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Survival analysis [Cox, 1972]
Let X > 0 be the lifetime of a process with cdf F(t).
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Survival analysis [Cox, 1972]

We want to estimate the hazard rate:

h(t) = Jim. STTPr(X < t+46|X > 1). (1)
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Survival analysis [Cox, 1972]

We want to estimate the hazard rate:
h(t) = lim 6 'Pr(X < t+ 48X > t). (1)
0—0+

We are given right censored observations:

X; lifetime, (2)
T; time of last observation, (3)
d; censoring indicator, (4)
¢; time of censoring, 5)
T; = min{X;, ;}, (6)
d = I{X; < ci}. (7)
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Discrete approximation [Hjort, 1990]

First, we will look at the sets [t,t + 0) for t = 0,6, 29, ...

h(t) =Pr(X € [t,t+6)|T > 1). (8)
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Discrete approximation [Hjort, 1990]

First, we will look at the sets [t,t + 0) for t = 0,6, 29, ...
h(t) =Pr(X € [t,t+)|T > 1). (8)

Define the counting process N(t) and the number at risk Y(t) as
follows:

n

dN(t) => I{T; € [t,t+ ) and o = 1}, (9)
i=1

Y(t)=> T >t} (10)

i=1
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Hazard rates
We assume that hazard rates h(t) are independent r.v.’s in [0, 1].
Suppose that a priori h(t) is distributed as a;(u).
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Hazard rates

We assume that hazard rates h(t) are independent r.v.’s in [0, 1].
Suppose that a priori h(t) is distributed as a;(u).

Theorem

The posterior density of h(t) after observing (T;, d;)?_, is:

p(h(t) = u|T;, di) oc Pr(T;, dj| h(t) = u)p(h(t) = u),
_ u#i:7',-€[t,t+5) and di=1 (1 . u)#i:T,-thréat(u)

_ udN(t)(-I - U)Y(t)_dN(t)Ozt(U).
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Hazard rates

We assume that hazard rates h(t) are independent r.v.’s in [0, 1].
Suppose that a priori h(t) is distributed as a;(u).

Theorem

The posterior density of h(t) after observing (T;, d;)?_, is:

p(h(t) = ulT;, dj) oc Pr(Tj, dif h(t) = u)p(h(t) = u),

(11)
_ u#i:T,-E[t,t+5) and di=1 (1 . u)#i:T,-thréat(u) (1 2)
= yNO (1 — ) YO=INO oy (u). (13
This suggests that we should place a beta prior on h(t):
h(t) ~ Beta(c(t)us(t), c(t)(1 — ns(t))), (14)

h(t)[ Ti, di ~ Beta(c(t)us(t) + dN(t), c(t)us(t) + Y (1) — dN(1)),
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Hazard rates

We assume that hazard rates h(t) are independent r.v.’s in [0, 1].
Suppose that a priori h(t) is distributed as a;(u).

Theorem

The posterior density of h(t) after observing (T;, d;)?_, is:

p(h(t) = ulT;, dj) oc Pr(Tj, dif h(t) = u)p(h(t) = u),

(11)
_ u#i:T,-E[t,t+5) and di=1 (1 . u)#i:T,-thréat(u) (12)
= uNO (A — )Y O=NOy, (y). (13)
This suggests that we should place a beta prior on h(t):
h(t) ~ Beta(c(t)us(t), c(t)(1 — ns(t))), (14)
h(t)|T;, d; ~ Beta(c(t)us(t) + dN(t), c(t)us(t) + Y(t) — dN(t)), (15)

us(t) = plt, t+ 0) is a mean measure and c(t) > 0 is a concentration.
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Continuous hazard rates
We can write the cdf of the lifetime X in terms of the hazard rate:

L1/5]
F(ty=<1— ] (1 - h(ks)). (16)
k=0
Lt/5]
=1—exp(— Y _ h(ko)) (17)
k=0

limit is A(t)
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Continuous hazard rates
We can write the cdf of the lifetime X in terms of the hazard rate:

