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G ∼ DP(α,H)
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G0 ∼ DP(γ,H)

G | G0 ∼ DP(α,G0)
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G0 ∼ DP(γ,H)

Gj | G0 ∼ DP(αj ,G0) j = 1, . . . , J
θij | Gj ∼ Gj i = 1, . . . ,NJ

xij | θj ∼ F (θij)
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G0 ∼ PY(γ,H)

G1 | G0 ∼ PY(α1,G0)

G2 | G1 ∼ PY(α2,G1)
...
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Hierarchical Dirichlet Processes

Main idea: make the base measure of a DP a draw from
another DP:

G0 ∼ DP(γ,H)

Gj | G0 ∼ DP(αj ,G0) j = 1, . . . , J

Induces sharing of atoms among the Gj
I Atoms are are inherited from G0
I Each Gj has a distinct set of weights associated with the

atoms
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HDP: Stick-breaking Representation

Stick-breaking representation of the DP G0 ∼ DP(γ,H):

G0 =
∞∑

k=1

βkδθ∗∗k

where for k = 1,2 . . .

νk ∼ Beta(1, γ) βk = νk

k−1∏
l=1

(1− νl) θ∗∗k ∼ H
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HDP: Stick-breaking Representation

Stick-breaking representation of the DP G0 ∼ DP(γ,H):

G0 =
∞∑

k=1

βkδθ∗∗k

The support of each Gj is contained within the support of
G0, so that for each j = 1, . . . , J

Gj =
∞∑

k=1

πjkδθ∗∗k

What is the relationship between β and πj?
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HDP: Stick-breaking Representation
Stick-breaking representation

G0 =
∞∑

k=1

βkδθ∗∗k
Gj =

∞∑
k=1

πjkδθ∗∗k

Interpreting β and πj as discrete probability measures on
{1,2, . . .} we have

πj | β ∼ DP(αj ,β)

Using the defining property of the DP, we can explicitly
construct πjk given βk as follows:

νjk ∼ Beta

(
αβk , α

(
1−

k∑
l=1

βl

))
πjk = νk

k−1∏
l=1

(1− νjl)

10 / 45



HDP: Stick-breaking Representation
The weights are equal to the base distribution in expectation

E [πjk ] = E [βk ] = γk−1(1 + γ)−k

However, the variance of the weight is higher, typically
leading to “sparser” πj

Var[πjk ] = E
[
βk (1− βk )

1 + α

]
+ Var[βk ] > Var[βk ]
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HDP: Chinese Restaurant Franchise

The CRP describes the marginal distribution of draws
θi ∼ G, G ∼ DP(α,H) with G integrated out

The CRF extends the Chinese Restaurant metaphor for
draws from a hierarchical model G0 ∼ DP(γ,H) and
Gj | G0 ∼ DP(αj ,G0)

The idea is to have a “franchise” with a shared menu of
dishes
In each restaurant, dishes are chose with probability
proportional to the total number of tables serving them (in
the entire franchise)
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HDP: Chinese Restaurant Franchise
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HDP: Chinese Restaurant Franchise

Some notation
I i-th customer in j-th restaurant θji ∼ Gj
I t-th table in j-th restaurant θ∗jt ∼ G0
I k -th dish θ∗∗k ∼ H
I Customer i in restaurant j sits at table tji and table t serves

dish kjt
I θji = θ∗jtji = θ∗∗kjtji
I njtk number of customers in restaurant j around table t

serving dish k
I mjk number of tables in restaurant j serving dish k
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HDP: Chinese Restaurant Franchise
Recall the CRP for the DP θi ∼ G, G ∼ DP(α,H):

θi |θ1, . . . , θi−1 ∼
α

α + n·
H +

T∑
t=1

nt

α + n·
δ∗θt

In the HDP, integrating out the Gj we have similarily:

θji | θj1, . . . , θji−1,G0 ∼
αj

αj + nj··
G0 +

mj·∑
t=1

njt ·

αj + nj··
δθ∗jt

And for the customers in the higher-level restaurant

θ∗jt | θ∗ ∼
γ

γ + m··
H +

K∑
k=1

m·k
γ + m··

δθ∗∗k
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HDP: Chinese Restaurant Franchise
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HDP-LDA
Recall the standard LDA model

Within each document, each word is drawn from a finite
mixture model, where each mixture component is a
distribution over words (a “topic”)
The mixture components are shared between documents,
but their weights differ.
Can we take T →∞?
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HDP-LDA

G0 ∼ DP(γ,H)

Gj | G0 ∼ DP(αj ,G0) j = 1, . . . , J
θij | Gj ∼ Gj i = 1, . . . ,NJ

xij | θj ∼ F (θij)
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The Infinite HMM

A traditional Hidden Markov Model is described by a set of
states θ1, . . . , θK , a transition distribution π(θt |θt−1) and an
emission distribution f (xt |θt)

