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G ~ DP(«a, H)



Go ~ DP(v, H)
G| Gg ~ DP(a, Gp)
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GO ~ DP(77 H)

G| Go ~ DP(aj, Go) j=1,...
01 G ~ G i=1,...

X | 0; ~ F(0)
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Gg ~ PY(~, H)
Gy | Go ~ PY(ay, Gp)
Go | Gy ~ PY(ag, Gy)



@ Hierarchical Dirichlet Processes

» Representations: Stick-breaking and Chinese Restaurant

Franchise
» Prominent Models

* HDP-LDA
* Infinite HMM

@ Hierarchical Pitman-Yor Processes
» Representations
© Sequence Memoizer

» Model
» Coagulation-Fragmentation Properties

© Inference

6/45



Hierarchical Dirichlet Processes &

@ Main idea: make the base measure of a DP a draw from
another DP:

GOND,P(’V?H)
Gj|GoN’D'P(Oéj,Go) j:17...,J
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Hierarchical Dirichlet Processes &

@ Main idea: make the base measure of a DP a draw from
another DP:

GOND,P(V?H)
Gj|GoN’D'P(Oéj,Go) j:'l,...,J

@ Induces sharing of atoms among the G;

» Atoms are are inherited from G
» Each G; has a distinct set of weights associated with the
atoms
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HDP: Stick-breaking Representation #

@ Stick-breaking representation of the DP Gy ~ DP(~, H):

Go = ) _ Brdo;-
k=1

where fork =1,2. ..

k—1
ve~Beta(1,9)  Be=w[[(1-w) 6 ~H
=1
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HDP: Stick-breaking Representation #

@ Stick-breaking representation of the DP Gy ~ DP(~, H):

Go = Zﬂk&);*
P

@ The support of each G; is contained within the support of
Go, so thatforeachj=1,...,J

o
Gj: E ij(;e;*
k=1

@ What is the relationship between 3 and =;?
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HDP: Stick-breaking Representation #

@ Stick-breaking representation

Go = Z Brdg:- G = Z TjkOp;*
p p

@ Interpreting 8 and =; as discrete probability measures on
{1,2,...} we have

;| B~ DP(o, B)

@ Using the defining property of the DP, we can explicitly
construct 7y given S as follows:

k k—1
vk ~ Beta <aﬁk,a <1 - Zﬁ/)) Tjk = Vk H(1 = Vj)
I=1 I=1
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HDP: Stick-breaking Representation

@ The weights are equal to the base distribution in expectation

weights
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E[Bk] =

@ However, the variance of the weight is higher, typically
leading to “sparser”

E {W] + Var[gk] > Var[3]
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HDP: Chinese Restaurant Franchise #

@ The CRP describes the marginal distribution of draws
0; ~ G, G ~ DP(«a, H) with G integrated out
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HDP: Chinese Restaurant Franchise #

@ The CRP describes the marginal distribution of draws
0; ~ G, G ~ DP(«a, H) with G integrated out

@ The CRF extends the Chinese Restaurant metaphor for
draws from a hierarchical model G, ~ DP(v, H) and
Gy | Go ~ DP(aj, Go)
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HDP: Chinese Restaurant Franchise #

@ The CRP describes the marginal distribution of draws
0; ~ G, G ~ DP(«a, H) with G integrated out

@ The CRF extends the Chinese Restaurant metaphor for
draws from a hierarchical model G, ~ DP(v, H) and
Gj | Go ~ D'P(Oéj, Go)

@ The idea is to have a “franchise” with a shared menu of
dishes

@ In each restaurant, dishes are chose with probability
proportional to the total number of tables serving them (in
the entire franchise)
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HDP: Chinese Restaurant Franchise #
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HDP: Chinese Restaurant Franchise #

@ Some notation

» i-th customer in j-th restaurant 9,, ~ G;

