤ p∗(X)S(X→ X′).
Then

p∗(X)T (X→ X′) = p∗(X)S(X→ X′) · p
∗(X′)S(X′ → X)

p∗(X)S(X→ X′)

= p∗(X′)S(X′ → X)

and

p∗(X′)T (X′ → X) = p∗(X′)S(X′ → X) · 1
= p∗(X′)S(X′ → X)



Practical MCMC

Markov chain theory guarantees that

1

T

T∑
t=1

F (xt)→ E[F (x)] as T →∞.

But given finite computational resources we have to compromise. . .

Convergence diagnosis is hard. Usually plot various useful statistics, e.g. log probability,
clusters obtained, factor loadings, and eye-ball convergence.

Control runs: initial runs of the Markov chain used to set parameters like step size etc for
good convergence. These are discarded.

Burn-in: discard first samples from Markov chain before convergence.

Collecting samples: usually run Markov chain for a number of iterations between collected
samples to reduce dependence between samples.

Number of runs: for the same amount of computation, we can either run one long Markov
chain (best chance of convergence), lots of short chains (wasted burn-ins, but chains are
independent), or in between.



Practical MCMC

Multiple transition kernels: different transition kernels have different convergence properties,
it is often a good idea to use multiple kernels, but cannot have the choice between kernels
be dependent on the current state.

Integrated autocorrelation time: estimate of the amount of time before F (xt)’s become in-
dependent (no guarantees, probably underestimates autocorrelation time). Assume wlog
E[F (x)] = 0.

Var

[
1

T

T∑
t=1

F (xt)

]
=E

( 1

T

T∑
t=1

F (xt)

)2
 =

Var[F (x)]
T

(
1 + 2

T−1∑
t=1

(
1− t

T

)
Ct
C0

)

where Ct = E[F (xi)F (xi+t)] are the autocorrelation times. The integrated autocorrelation
time, the factor within parentheses, is the amount of correlated samples we need in excess
of true iid samples to achieve the same variance. As T →∞, this is:

1 + 2

∞∑
t=1

Ct
C0



Other Ideas in MCMC

• Annealing: Start chains in simpler distributions, at each iteration change the distribution
slightly so that at equilibrium the distribution is the one of interest.

• Hybrid Monte Carlo: Use analogy of physical dynamics with momentum to help improve
mixing.

• Auxiliary variables: introduce additional variables to improve convergence speed or com-
putational cost.

• Rao-Blackwellisation or collapsing: integrating out some variables to lower variance or
improve convergence.

• Exact sampling: yield exact samples from the equilibrium distribution of a Markov chain,
making use of the idea of coupling—if two Markov chains use the same set of pseudo-
random numbers, then even if they started in different states, once they transition to the
same state they will stay in the same state.

• Slice sampling: to sample from p(x), introduce auxiliary variable y uniform between
[0, p(x)] (area under p(x) curve), and Gibbs sample x and y.

• Adaptive rejection sampling: during rejection sampling, if sample rejected use it to im-
prove the proposal distribution.

• . . .



Particle Filtering

y1 I

I

y2 I

I

y3 I

I

u u u I yτ

I
X1 X2 X3 Xτ

Suppose we want to compute the filtering distribution p(yt|X1 . . .Xt) in a state-space model.

p(yt|X1 . . .Xt) ∝
∫
p(ytyt−1Xt|X1 . . .Xt−1) dyt−1

=

∫
p(Xt|yt)p(yt|yt−1)p(yt−1|X1 . . .Xt−1) dyt−1

If we have samples y
(s)
t−1 ∼ p(yt−1|X1 . . .Xt−1) we can recurse (approximately):

• draw y
(s)
t ∼ p(yt|y(s)t−1)

• calculate (unnormalised) weights w(s)
t = p(Xt|y(s)t ).

• resample y
(s′)
t ∼

∑S
s=1w

(s)
t δ(y − y

(s)
t )
/∑S

s=1w
(s)
t

This is called Particle Filtering (this version, with q = p(yt|y(s)t−1) is also called a “bootstrap
filter” or “condensation” algorithm).



Particle Filtering

• Could avoid resampling by propagating weights. However variance in weights accumu-
lates. Resampling helps eliminate unlikely particles.
• Can trigger resamples conditioned on variance – “stratified resampling”.

• Can use better proposal (q) distributions (including p(yt|Xty
(s)
t−1) if available).

• Particle smoothing is possible, but often inaccurate. Difficult to create a good proposal.
• EM learning is not easy because of smoothing problems and also obtaining joint on
(yt−1, yt).
•Widely used in tracking applications, where filtering is most appropriate.
• Many variants . . .



End Notes

Introductions to MCMC:

R. Neal (1993).
Probabilistic Inference Using Markov Chain Monte Carlo Methods.

D. MacKay.
Introduction to Monte Carlo Methods.

Books:

C. P. Robert and G. Casella (1999).
Monte Carlo Statistical Methods. Springer-Verlag.

A. Doucet, N. de Freitas and N. Gordon (2001).
Sequential Monte Carlo Methods in Practice, Springer.

Many other papers by: Radford Neal, Christian Roberts, Arnaud Doucet, Paul Fearnhead,
Iain Murray....
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