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@ Suppose we observe the following data
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.or even a more elaborated GG mixture model
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o These estimators are result of a convergent MCMC
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— A convergent state of these MCMC estimators typically needs:

e Hyper-parameters specifications in the kernel f(- | x) and 1y
o Randomization of the parameters of RPMs 1
o Techniques to accelerate and attain convergence

— “General” RPMs partially ease some of these aspects, however
there is a tractability issue:

The more general the rpm the less manageable it becomes

Here we present a simplistic approach that addresses some of these
issues and explore its applications in depending settings
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e Stick-breaking weights

W]Z\/l7 W7:V7H(17\/j). /L22

Jj<i



L

Stick breaking weights

e Any discrete dist. on a Polish space (X, X') can be represented as
0.)
/’L(B):Zwiélj(B)7 BeXx, Zwi:1a.s.
i=1 i

e Make the “weights”, (w;);>1, and “locations”, (z;);>1 random
= p is a Random Prob. Measure (RPM)

e Stick-breaking weights

W1:V17 Wi:ViH(l_Vj)7 i22

j<i

e Let (V;);>1 indep. [0, 1]-valued r.v.’s with E[ ;- log(1 —V;)| = —oc



o

Dirichlet process Dy,

e Sethuraman (1994)

if V; % Be(1,0) and % %Sy (indep. of Vy's)

o  follows Ferguson (1973) Dirichlet process (1 ~ Dy, )
i.e. a stochastic processes, {i(B)}pex, with finite dim. dist.
(“(31)7 ceey “(Bk)) ~ DiriChlet(QVO(Bl)7 SUR) 0U0(Bk))

for all k£ > 1 and all partitions (B, ..., By) of X.
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Some basic properties of D,

° E[u(B)] = wn(B), Var[u(B)] = LB)1-ro(B)

0+1
Cov(u(Bsg), u(Bs)) = uo(BlﬂBz)gﬁ(Bn)Vo(Bﬂ
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Some basic properties of D,

° E[u(B)] = n(B), Var[u(B)] = “B)X1-t0(5)
Cov(u(Bs), u(Bs)) = VO(BlﬂBz);:(i(BﬂVo(Bz)

If X; | p id pand p ~ Dy, hence X; ~ vg, forallt =1,2,...
pl| X1,..., X5 ~ Doyytnpu, ( Conjugate posterior)

with p, =n"1>"" 0y,

n

0 n 0x,
Elp | X1,...,Xn] = 9 1n vy + ) i - Z jj’ , (Bayes estimator)

1=
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Some basic properties of D,

° E[u(B)] = n(B), Var[u(B)] = “B)X1-t0(5)
Cov(u(Bs), u(Bs)) = VO(BlﬂBz);:(i(BﬂVo(Bz)

If X; | p id pand p ~ Dy, hence X; ~ vg, forallt =1,2,...
pl| X1,..., X5 ~ Doyytnpu, ( Conjugate posterior)
with p, =n"1>"" 0y,

—61/4—”
T 0+n " 6+n

)
Zﬁ, (Bayes estimator)
n

=1

Elu| X1,..., X

® Dy, (1t pu is discrete ) =1
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0 can be seen as a precision param.
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Clustering induced by D,
e Since D, a.s. discrete, P(X; = X;) >0 fori#j
o (Xi,...,X,) can be encoded to (X7,..., X} ) unique values

e with random frequencies (NVy,..., Nk, ), i.e. ZK” Ni=n
@ The support of (Ny,..., Nk, ) is in bijection with

P, = Set of all partitions of {1,...,n}
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Clustering induced by D,

e Since D, a.s. discrete, P(X; = X;) >0 fori#j

o (Xi,...,X,) can be encoded to (X7,..., X} ) unique values
e with random frequencies (NVy,..., Nk, ), i.e. ZK” Ni=n
@ The support of (Ny,..., Nk, ) is in bijection with
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Clustering induced by D,

@ Summing over all posible partitions for fixed k

P(K, =k) =

k

(0)n

[s(n, k)

where s(n, k) for n > k > 1 Stirling numbers of the first type.

The precision
param. 0 also
controls the
grouping.

