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The Expectation Maximisation (EM) algorithm

The EM algorithm finds a (local) maximum of a latent variable model likelihood P (X,Y|θ).
It starts from arbitrary values of the parameters, and iterates two steps:

E step: Fill in values of latent variables according to posterior given data.

M step: Maximise likelihood as if latent variables were not hidden.

• Useful in models where learning would be easy if unobserved variables were, in fact,
observed (e.g. MoGs).

• Decomposes difficult problems into series of tractable steps.

• No gradients and learning rate.

• Framework lends itself to principled approximations.
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Equality if and only if αi = 1 for some i (and therefore all others are 0).



The Free Energy for a Latent Variable Model

Observed data X = {Xi}; Latent variables Y = {Yi}; Parameters θ.

Goal: Maximize the log likelihood (i.e. ML learning) wrt θ:

`(θ) = logP (X|θ) = log

∫
P (Y,X|θ)dY,

Any distribution, q(Y), over the hidden variables can be used to obtain a lower bound on the
log likelihood using Jensen’s inequality:

`(θ) = log

∫
q(Y)

P (Y,X|θ)
q(Y)

dY ≥
∫
q(Y) log

P (Y,X|θ)
q(Y)

dY
def
= F(q, θ).

Now,∫
q(Y) log

P (Y,X|θ)
q(Y)

dY =

∫
q(Y) logP (Y,X|θ) dY −

∫
q(Y) log q(Y) dY

=

∫
q(Y) logP (Y,X|θ) dY + H[q],

where H[q] is the entropy of q(Y).
So:

F(q, θ) = 〈logP (Y,X|θ)〉q(Y) + H[q]
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The E and M steps of EM

The lower bound on the log likelihood is given by:

F(q, θ) = 〈logP (Y,X|θ)〉q(Y) + H[q],

EM alternates between:

E step: optimize F(q, θ) wrt distribution over hidden variables holding parameters fixed:

q(k)(Y) := argmax
q(Y)

F
(
q(Y), θ(k−1)

)
.

M step: maximize F(q, θ) wrt parameters holding hidden distribution fixed:

θ(k) := argmax
θ

F
(
q(k)(Y), θ

)
= argmax

θ
〈logP (Y,X|θ)〉q(k)(Y)

The second equality comes from the fact that the entropy of q(Y) does not depend directly
on θ.
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EM as Coordinate Ascent in F
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The E Step

The free energy can be re-written

F(q, θ)=
∫
q(Y) log

P (Y,X|θ)
q(Y)

dY

=

∫
q(Y) log

P (Y|X, θ)P (X|θ)
q(Y)

dY

=

∫
q(Y) logP (X|θ) dY +

∫
q(Y) log

P (Y|X, θ)
q(Y)

dY

= `(θ)− KL[q(Y)‖P (Y|X, θ)]

The second term is the Kullback-Leibler divergence.

This means that, for fixed θ, F is bounded above by `, and achieves that bound when
KL[q(Y)‖P (Y|X, θ)] = 0.

But KL[q‖p] is zero if and only if q = p. So, the E step simply sets

q(k)(Y) = P (Y|X, θ(k−1))

and, after an E step, the free energy equals the likelihood.
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Coordinate Ascent in F (Demo)

One parameter mixture:

s ∼ Bernoulli[π]

x|s = 0 ∼ N [−1, 1] x|s = 1 ∼ N [1, 1]

and one data point x1 = .3.
q(s) is a distribution on a single binary latent, and so is represented by r1 ∈ [0, 1].
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Coordinate Ascent in F (Demo)
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EM for Learning HMMs
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Parameters: θ = {π, T,A}

Free energy:
F(q, θ) =

∑
Y1:τ

q(Y1:τ)(logP (X1:τ , Y1:τ |θ)− log q(Y1:τ))

E-step: Maximise F w.r.t. q with θ fixed: q∗(Y1:τ) = P (Y1:τ |X1:τ , θ)
We will only need the marginal probabilities q∗(Yt, Yt+1), which can also be obtained from
the forward-backward algorithm.
M-step: Maximize F w.r.t. θ with q fixed.
We can re-estimate the parameters by computing the expected number of times the HMM
was in state i, emitted symbol k and transitioned to state j.

This is the Baum-Welch algorithm and it predates the (more general) EM algorithm.



M step: Parameter updates are given by just ratios of expected counts
We can derive the following updates by taking derivatives of F w.r.t. θ.

• Let the posterior marginals be:

γt(i) = P (Yt = i|X1:τ) ∝ αt(i)βt(i)

ξt(ij) = P (Yt = i, Yt+1 = j|X1:τ) ∝ αi(i)P (Yt+1 = j|Yt = i)P (Xt+1|Yt+1 = j)βt+1(j)

• The initial state distribution is the expected number of times in state i at t = 1:

π̂i = γ1(i)

• The estimated transition probabilities are:

T̂ij =

∑τ−1
t=1 ξt(ij)∑τ−1
t=1 γt(i)

• The output distributions are the expected number of times we observe a particular
symbol in a particular state:

Âik =

∑
t:Xt=k

γt(i)∑τ
t=1 γt(i)

(or the state-probability-weighted sufficient statistics for exponential family observation
models).