» t-th table in j-th restaurant 63 ~ Gy

» k-thdish6;* ~ H

» Customer i in restaurant j sits at table t; and table t serves
dish ki

> O «9]*% =6

1tij

» N number of customers in restaurant j around table t
serving dish k

» mj number of tables in restaurant j serving dish k
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HDP: Chinese Restaurant Franchise #
@ Recall the CRP for the DP 6; ~ G, G ~ DP(«, H):

.
(0%

O1,...,0i1 ~ H 5

0il61, . ... 01 ot +IZ +n9’
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HDP: Chinese Restaurant Franchise #
@ Recall the CRP for the DP 6; ~ G, G ~ DP(«, H):

.
(0%

O1,...,0i1 ~ H 5

0il61, . ... 01 ot +IZ +n9’

@ In the HDP, integrating out the G; we have similarily:

ny

Nj.
Go + / 59;;
aj + n;. p—" aj + n;.

]

Oi | 0j1,...,0i-1,Go ~
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HDP: Chinese Restaurant Franchise #

@ Recall the CRP for the DP 6; ~ G, G ~ DP(«, H):

.
(0%

O1,...,0i1 ~ H 5

0il61, . ... 01 ot +IZ +n9’

@ In the HDP, integrating out the G; we have similarily:

ny

Nj.
Go + / 59;;
aj + n;. p—" aj + n;.

]

Oi | 0j1,...,0i-1,Go ~

@ And for the customers in the higher-level restaurant

0| 0" ~
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HDP: Chinese Restaurant Franchise #
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HDP-LDA &

@ Recall the standard LDA model
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HDP-LDA &

@ Recall the standard LDA model

TN P &5
\ (2

), &, & .
T 4D

@ Within each document, each word is drawn from a finite
mixture model, where each mixture component is a
distribution over words (a “topic”)

@ The mixture components are shared between documents,
but their weights differ.
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HDP-LDA &

@ Recall the standard LDA model

(@) (5)
\“ ')
i
/g l\.
FTON P /]\
( \ (2
), &, & .
T 4D

@ Within each document, each word is drawn from a finite
mixture model, where each mixture component is a
distribution over words (a “topic”)

@ The mixture components are shared between documents,
but their weights differ.

@ Canwetake T — c0?
17 /45



HDP-LDA "

Go ~ DP(~, H)
G| Go~DP(0j,Go) j=1,....J
0i | G~ Gj i=1,...,N,
Xjj | 0 ~ F(0y)

—— %7
OO

S
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The Infinite HMM &

@ A traditional Hidden Markov Model is described by a set of
states 04, ..., 0k, a transition distribution 7(6;|6;_1) and an
emission distribution f(x;|0;)

@ Note that this defines a set of mixture distributions — one for
each state — with shared mixture components
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The Infinite HMM #

@ We can define the iHMM as
an infinite collection of DP
draws G, with a common
base measure Gy,
representating the
transition distributions.

@ However, the description
becomes clearer in the
stick-breaking

/ (l(()
representation:

/
— @P—
B ~ GEM(7)

moz- ~ DP(av, B)

7

1O—6

&

G@
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Hierarchical Pitman-Yor Processes
@ Same idea as with the HDP, but with a PYP:

Go ~ PY(db, o, H)
Gj|GoN'Py(dj,Oéj,Go) j:1,...,J

21/45



Hierarchical Pitman-Yor Processes e

@ Same idea as with the HDP, but with a PYP:
Go ~ PY(ah, ag, H)
Gj|GoN'Py(dj,Oéj,Go) j:1,...,J

@ Useful if distributions have known power-law properties

10° . .
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o
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# customers per table

0|
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Pitman-Yor Process L

@ What does PY(G|a, d, H) look like?
@ No closed form expression, but can draw G ~ PY(«, d, H)

PYP(0,0.1,1/3) PYP(0,05,1/3) PYP(0,09,1/3)

PYP(0.10,1/3) PYP(50,0,173)
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HPYP: Stick-breaking Representation #

@ Stick-breaking representation of the PYP Gy ~ DP(d, «, H):