Too informative!
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BNP mixtures

For continuous data use p-mixtures

BNP mixture models

ind

Yi| Xi ~ f(Yi| Xy) i >1 (e.g. f(-) Leb. density)
iid
Xilp~p

e~ Q (e.g. a discrete RPM)

Equivalently
Yi | fAf  where f(-) = / f( | z)p(dx)
'

f(-) random density (Lo 84’: Q =D,)

Density estimation &  Clustering problems )
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BNP mixtures: Density estimation

A Bayes density estimator, e.g.

{ )|y (™) Z / fly ]z E [u(dz) | 2}, Plzt, € pr | V™)

PLE: /{

where z7,, = (27,...,2}) and py, € ’][”]
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BNP mixtures: Density estimation

A Bayes density estimator, e.g.

€ [f() | Y] Z [ A le) 3 Elulan) |ty Pl € pi Y1)

pkE} [n)
where 27, = (27,...,2}) and py, € @{f@]
E[p(dz) | 7., denotes the predictive
> For large n virtually impossible to evaluate exactly

> The need of MCMC methods is evident
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BNP mixtures: Posterior distribution on &,

e Posterior clustering under BNP mixture (or clustering likelihood!)

Plpx | Y] ocﬂ(" (ny,...,ng H/ H fyi | mi)vo(day)

ieJ;

where as before py € e@[’fl] and Jj :={i: X; = Xj}, ji=1,...,k
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BNP mixtures: Posterior distribution on &,

e Posterior clustering under BNP mixture (or clustering likelihood!)

Plpy, | Y] o I (01, H/nyz’iml/odwz)

16\7

where as before py € @{f@] and J; = {i: X; = X;»*}7 ji=1,...,k
> No longer exchangeable due to effect of f(- | z) the y’s
e Summing over all the partitions for fixed k we obtain the posterior

on the number of groups of size k =1,...,n

pk:GP[I‘;L:
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BNP mixtures: Toy example (10 data points)
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BNP mixtures: Toy example (10 data points)

° flyl0) =N(y|pA™"), p~ Doy, 5

vo(dp, dX) = N(p | 0, 2)Exp(X | D)dpdX o

> p2:{{U1~U4}{U5/UIO}} 0
— integer partition (n1,n2) = (4,6) o H
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BNP mixtures: Toy example (10 data points)
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vo(du,dX) = N(u | O, %)Exp(k | 1)dpdA 2
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> If & = 1 posterior mode is at pa : H

with P[ps | y™] = 0.332 -

0.0
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BNP mixtures: Toy example (10 data points)

© f(y|6)=N(y| "), u~ Doy, 3

vo(dp, dA) = N(u | 0, L2)Exp(A | 1)dudA s

> p2 = {{y1,- .-, ya}, {5, .-, y10}} 2

— integer partition (ny,ns) = (4,6) o
> If & = 1 posterior mode is at ps : H

with P[ps | y™] = 0.332 -

> Posterior on #groups: modeat k=3 _ . | , .

with P[K19 = 3| y™] = 0.39 & P[K1o = 2| y"™] = 0.37
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BNP mixtures: Toy example (10 data points)

o —
]

° f(yl0) =Ny |pmA™"), n~ Doy, 5
vo(dp, dA) = N(u | 0, R2)Exp(X | 1)dudA

> P2 = {{yh o 7y4}7 {y57 ceey le}}
— integer partition (ny,ns) = (4,6)

15 20

1.0

> If 0 = 1 posterior mode is at po
with P[ps | y™] = 0.332

> Posterior on #groups: mode at k = 3

0.5

]

-2 -1 0 1 2 3 4

0.0

with P[K1p =3 | y™] = 0.39 & P[K1o =2 | y™] = 0.37

IO =05 PKio=3|y"™] =031 &P[Kio=2]|y"] =059 —E(Ki)=21-
pIfO =5 P[Kio=3]|y"]=080&P[Kio=2]|y"]=002 — E(K) =528
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BNP mixtures: Toy example (10 data points)

o —
]

° f(yl0) =Ny |pmA™"), n~ Doy, 5
vo(dp, dA) = N(u | 0, R2)Exp(X | 1)dudA

> P2 = {{yh o 7y4}7 {y57 ceey le}}
— integer partition (ny,ns) = (4,6)

