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The Other KL

Variational methods find Q = argmin KL[Q‖Q(Y|X)]:

• guaranteed convergence;

• maximising lower bound may increase log likelihood;

What about the reversed KL (Q = argmin KL[P (Y|X)‖Q])?

For a factored approximation the marginals are correct:

argmin
qi

KL
[
P (Y|X)

∥∥∥∏Qj(Yj)
]

= argmin
Qi

−
∫
dY P (Y|X) log

∏
j

Qj(Yj)

= argmin
Qi

−
∑
j

∫
dY P (Y|X) logQj(Yj)

= argmin
Qi

−
∫
dYi P (Yi|X) logQi(Yi)

= P (Yi|X)

and the marginals are what we need for learning.

But (perversely) this means optimizing this KL is intractrable...



Expectation Propagation

The posterior distribution we need to approximate is often a (normalised) product of factors:

P (Y|X) ∝
∏
j

fi(YCj)

We wish to approximate this by a product of simpler terms: Q(Y) :=
∏
j

f̃j(YCj)

min
{f̃j(YCj

}
KL
[∏

i

fj(YCj)
∥∥∥∏

j

f̃j(YCj)
]

(intractable)

min
f̃i(YCi

)
KL
[
fi(YCi)

∥∥∥f̃i(YCi)
]

(simple, non-iterative, inaccurate)

min
f̃i(YCi

)
KL
[
fi(YCi)

∏
j 6=i

f̃j(YCj)
∥∥∥f̃i(YCi)

∏
j 6=i

f̃j(YCj)
]

(simple, iterative, accurate)← EP



Expectation Propagation

Input {fi(YCi)}
Initialize f̃i(YCi) = 1, Q(Y) =

∏
i f̃i(YCi)

repeat
for each factor i do

Deletion: Q¬i(Y)← Q(Y)

f̃i(YCi)
=
∏
j 6=i

f̃j(YCj)

Projection: f̃newi (YCi)← argmin
f ′i(YCi

)

KL[fi(YCi)Q¬i(Y)‖f ′i(YCi)Q¬i(Y)]

Inclusion: Q(Y)← f̃newi (YCi)Q¬i(Y)
end for

until convergence

• KL minimisation (projection) only depends on Q¬i(Y) marginalised to YCi.

• If f̃i(Y) in exponential family, then the projection step is moment matching.
• Update order need not be sequential.
• Minimizes the opposite KL to variational methods.
• Loopy belief propagation and assumed density filtering are special cases.
• No convergence guarantee (although convergent forms can be developed).
• The names (deletion, projection, inclusion) are not the same as in (Minka, 2001).



Recap: Belief Propagation on Undirected Trees

Joint distribution of undirected tree:g

p(X) =
1

Z

∏
nodes i

fi(Xi)
∏

edges (ij)

fij(Xi, Xj) i j

k
Mi→j

Recursively compute messages:

Mi→j(Xj) :=
∑
Xi

fij(Xi, Xj)fi(Xi)
∏

k∈ne(i)\j

Mk→i(Xi)

Marginal distributions:

p(Xi) ∝ fi(Xi)
∏

k∈ne(i)

Mk→i(Xi)

p(Xi, Xj) ∝ fij(Xi, Xj)fi(Xi)fj(Xj)
∏

k∈ne(i)\j

Mk→i(Xi)
∏

l∈ne(j)\i

Ml→j(Xj)



Loopy Belief Propagation

Joint distribution of undirected graph:

p(X) =
1

Z

∏
nodes i

fi(Xi)
∏

edges (ij)

fij(Xi, Xj) i j

k
Mi→j

Recursively compute messages (and hope that updates converge):

Mi→j(Xj) :=
∑
Xi

fij(Xi, Xj)fi(Xi)
∏

k∈ne(i)\j

Mk→i(Xi)

Approximate marginal distributions:

p(Xi) ≈ bi(Xi) ∝ fi(Xi)
∏

k∈ne(i)

Mk→i(Xi)

p(Xi, Xj) ≈ bij(Xi, Xj) ∝ fij(Xi, Xj)fi(Xi)fj(Xj)
∏

k∈ne(i)\j

Mk→i(Xi)
∏

l∈ne(j)\i

Ml→j(Xj)



Practical Considerations

• Convergence: Loopy BP is not guaranteed to converge for most graphs.

– Trees: BP will converge.
– Single loop: BP will converge for graphs containing at most one loop.
– Weak interactions: BP will converge for graphs with weak enough interactions.
– Long loops: BP more likely to converge for graphs with long (weakly interacting) loops.
– Gaussian networks: Means correct, variances many converge under some conditions.

• Damping: Popular approach to encourage convergence.

Mnew
i→j(Xj) := (1− α)Mold

i→j(Xj) + α
∑
Xi

fij(Xi, Xj)fi(Xi)
∏

k∈ne(i)\j

Mk→i(Xi)

• Other graphical models: equivalent formulations for DAG and factor graphs.