Note that this defines a set of mixture distributions – one for
each state – with shared mixture components
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The Infinite HMM
We can define the iHMM as
an infinite collection of DP
draws Gθ with a common
base measure G0,
representating the
transition distributions.
However, the description
becomes clearer in the
stick-breaking
representation:

θ∗∗k ∼ H
β ∼ GEM(γ)

πθ∗∗k
∼ DP(α,β)
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Hierarchical Pitman-Yor Processes
Same idea as with the HDP, but with a PYP:

G0 ∼ PY(d0, α0,H)

Gj | G0 ∼ PY(dj , αj ,G0) j = 1, . . . , J

Useful if distributions have known power-law properties
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Pitman-Yor Process

What does PY(G|α, d ,H) look like?
No closed form expression, but can draw G ∼ PY(α, d ,H)

PYP(0,0.1,1/3) PYP(0,0.5,1/3) PYP(0,0.9,1/3)

PYP(0.1,0,1/3) PYP(3,0,1/3) PYP(50,0,1/3)
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HPYP: Stick-breaking Representation

Stick-breaking representation of the PYP G0 ∼ DP(d , α,H):

G0 =
∞∑

k=1

βkδθ∗∗k

where for k = 1,2 . . .

νk ∼ Beta(1− d , α + kd) βk = νk

k−1∏
l=1

(1− νl) θ∗∗k ∼ H
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HPYP: Chinese Restaurant Process

Customers labeled {1, . . . , c} enter restaurant sequentially
Customer i either joins other customers or sits at a new
table

P(join table a) ∝ |a| − d P(new table) ∝ α + |Ai−1|d

where Ai−1 ∈ Ai−1 is the current arrangement and a ∈ A
Induces CRPc(α, d), a distribution over Ac

Let G ∼ PY(α, d ,H) and x1:c|G
iid∼ G; equivalently draw

A ∼ CRPc(α, d) θa ∼ H for all a ∈ A

and set xi = θa for all i ∈ a.
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HPYP: Chinese Restaurant Process

CRP seating arrangement with c customers around t
tables; A ∼ CRPc(α, d):

P(A) =
[α + d ]

|A|−1
d

[α + 1]c−1
1

∏
a∈A

[1− d ]
|a|−1
1 for each A ∈ Ac, (1)

CRP with fixed # of tables t ; A ∼ CRPct(α, d)

P(A) =

∏
a∈A[1− d ]

|a|−1
1

Sd (c, t)
for each A ∈ Act ,

Normalization constant is a generalized Stirling number of
type (−1,−d ,0)
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Joint & Predictive Distribution

Joint distribution of all seating arrangements

P({cus, tus,Aus}, x1:T ) =

∏
s∈Σ

H(s)tεs

 ∏
u∈Σ∗

 [αu + du]tu·−1
du

[αu + 1]cu·−1
1

∏
s∈Σ

∏
a∈Aus

[1− du]
|a|−1
1

 .

Predictive distribution

P∗v (s) =
cvs − tvsdv

αv + cv·
+
αv + tv·dv

αv + cv·
P∗σ(v)(s).

The numbers of customers and tables have to satisfy the constraints

cus = cx
us +

∑
v:σ(v)=u

tvs, (2)

where cx
us = 1 if s = xi and u = x1:i−1 for some i , and 0 otherwise.
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HPYP Sequence Model

Model for discrete sequences with power law properties
I P(x1:N) = P(x1)

∏N
i=2 P(xi |x1:i−1)

Directly estimate the set {P(·|x1:i−1)}i=1,...,N

Treat distributions P(·|x1:i−1) as random variables;
call them G[x1:i−1](·)

I G[u](t) = probability of observing symbol t in context u

1 Make prior assumptions about each individual G
I Pitman-Yor process prior: G ∼ PY(α,d ,H)

2 Make use of hierarchical structure
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HPYP Language Model

G[] | d0, α0,H ∼ PY(d0, α0,H)
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HPYP Language Model

G[] | d0, α0,H ∼ PY(d0, α0,H)

G[u] | d|u|, α|u|,G[σ(u)] ∼ PY(d|u|, α|u|,G[σ(u)]) ∀u ∈
⋃

k≤m

Σk
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x1:5 = (o,a,c,a,c)

[]o
[o]a
[oa]c
[oac]a
[aca]c
[cac]

H

G[ ]

G[c]

c
G[a]

a
G[o]

o

G[ac]

a
G[oa]

o
G[ca]

c

G[cac]

c
G[oac]

o
G[aca]

a

o

a

c

a c
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Sequence Memoizer: Details

1 At the root:

Gε | αε,dε,H ∼ PY(αε,dε,H)

2 For all possible contexts u ∈ Σ+:

G[u] | αu,du,G[σ(u)] ∼ PY(αu,du,G[σ(u)])