Go = ) _ Brdo;-
k=1

where fork =1,2. ..

k—1
ve~Beta(1—d,a+kd)  Be=w][(1-w) O ~H
=1
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HPYP: Chinese Restaurant Process #

@ Customers labeled {1, ..., ¢} enter restaurant sequentially

@ Customer J either joins other customers or sits at a new
table

P(join table a) « |a| — d P(new table) oc a + |A;_+|d

where A;_1 € A;_4 is the current arrangementand a € A
@ Induces CRP.(a, d), a distribution over A,

@ Let G ~ PY(, d, H) and x1.,|G * G; equivalently draw
A ~ CRP¢(, d) 0,~H forallac A

and set x; =0, forall j € a.
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HPYP: Chinese Restaurant Process #

@ CRP seating arrangement with ¢ customers around t
tables; A ~ CRP.(«, d):

fo+a"
[a+1]5

P(A) — [ —df" foreachAe A, (1)

acA

@ CRP with fixed # of tables t; A ~ CRP4(a, d)

p(a) - acall ~ 17

S.G.0) for each A € A,

@ Normalization constant is a generalized Stirling number of
J[ype (_1 ) _d7 0)
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Joint & Predictive Distribution &

@ Joint distribution of all seating arrangements

ty. —1
([au+du] - a1> |

cy.—1
[ U+1] - SEY acAus

P({Cl-lsvtus Aus} X1 T (H H fas) H

sex uexr*

@ Predictive distribution

Cvs — lusOv ay + .0y
Py = P* 1 (S).
v(s) av + ov. + av + cv. G(V)( )

@ The numbers of customers and tables have to satisfy the constraints

Cus = CJS + Z tvs, (2

vio(V)=u

where ¢ = 1if s = x; and u = xy.,_¢ for some i, and 0 otherwise.
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HPYP Sequence Model #

@ Model for discrete sequences with power law properties
> P(x1:n) = P(x1) TTo P(xi[X1:i-1)
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HPYP Sequence Model #

@ Model for discrete sequences with power law properties
> P(x1.n) = P(x1) [T P(XilX1:i-1)
@ Directly estimate the set {P(:|x1.i—1)}i=1..~

@ Treat distributions P(+|x.;_1) as random variables;
call them G, ,1(-)
> Gpy)(t) = probability of observing symbol t in context u
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HPYP Sequence Model #

@ Model for discrete sequences with power law properties
> P(x1.n) = P(x1) [T P(XilX1:i-1)
@ Directly estimate the set {P(:|x1.i—1)}i=1..~

@ Treat distributions P(+|x.;_1) as random variables;
call them G, ,1(-)
> Gpy)(t) = probability of observing symbol t in context u

@ Make prior assumptions about each individual G
» Pitman-Yor process prior: G ~ PY(«a, d, H)
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HPYP Sequence Model #

@ Model for discrete sequences with power law properties
> P(x1.n) = P(x1) [T P(XilX1:i-1)
@ Directly estimate the set {P(:|x1.i—1)}i=1..~

@ Treat distributions P(+|x.;_1) as random variables;
call them G, ,1(-)
> Gpy)(t) = probability of observing symbol t in context u

@ Make prior assumptions about each individual G
» Pitman-Yor process prior: G ~ PY(«, d, H)
©@ Make use of hierarchical structure

27 /45



HPYP Language Model #

G[] ’ do,Cto,H ~ PY(do,Oé()?H)
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HPYP Language Model #

G[] | do,Oéo,H ~ PY(do,Oéo,H)
Gu | du o, Gy~ PY(du o, Gowy) Vu e | =¢

k<m
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HPYP Language Model #

G[] | do,Oéo,H ~ PY(do,Oéo,H)
Gu | du o, Gy~ PY(du o, Gowy) Vu e | =¢

k<m

X,"X,'_m;,'_1:l.l ~ G[u] I':'I,.‘.,T
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HPYP Language Model #