Different Perspectives on Loopy Belief Propagation

• Expectation propagation.

• Tree-based Reparametrization.

• Bethe free energy.



Loopy BP as Expectation Propagation

i j i j

Approximate each factor fij describing interaction between i and j as:

fij(Xi, Xj) ≈ f̃ij(Xi, Xj) = Mi→j(Xj)Mj→i(Xi)

The full joint distribution is thus approximated by a factorized distribution:

p(X) ≈ 1

Z

∏
nodes i

fi(Xi)
∏

edges (ij)

f̃ij(Xi, Xj) =
1

Z

∏
nodes i

fi(Xi)
∏

j∈ne(i)

Mj→i(Xi) =
∏

nodes i

bi(Xi)



Loopy BP as Expectation Propagation

Each EP update to f̃ij is as follows:

• “Corrected” distribution is:

fij(Xi, Xj)q¬ij(X) =fij(Xi, Xj)fi(Xi)fj(Xj)
∏

k∈ne(i)\j

Mk→i(Xi)
∏

l∈ne(j)\i

Ml→j(Xj)∏
s 6=i,j

fs(Xs)
∏

t∈ne(s)

Mt→s(Xs)

• Moments are just marginal distributions on i and j.

• Thus optimal f̃ij(Xi, Xj) minimizing

KL[fij(Xi, Xj)q¬ij(X)‖f̃ij(Xi, Xj)q¬ij(X)]

is given by:

fj(Xj)Mi→j(Xj)
∏

l∈ne(j)\i

Ml→j(Xj) =
∑
Xi

fij(Xi, Xj)fi(Xi)fj(Xj)
∏

k∈ne(i)\j

Mk→i(Xi)
∏

l∈ne(j)\i

Ml→j(Xj)

Mi→j(Xj) =
∑
Xi

fij(Xi, Xj)fi(Xi)
∏

k∈ne(i)\j

Mk→i(Xi)

Similarly for Mj→i(Xi).



Loopy BP as Tree-based Reparametrization

Many ways of parametrizing tree-structured distributions.

p(X) =
1

Z

∏
nodes i

fi(Xi)
∏

edges (ij)

fij(Xi, Xj) undirected tree (1)

= p(Xr)
∏
i 6=r

p(Xi|Xpa(i)) directed (rooted) tree (2)

=
∏

nodes i

p(Xi)
∏

edges (ij)

p(Xi, Xj)

p(Xi)p(Xj)
locally consistent marginals (3)

Undirected tree representation is redundant—multiplying a factor fij(Xi, Xj) by g(Xi), and
dividing fi(Xi) by the same g(Xi) does not change the distribution.

BP on tree can be understood as reparametrizing (1) by locally consistent factors. This
results in (3), from which the local marginals can be read off.



Loopy BP as Tree-based Reparametrization

graph spanning tree 1 spanning tree 2

p(X) =
1

Z

∏
nodes i

f 0i (Xi)
∏

edges (ij)

f 0ij(Xi, Xj)

=
1

Z

∏
nodes i∈T1

f 0i (Xi)
∏

edges (ij)∈T1

f 0ij(Xi, Xj)
∏

edges (ij)6∈T1

f 0ij(Xi, Xj)

=
1

Z

∏
nodes i∈T1

f 1i (Xi)
∏

edges (ij)∈T1

f 1ij(Xi, Xj)
∏

edges (ij)6∈T1

f 1ij(Xi, Xj)

where f 1i (Xi) = pT1(Xi), f 1ij(Xi, Xj) =
pT1(Xi,Xj)

pT1(Xi)p
T1(Xj)

, f 1ij = f 0ij.

=
1

Z

∏
nodes i∈T2

f 1i (Xi)
∏

edges (ij)∈T2

f 1ij(Xi, Xj)
∏

edges (ij)6∈T2

f 1ij(Xi, Xj)

. . .



Loopy BP as Tree-based Reparametrization

At convergence, loopy BP has reparametrized the joint distribution as:

p(X) =
1

Z

∏
nodes i

f∞i (Xi)
∏

edges (ij)

f∞ij (Xi, Xj)

where for any tree T embedded in the graph,

f∞i (Xi) = pT (Xi)

f∞ij (Xi, Xj) =
pT (Xi, Xj)

pT (Xi)pT (Xj)

In particular, all local marginals of all trees are locally consistent with each other:

p(X) =
1

Z

∏
nodes i

bi(Xi)
∏

edges (ij)

bij(Xi, Xj)

bi(Xi)bj(Xj)



Loopy BP as Optimizing Bethe Free Energy

p(X) =
1

Z

∏
i

fi(Xi)
∏
(ij)

fij(Xi, Xj)

Loopy BP can be derived as fixed point equations for finding stationary points of an objective
function called the Bethe free energy.