3 Draw observations from context-dependent distributions:

xi | x1:i−1 = u ∼ G[u] i = 1, . . . ,T
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Sequence Memoizer: Illustration

Hierarchical prior over distributions arranged in a context
tree
Prior assumption E[G[u](·)|G[σ(u)]] = G[σ(u)](·)

x1:5 = (o,a,c,a,c)

[]o
[o]a
[oa]c
[oac]a
[oaca]c
[oacac]

G[oacac]

G[acac]

G[cac]

G[ac]

G[c]

G[ ]

G[a] G[o]

G[ca]

G[aca]

G[oaca]

G[oa]

G[oac]

c

a

a

c

c

c

c

a

a

o

o

o

o
a

o

a

o

H
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Marginalization: O(n2)→ O(n)
H

G[ ]

G[c]
c

G[a]

a
G[o]

o

G[ac]
a

G[oa]
o

G[ca]

c

G[cac]
c

G[oac]

o
G[aca]

a

G[acac]
a

G[oaca]

o

G[oacac]
o

o

a

c

a

c
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Marginalization

G[ ]

G[c]

c

G[ac]

a

G[ ]

G[ac]

ac

Theorem (Pitman, 1999; Ho et al., 2006):

If

G[c]|G[ ] ∼ PY(αd1,d1,G[ ])

G[ac]|G[c] ∼ PY(αd1d2,d2,G[c])

then
G[ac]|G[ ] ∼ PY(αd1d2,d1d2,G[ ])

with G[c] marginalized out.

I.e. we set αu = ασ(u)du.
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HPYP: Coagulation & Fragmentation

a1 a2

C

Illustration of the relationship between the
restaurants A1, A2, C and Fa.

A1

A2

Fa1 Fa2

Theorem: Suppose A2 ∈ Ac, A1 ∈ A|A2|, C ∈ Ac and
Fa ∈ A|a| for each a ∈ C are related as above. Then the
following describe equivalent distributions:
(I) A2 ∼ CRPc(αd2,d2) and A1|A2 ∼ CRP|A2|(α, d1)
(II) C ∼ CRPc(αd2,d1d2) and Fa|C ∼ CRP|a|(−d1d2,d2)
for each a ∈ C
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Language Modeling Results
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Results: Text Compression
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CRF Gibbs Sampler for Conjugate HDP
Basically the hierarchical extension of the conjugate
sampler for DP mixture models

In the non-conjugate case, extensions similar to the ones
developed for the non-nojugate DP mixture model can be
used
In many models for discrete data (especially HPYP
models), the observed data are direct draws from the
random distributions G
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Inference using Stick-breaking

Variational inference can be performed in the stick-breaking
representation
Usually the number of stick pieces is fixed to some finite
number
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CRP Representations

a

1

3

a

2

a

5

b

4

6

b

7

Name Representation Size
PARTITIONS {{1,3}, {2}, {5}, {4,6}, {7}} O(c)

COUNTS [2,1,1] [2,1] O(t)
COMPACT (4,3) (3,2) O(1)

HISTOGRAM [1 : 2,2 : 1] [1 : 1,2 : 1] O(t)

The new COMPACT representation only stores
the # of customers and the # of tables (per type). 39 / 45



Gibbs Samplers

Re-seating sampler
I Iterate through all contexts/restaurants u and symbols s ∈ Σ
I Sequentially remove and re-insert all cus customers
I If removing/inserting a customer leads to removal/creation of

a table, update the parent restaurant by removing/inserting a
customer

I In all but the PARTITIONS representation, there is no explicit
customer-table assignment =⇒ sample table to remove from
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Non-Compact Gibbs

Pick table k to remove customer from with probability ∝ cusk

Remove customer from selected table (recursively)
Insert customer again (recursively)
Time complexity: O(cus × tus)
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Compact Original Gibbs Sampler

Compute probability that a randomly chosen customer sits
alone

P(decrement tus) =
Sdu(cus − 1, tus − 1)

Sdu(cus, tus)

Flip coin; if tus decremented, remove customer from parent
Insert customer again (recursively)

P(increment tus) =
(αu + dutu·)P∗σ(u)(s)

(αu + dutu·)P∗σ(u)(s) + cus − tusdu

Time complexity: O(cus × tus); large constant because of
log/exp
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Re-Instantiating Gibbs Sampler

Re-instantiate table sizes for restaurants along the path to u
Apply original Gibbs sampler
Discard sizes of individual tables
Time complexity: O(cus × tus); no log/exp necessary
Preferred choice for compact representation
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Direct Gibbs Sampler

Instead of removing/inserting individual customers, sample
tus ∈ {1, . . . , cus} directly from

P(tus|rest) ∝
[αu + du]tu·−1

du

[ασ(u) + 1]
cσ(u)·−1
1

Sdu(cus, tus)Sdσ(u)
(cσ(u)s, tσ(u)s)

Time complexity: O(c2
us); slow (need log/exp operations)
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