15 20

1.0

> If 0 = 1 posterior mode is at po
with P[ps | y™] = 0.332

> Posterior on #groups: mode at k = 3

0.5

]

-2 -1 0 1 2 3 4

0.0

with P[K1p =3 | y™] = 0.39 & P[K1o =2 | y™] = 0.37

> If 0 =05 P[Kio=3]y"™] =031 & P[Kio=2|y™] =059 —E(Ki)=21-
bIfO =5 P[Kio=3]y"™]=080& P[Kio=2|y™]=0.02 —E(Ki) =58~

Need to randomize (put a prior) on 0 for Dyp,
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A simplified RPM: Geometric weights

e Given that for the Dy, a randomization of ¢ is needed we could
instead consider the simplified RPM

H(B) = 3 Elwlon (B) = 3 ML= N 8.(B)

i=1 =1

where A = (0 +1)~! and A ~ Be(a, b), i.e. with geometric weights.
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.

A simplified RPM: Geometric weights

e Given that for the Dy, a randomization of ¢ is needed we could
instead consider the simplified RPM

u(B) =Y EWwo.,(B) =) A(1-\)""5.(B)
i=1 i=1
where A = (0 +1)~! and A ~ Be(a, b), i.e. with geometric weights.
> Namely, a DP with the randomness of the weights removed!

> This RPM has ordered weights!
> Still has full support wrt weak topology



Geometric weights
°

100 iter. BNP mixture model based on geom. weights

) = / Fly | 2)u(dz) = SOA1 =N F(y | 00)

1>1
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Geometric weights
°

Properties

So why is that it works so well?

Weights are ordered

But let us find an alternative explanation for it!
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Geometric weights
°

MCMC methods: via slice sampler (Walker 07)

=S wifly] =) *)
=1

> Infinite summation becomes a problem since w;’s are not ordered

e Augment (*) through a uniform latent variable

Z]Iu<wj (y | z)

e Given u the set 4, :={j: W., > u} is finite.
The infinite summation disappear since the summation in

fly | u) (y | 2 is finite
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Geometric weights
°

Random set A,

@ So A, is a finite subset of the set of positive integers

For the DP weights the A, typically generates set of integers
with gaps, e.g. {2,5, 16,40, 200, 3029}

(]

But given that the representation
o
p(B)=> wid.,(B), BeX
i=1

includes a infinite number of locations z;’s

@ The same mass could be attained with a set {1,2,3,4,5,6}

No need for the gaps!!
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flylA)= Any’Zz

jEA

with A a finite random subset of N4



Geometric weights
°

A different construction of the weights

Consider the random density defined by
flyl A A > flylz)
jEA

with A a finite random subset of N4

e Here we look at A = {1,..., N} with N ~ gy so
| N
fyIN) =5 D fulz)
j=1
which marginalizing corresponds to

fly Z{ Zf m}

=1



Geometric weights
°

A different construction of the weights

This can be seen as a BNP mixture with weights

o0

N=i

gn a prob. mass function on N



Geometric weights
°

A different construction of the weights

This can be seen as a BNP mixture with weights

o0

N=i
gn a prob. mass function on N

> Weights are ordered!



Geometric weights
°

A different construction of the weights

This can be seen as a BNP mixture with weights

o0

wlzzqﬁ\

N=i
gn a prob. mass function on N
> Weights are ordered!

For example if ¢y is a Neg — Bin(r, A) we get

1<i+7‘—2
W; = —
7 r—1

>)\T(1 — N ThFi(Li+r =i+ 1A
which for » = 2 we recover the geometric case

w; = A1 — A\t
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Dependent processes

What happens with a different type of dependence?
Namely, we have observations typically capture with models such as:
o Xni1 = 6Xn +51
e dX; = a(Xy,0)dt + o(Xy, 0)dW,
X, = f(Z,8)

o etc..

We still want to be nonparametric!