The Bethe free energy is not optimized wrt a full distribution over X, rather over locally
consistent pseudomarginals or beliefs bi ≥ 0 and bij ≥ 0:∑

Xi

bi(Xi) = 1 ∀i∑
Xj

bij(Xi, Xj) = bi(Xi) ∀i, j ∈ ne(i)



Loopy BP as Optimizing Bethe Free Energy

Fbethe(b) = Ebethe(b) +Hbethe(b)

The Bethe average energy is “exact”:

Ebethe(b) =
∑
i

∑
Xi

bi(Xi) log fi(Xi) +
∑
(ij)

∑
Xi,Xj

bij(Xi, Xj) log fij(Xi, Xj)

While the Bethe entropy is approximate:

Hbethe(b) = −
∑
i

∑
Xi

bi(Xi) log bi(Xi)−
∑
(ij)

∑
Xi,Xj

bij(Xi, Xj) log
bij(Xi, Xj)

bi(Xi)bj(Xj)

Factors in denominator are to account for overcount of entropy on edges, so that the Bethe
entropy is exact on trees.

Message updates in loopy BP can now derived by finding the stationary points of the La-
grangian (with Lagrange multipliers included to enforce local consistency). Messages are
related to the Lagrange multipliers.



Loopy BP as Optimizing Bethe Free Energy

• Fixed points of loopy BP are exactly the stationary points of the Bethe free energy.

• Stable fixed points of loopy BP are local maximum of Bethe free enegy (note we used
inverted notion of free energy to be consistent with the variational free energy).

• For binary attractive networks, Bethe free energy at fixed points of loopy BP forms lower
bound on log partition function logZ.



Loopy BP vs Variational Approximation

• Beliefs bi and bij in loopy BP are only locally consistent pseudomarginals and do not
necessarily form a full joint distribution.

• Bethe free energy accounts for interactions between different sites, while variational free
energy assumes independence.

• The loop series or Plefka expansion of the log partition function Z: the variational free
energy forms the first order terms, while Bethe free energy contains higher order terms
(involving generalized loops).

• Loopy BP tends to be signficantly more accurate whenever it converges.



Extensions and Variations

• Generalized BP: group variables together to treat their interac-
tions exactly.

• Convergent alternatives: Fixed points of loopy BP are stationary
points of the Bethe free enegy. We can derive algorithms mini-
mizing the Bethe free energy thus are guaranteed to converge.

• Convex alternatives: We can derive convex cousins of Bethe free energy. These give rise
to algorithms that will converge to the unique global minimum.

• Treatment of loopy Viterbi or max-product algorithms is different.



A Convex Perspective

An exponential family distribution is parametrized by a natural parameter vector θ and equiv-
alent by its mean parameter vector µ.

P (X|θ) = exp
(
θ>T(X)− Φ(θ)

)
where Φ(θ) is the log partition function

Φ(θ) = logZ = log
∑
x

exp
(
θ>T(x)

)
Φ(θ) plays an important role in the characterization of the exponential family. It is a cumulant
generating function for the distribution:

∇Φ(θ) = Eθ[T(X)] = µ(θ) = µ

∇2Φ(θ) = Vθ[T(X)]

The second derivative is positive semi-definite, so Φ(θ) is convex in θ.



A Convex Perspective
The log partition function and the negative entropy are intimately related. We express the
negative entropy as a function of the mean parameter:

Ψ(µ) = Eθ[logP (X|θ)] = θ>µ− Φ(θ)

θ>µ = Φ(θ) + Ψ(µ)

The KL divergence between two exponential family distributions p(X|θ′) and p(X|θ) is:

KL(P (X|θ)‖P (X|θ′)) =KL(θ‖θ′) = Eθ[logP (X|θ)− logP (X|θ′)]
=Ψ(µ)− (θ′)>µ + Φ(θ′) ≥ 0

Ψ(µ) ≥(θ′)>µ− Φ(θ′)

For any pair of mean and natural parameter vectors.
Because the minimum of the KL divergence is zero, and attained at θ = θ′, we have:

Ψ(µ) = sup
θ′

(θ′)>µ− Φ(θ′)

The construction on the RHS is called the convex dual of Φ(θ). For continuous convex
functions, the dual of the dual is the original function, thus:

Φ(θ) = sup
µ′
θ>µ′ − Ψ(µ′)



The Marginal Polytope

Φ(θ) = sup
µ′
θ>µ′ − Ψ(µ′)

The supremum is only over mean parameters that can in fact be expressed as means of the
sufficient statistics function:

M = {µ′|µ′ = EP ′(X)[T(X)] for some distribution P ′(X)}

M is a convex set. If X is discrete, it is a polytope called the marginal polytope.

• One view of inference is the computation of the log partition function via the maximization
over µ′, as well as of the maximizing mean parameters.

• There are two difficulties with the computation: optimizing over M is intractable, and
computing the negative entropy Ψ is intractable for many models of interest.

• Many propagation algorithms can be viewed as explicit approximations toM and Ψ.
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