EM Never Decreases the Likelihood
The E and M steps together never decrease the log likelihood:

`
(
θ(k−1)

)
=

E step
F
(
q(k), θ(k−1)

)
≤

M step
F
(
q(k), θ(k)

)
≤

Jensen
`
(
θ(k)
)
,

• The E step brings the free energy to the likelihood.

• The M-step maximises the free energy wrt θ.

• F ≤ ` by Jensen – or, equivalently, from the non-negativity of KL

If the M-step is executed so that θ(k) 6= θ(k−1) iff F increases, then the overall EM iteration
will step to a new value of θ iff the likelihood increases.
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Fixed Points of EM are Stationary Points in `
Let a fixed point of EM occur with parameter θ∗. Then:

∂

∂θ
〈logP (Y,X | θ)〉P (Y|X,θ∗)

∣∣∣∣
θ∗
= 0

Now, `(θ)= logP (X|θ)= 〈logP (X|θ)〉P (Y|X,θ∗)

=

〈
log

P (Y,X|θ)
P (Y|X, θ)

〉
P (Y|X,θ∗)

= 〈logP (Y,X|θ)〉P (Y|X,θ∗) − 〈logP (Y|X, θ)〉P (Y|X,θ∗)

so, d

dθ
`(θ)=

d

dθ
〈logP (Y,X|θ)〉P (Y|X,θ∗) −

d

dθ
〈logP (Y|X, θ)〉P (Y|X,θ∗)

The second term is 0 at θ∗ if the derivative exists (minimum of KL[·‖·]), and thus:

d

dθ
`(θ)

∣∣∣∣
θ∗
=

d

dθ
〈logP (Y,X|θ)〉P (Y|X,θ∗)

∣∣∣∣
θ∗
= 0

So, EM converges to a stationary point of `(θ).
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Maxima in F correspond to maxima in `

Let θ∗ now be the parameter value at a local maximum of F (and thus at a fixed point)

Differentiating the previous expression wrt θ again we find
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〈logP (Y,X|θ)〉P (Y|X,θ∗) −

d2

dθ2
〈logP (Y|X, θ)〉P (Y|X,θ∗)

The first term on the right is negative (a maximum) and the second term is positive (a mini-
mum). Thus the curvature of the likelihood is negative and

θ∗ is a maximum of `.

[. . . as long as the derivatives exist. They sometimes don’t (zero-noise ICA)].
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Partial M steps and Partial E steps

Partial M steps: The proof holds even if we just increase F wrt θ rather than maximize.
(Dempster, Laird and Rubin (1977) call this the generalized EM, or GEM, algorithm).

Partial E steps: We can also just increase F wrt to some of the qs.

For example, sparse or online versions of the EM algorithm would compute the posterior
for a subset of the data points or as the data arrives, respectively. You can also update the
posterior over a subset of the hidden variables, while holding others fixed...



Failure Modes of EM

EM can fail under a number of degenerate situations:

• EM may converge to a bad local maximum.

• Likelihood function may not be bounded above. E.g. a cluster responsible for a single
data item can given arbitrarily large likelihood if variance σm → 0.

• Free energy may not be well defined (or is −∞).



EM for Exponential Families

Defn: P is in the exponential family for Y,X if it can be written:

P (Y,X|θ) = h(Y,X) exp{θ>T(Y,X)}/Z(θ)

where Z(θ) =
∫
h(Y,X) exp{θ>T(Y,X)}d(Y,X)

E step: q(Y ) = P (Y |X, θ)

M step: θ(k) := argmax
θ

F(q, θ)

F(q, θ) =

∫
q(Y ) logP (Y,X|θ)dY − H[q]

=

∫
q(Y )[θ>T(Y,X)− logZ(θ)]dY + const

It is easy to verify that:
∂ logZ(θ)

∂θ
= EP (Y,X|θ)[T(Y,X)]

Therefore, M step solves:
∂F
∂θ

= Eq(Y )[T(Y,X)]− EP (Y,X|θ)[T(Y,X)] = 0



The Central Role of the Partition Function
The partition function Z(θ) of exponential families plays an important role in inference and
learning of such models.

• Undirected graphical models are exponential families if each factor in the model has an
exponential family form:

fi(YCi, XCi) = hi(YCi, XCi) exp{θ
>
i Ti(YCi, XCi)}

P (Y,X|θ) = 1

Z(θ)

∏
i

hi(YCi, XCi) exp

{∑
i

θ>i Ti(YCi, XCi)

}

• Likelihoods P (X|θ) are basically partition functions of undirected graphical models.

• Derivatives give the sufficient statistics of the models:

∇ logZ(θ) = µ = EP (Y,X|θ)[T(Y,X)]

• Second derivatives give the covariance of sufficient statistics:

∇2 logZ(θ) = EP (Y,X|θ)[(T(Y,X)− µ)(T(Y,X)− µ)>]

• Higher order derivatives give all cumulants, so logZ(θ) is the cumulant generative func-
tion of the exponential family distribution.

• Many approximate inference techniques are based on approximating logZ(θ).
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