@ Nonparametric dependent random measures, i.e

{/lfn/};;o:()s {,Ut}tz(); {,U‘Z}ZGZ



Dependent processes

oe

Covariate dependent
e Introduce dependence through {\,},cz

c£(2)

A =1 T et

{£(2)} ~ GP(p, 0)

Ns = /y [=(y)dy

D=> A1 =) f(y | 6)

>1




Dependent processes
°

Let’s look at a continuous time dependent NP process.

p(t) = wilt) 0y

i>0
where, for each i > 0, {w;(t)}+>0, {xi(t) }+>0 are certain ad hoc
stochastic processes.

o In general we might think yu(t) inherits some of the continuity
and stability properties of the processes {w;(t)} and {z;(¢t)}



Dependent processes
.

Geometric stick-breaking process

Let {u(t),t > 0} a stochastic process with values on Px defined on
(Q, #,P) such that for each t > 0

pt) =MD (1= X)' " by,

i>0

where 1 is an non-atomic distribution on (X, B(X)) and {\}¢>0 is a
diffusion process with paths in Cjg1;([0, 00)) and infinitesimal
generator

c d c d?
p— —_—— _— — 1_ I
A= a1 <a+bm} ot a1 Ve

with domain 2(A) = C%([0,1]). We name {u(t),t > 0} the Geometric
Stick Breaking process with parameters (a, b, ¢, ) denoted by

GSB(a, b, ¢, 1)




Dependent processes
°

Geometric stick-breaking process

e {)\:}i>0 is a diffusion process with the following features:

o Stationary with invariant distribution Be(a,b)
o Reversible

o When ¢:= (a+b—1)/2 = {\ };>0 Wright-Fisher model

Which of these properties are inherited by u; ~ GSBP(a,b, ¢, 1p)?

o Let #,(X) C Px the set of purely atomic probability measures
on X



Dependent processes
°

Propiedades GSB(a, b, ¢, 1)

Proposition

|

Let {ut}e>0 a GSB(a, b, ¢, 1) process. Then, {4 }:>0 has an
infinitesimal generator given by

a 0 : )
B@m(,u)=<2(1— —A) Z fxll,...,xim)ah()\;m,zl,...,zm)
015y im 21
FIN=2) DD Fnre s Bi) Sy )
. 2 Tirs s Tin) Gy MM, 01
21y-5tm 2

with domain
2(8) = {¢ € C(Zy(X)) : @ = pm(w) = {f,4™), | € CX™), m € N}

and where

RO\ my ity ey im) = A (1 — ,\t)Z?‘:m—m_



Dependent processes
°

Properties of GSB(a, b, ¢, 1)

Proposition

Let X be a Polish space, {pu}+>0 a GSB(a, b, ¢, 1) process on Z,;(X).
Hence {11t }:>0 is a Feller process with trajectories on C, (x)([0, 00)).

Proposition

Let X be a Polish space, {1 }+>0 a GSB(a, b, ¢, ) process on Z4(X).
Hence {yt}+>0 is reversible and strictly stationary.

Summing up, {p}+>0 is a diffusion process with values in the space of
purely atomic probability measures, with continuous trajectories,
stationary and reversible!



Dependent processes
°

Mixtures of GSB(a, b, ¢, 1) process

o If we require that the process takes values on Z.(X) C Px
(all continuous prob. measures), we consider

A1) = [ 701 ) = S x(1 =2 60

>1

where f(- | #) is a well defined Lebesgue density and 6, id Vo, 1
non-atomic.
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Estimation for single trajectory data

Sup. we observe only one trayectory {y, }1*; and we use the mixture
model. In hierarchical notation

Yi | tiy i ~ f(- | 24) (1)
{l’z} ~
ue ~ GSB(a, b, c,1p).
where z; := zy,.

o We will estimate this model through a Gibbs sampler algorithm
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Diffusion part {\;}

The transition density for {\;} can be expressed as

p(Ae | Xo) = th D(Aelm, Ao)
m=0
where ( ) .
_ a+ meimc —ctya+b
u(m) = “EImE (1 - eet)
and

D(M\im, Xo) = > Be(Mila + k, b+ m — k) Bin(k[m, Ao).
k=0

(M. and Walker, 2009)
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Diffusion part {\;}

@ Sup. we have observations (¢;, s;), where

si | Ai ~ Geom()\;)
(Ay.. oy An) ~ WF(a, b, c)