G[] | do,Oéo,H ~ PY(do,Oéo,H)
Gui | duj, ), Gy~ PY(dlu, i, Gowy) Vu e | J =¢

k<m

X,"X,'_m;,'_1:l.l ~ G[u] i:1,...,T

X155 = (Oa a,C,a, C)

[lo
[o]a
[oalc
[oac]a
[acalc
[cac]
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HPYP Language Model #

G[] | do,Oéo,H ~ PY(do,Oéo,H)
Gui | duj, ), Gy~ PY(dlu, i, Gowy) Vu e | J =¢

k<m

Xi | Xi—mic1 =U  ~ G

Xy.5 = (O, a,c,4a, C)

[lo

[o]a Gle
[oalc o %)G
[cac]a lac
[acalc Cleas > N
[cac]
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Sequence Memoizer: Details &

@ At the root:
G.|a.,d,H ~ PY(a,d., H)
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Sequence Memoizer: Details &

@ At the root:
G.|a.,d,H ~ PY(a,d., H)

@ For all possible contexts u € ¥ *:

Gu | ow, Qu, Gioyy  ~  PY(ow, Au, Gio(uy)
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Sequence Memoizer: Details &

@ At the root:
G.|a.,d,H ~ PY(a,d., H)

@ For all possible contexts u € ¥ *:

Gu | ow, Qu, Gioyy  ~  PY(ow, Au, Gio(uy)

© Draw observations from context-dependent distributions:

X,'|X1:,'_1:u ~ G[u] i=1,...,T
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Sequence Memoizer: lllustration 4

@ Hierarchical prior over distributions arranged in a context
tree

@ Prior assumption E[G(*)|Glouy] = Gloqy(+)

x15 = (0,a,c,a,c)

[lo
[o]a
[oa]c
[oac]a
[oacalc

ocacac
[ ] G[uacac] y ¢
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Marginalization: O(n?) — O(n)

C';[oacac] C
@)
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Marginalization: O(n?) — O(n)

C';[oacac]
@)
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Marginalization #

? Theorem (Pitman, 1999; Ho et al., 2006):
CrN

? If
G[ac] - G[C]|G[ 1™~ PY(Oédh d17 G[ ])
G[ac]|G[c] ~ PY(Ozd1 dz, dz, G[C])

G then
[ Glaq| G| ~ PY(adidz, dia, G )

with G marginalized out.

l.e. we set ay = g (u)Qu.
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HPYP: Coagulation & Fragmentation #

PO 90| | 6

A3 L Z \ Q" @
lllustration of the relationship between the

I
Fall . Fua, restaurants A, As, C and F,.

@ Theorem: Suppose A, € A¢, A1 € Aja,, C € A; and
Fa € A, for each a € C are related as above. Then the
following describe equivalent distributions:
(|) Ao ~ CRPC(adQ, dg) and Aq |A2 ~ CRP‘AZ‘(Q, d1)
(”) C ~ CRPC(CKCIQ, d1 dg) and Fa’C ~ CRP|a‘(—d1 dg, dg)
foreachae C
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Language Modeling Results &

400 ] ] T Y T 1.5x107
| ]
\ | 1.2x107
| op)
300 | S
ey 9%10° S
5 | s
2, | g
g 6x10° =
jn}
200 | .
| 3% 108
100 0

0 1 2 3 4 5) 6
Context length (n)

34 /45



100 MB Wikipedia Compression

40
d 35 —]
S 30 -
g 25 |
v
T 20 4
g 15
Qo
§ B E

5 4

0 + T T T T T T

gzip bzip2 lzma PPMZ PPMD/7zip dePLUMP paq8hp12
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CRF Gibbs Sampler for Conjugate HDH¥

@ Basically the hierarchical extension of the conjugate
sampler for DP mixture models