With the fidis for {\;} given by
p(A1s- - An) = p(ho) [T p(Ni | Aic1),  where A := Ay,
=1

and p(Xo) = Be(Ao | a,b)

p(Ai | Ai—1) has an infinite summation = slice it!

p(A | Ao) = 9

D(A¢|m, Ao)
m= 0

where g is a decreasing func. with known inverse, e.g. g(m) = e
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Diffusion part {\;}

o Augment the transition density via the latent variables
(uia di7 kl)?:l

P(Nisui, ki di | Ai—1) =

1(u; < g(dy)) qi((ji)) Be(Aila + ks, b+ d; — ki) Bin(ki|ds, Ni—1)
gla;

Hence, the likelihood for the “complete data” is

I(a,b,c) = Beta(Aola, b) [ [ (i, wiy ki, dilAi—1) Aa(1 = Xg)% !
=1

If we assume priors for a, b, c i Exp(1) then the posterior
distributions 7(a | b,¢,...) x l(a,b,c)e”?, etc. are log-concave, e.g.

n
logm(cla,b,...)= Z {(a+b)log(l —e ") —dicr;} —c+C,
i=1
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Condicionales completas

d; 1(k; € {0,1,...,d;}) i ki
kil ...) x < k; ) Fla+ k)T(b+d; — k) {(1 — ) (1 _1 )\i—l)}

easy to sample as it takes a finite number of values

7T(uz' | .. ) = U[ng(di)}(ui)

D(a+d+ d;)2e®l=cnl 1(k; < d; < loguz)

T PR gy T (ds — e+ DU = A ) (= A}

Also finite due to the u;’s
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Complete conditionals

The complete conditionals for \;, i # 0,n, are given by
W()\z| .. ) = Beta(l +a+ki+kip1,8 —1+b+d;+dip1 — ki — k‘i+1),

and
F(Aoy .. ) = Beta(a+ ki,b+d — kl)

and

T(An|...) =Beta(l +a+kyp,sp, —1+b+dy — ky).
This procedure via the latent variables could also be useful to
estimate other diffusion processes
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Gibbs sampler

For the remaining part of the model we use a similar idea “slice”
o That is, we “augment” the model

yiltis Xiy 0 ~ > N1 =X)7 F(wil6h),
=1

with two random variables (s;,v;) and {¢;} ( a seq. of decreasing
numbers s.t. {{ : ¢ > v} is a known set), i.e.

Yi, Vi, Si’/\lﬁ 6 ~ 1/1;11(%‘ < 1/}51> )‘i(l - )‘i)Si_l f(yz‘651>
In this way
m(si|...) 'z/);l)\i(l — /\i)‘”*1 f(wilbs,) 1(si € {19 > vi})
)= U, (vi)
w0 ...) o [ Fwil6)go(6) for I=1,... max{l: ¢ > v}

si=l

(v ..
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Gibbs sampler

Summarizing, we need

o m(a|b,c,...), m(b]|a,c,...)and 7(c| a,b,...) (via ARS)

o w(ki|...), m(ui|...) y m(d;|...) (via Inverse CDF)

o w(\|...) (Beta s)

o 7(si|...) and m(v;|...) (via Inverse CDF)

o m(0;...) (if f y go are conjugated |/ otherwise via ARMS, M-H,
ete)

A bit long, but only a very simple Gibbs sampler
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Figura: MC estimator for 7; (solid) and corresponding 99 %
highest posterior density intervals (dotted) for the S&P 500 data
set (dots). The estimates are based on 10000 iterations of the
Gibbs sampler algorithm after 2000 iterations of burn in.
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Figura: MCMC density estimator for the random density process,
f+, (heat contour), mean of mean functional 7, (solid) for the S&P
500 data set (dots). The estimates are based on 10000 effective
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EPPF

HZ(nl,nzy---,nk) = (1:\/\> 2(1 — )\)Elenzjz
)k

Then, one can obtains results such as

when £ is large

)\ n
I (1, mg, o me) ~ <1_)\> (1 — M) 2@ +thng

(M. and Walker, 2012)



Thanks !
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