—J

. RO T IS PO ng. o
tii=t with probability o = fr;e ({253 })
o iy
__ 4new .. —_ I 3 . ailidr « m ,-J
tji = t"V, kjmew =k with probability oc g mﬁ‘],# fe({xji})
new new ~ ~ A ili (83
i =Y Kimew = k ith probability new
tii =t"", kjy k with probability o pr mﬁ,,k frnew ({2:})
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CRF Gibbs Sampler for Conjugate HDH¥

@ Basically the hierarchical extension of the conjugate
sampler for DP mixture models

—ji

. 1 n... ~
tii=t with probability ”:;;.-’f+” fr;e ({253 })
—ji
tji ="V kjmew =k with probability o ﬁ,“ﬂ‘ 7717:']"+A fe({xji})
tji = t"V, kjpmew = k™Y with probability o = _H\ mﬁ, s frnew ({2:})

k with probability o - s " fA({Tﬂ tli=1})

kf -
’ EPY with probability o —f;lnm ({xji tjy =1t})
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CRF Gibbs Sampler for Conjugate HDH¥

@ Basically the hierarchical extension of the conjugate
sampler for DP mixture models

—ji

tii=t with probability ,?f;"f%( fr;e ({253 })

—ji
tji = t"Y, kjmew =k with probability oc —F T fi({zi})

ﬁ7 e nf_l +
fh “({111})

tji =Y, kjmew = k™Y with probability o

ﬁ' +o mﬁ’ +
k with probability o - s " fA({Tﬂ tli=1})

kf -
/ E"Y with probability o T fAm“ ({zji : tyi = t})

@ In the non-conjugate case, extensions similar to the ones
developed for the non-nojugate DP mixture model can be
used

@ In many models for discrete data (especially HPYP
models), the observed data are direct draws from the
random distributions G
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Inference using Stick-breaking

@ Variational inference can be performed in the stick-breaking
representation

@ Usually the number of stick pieces is fixed to some finite
number
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CRP Representations &

| Name | Representation | Size |
PARTITIONS | { 12},15}1,{4.6}1,{7}} | O(c)
COUNTS [2,1] o(t)
COMPACT (3,2) O(1)
HISTOGRAM [1:1,2:1] o(t)

The new COMPACT representation only stores
the # of customers and the # of tables (per type). 59/ 45



Gibbs Samplers &

@ Re-seating sampler

» lterate through all contexts/restaurants u and symbols s € ¥

» Sequentially remove and re-insert all cys customers

» If removing/inserting a customer leads to removal/creation of
a table, update the parent restaurant by removing/inserting a
customer

» In all but the PARTITIONS representation, there is no explicit
customer-table assignment —> sample table to remove from
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Non-Compact Gibbs &

@ Pick table k to remove customer from with probability oc Cysk
@ Remove customer from selected table (recursively)

@ Insert customer again (recursively)

@ Time complexity: O(Cys X lus)
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Compact Original Gibbs Sampler 4

@ Compute probability that a randomly chosen customer sits
alone

P(decrement t,s) = Sd”(g‘: (_c 1, ::“S)_ 1)
u us, ‘tus

@ Flip coin; if s decremented, remove customer from parent
@ Insert customer again (recursively)

(au + dutu-)P;(u)(s)
(Oéu + dutu)P;(u)(s) + Cus - tusdu

P(increment t,s) =

@ Time complexity: O(cys X lus); large constant because of
log/exp
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Re-Instantiating Gibbs Sampler

@ Re-instantiate table sizes for restaurants along the path to u
@ Apply original Gibbs sampler

@ Discard sizes of individual tables

@ Time complexity: O(cys X tus); NO log/exp necessary

@ Preferred choice for compact representation

43/45



Direct Gibbs Sampler 4

@ Instead of removing/inserting individual customers, sample
ftus € {1,..., cus} directly from
[O[u + du]g:i‘l

P(tys|rest)
[Oég(u) + 1]$a(u)_

1 Sa, (Cus: tUS)Sda(u)(CO’(U)Sv ta(u)s)

@ Time complexity: O(cZ,); slow (need log/exp operations)
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