1t/
F(t)<1— H (1 — h(kd)). (16)
k=0
1t/3)
=1—exp(— Y _ h(ko)) (17)
k=0
limit is A(t)

Theorem

Let .« be a measure and let c(t) > 0 be piecewise continuous. The
cumulative hazard exists & is called a beta process:

Lt/6]
At) = lim > h(kd). (18)

6—0 =0
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Properties of the cumulative hazard

Corollary

1. A(0) =0,
2. A(t)) — A(ti_1) are independent forall0 < t; < t, < ...,
3. A(t) is right continuous,
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Properties of the cumulative hazard

Corollary

1. A(0) =0,
2. A(t)) — A(ti_1) are independent forall0 < t; < t, < ...,
3. A(t) is right continuous,

The beta process A can be seen as a measure on R by defining
A(ty, t1] = A(ty) — A(fp). By the above corollary, A is a completely
random measure (CRM): if By, ..., By are disjoint then
A(By),...,A(Bn) are independent.
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Representation as a CRM

By the Lévy—Khinchine representation theorem (from lecture 2), there
exists a measure A\(du, ds) such that for all functions f(s) on R>q:

[exp( / (s ds)}_exp< / /1 e~v9) \(dlu, ds))

Mdu, ds) = c(s)u™ (1 — u)°E) =" 4 (ds). (20)
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Representation as a CRM

By the Lévy—Khinchine representation theorem (from lecture 2), there
exists a measure A\(du, ds) such that for all functions f(s) on R>q:

[exp( / (s ds)}_exp< / /1 e~v9) \(dlu, ds))

Mdu, ds) = c(s)u™ (1 — u)°E) =" 4 (ds). (20)
Write A ~ BP(c, 1) in this case.
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Link to completely random measures
Corollary

A beta process A ~ BP(c, 1) is a completely random measure s.t.:

A= W, (21)
k=1

where (W, Sz is a Poisson process on [0, 1] x R>q with rate
Mdu, ds) = cu="(1 — u)° T u(ds).

2000
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Latent feature models
Suppose sy, ..., Sk are features, and zj indicates if data item / has
feature k.

(22)

i 1 if data item / has feature k,
= 0 otherwise.
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Latent feature models

Suppose sy, ..., Sk are features, and zj indicates if data item / has
feature k.

0 otherwise. (22)

This is a popular situation in Bayesian statistics, for example the
elimination by aspects choice model [GorUr et al., 2006]. Subjects are
asked ‘with whom they would prefer to spend an hour of conversation’
given pairs from 9 celebrities (Rumelhart and Greeno 1971).

{ 1 if data item i has feature k,
Zik =
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Latent feature models
Suppose sy, ..., Sk are features, and zj indicates if data item / has
feature k.

5 { 1 if data item i has feature k, (22)
Tk 0 otherwise.

This is a popular situation in Bayesian statistics, for example the
elimination by aspects choice model [GorUr et al., 2006]. Subjects are
asked ‘with whom they would prefer to spend an hour of conversation’
given pairs from 9 celebrities (Rumelhart and Greeno 1971).

1. Celebredies have features z;,

2. Subjects form preferences based on the features.
Generative process:

» A binary feature matrix Z is selected,

> Wi, W ~ N(1,1).

Pr(i beats j) ZWKZ sk)(1 — Zi(sk), (23)
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Prior for features

Let 7, be the prior probability of having feature si. If we assume the
are independent r.v.s, the posterior densities are:

p(mklz1,...,2n) x p(21, ..., Zn|mK)P(TK), (24)
= 7r,'(nk(1 — 71)" "k p(7k). (25)

This is the same situation as for the hazard function, suggesting a beta
prior for .
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Latent feature models
[Griffiths and Ghahramani, 2005]

Assume the prior probability of having feature sy is 7 ~ Beta(a/K, 1).
The marginal probability of Z is:

H/ HPr zj = 1|mi)p(mi ), (26)

B mk+a/K)I'(n mg+1)
- H .

rn+1+a/K)
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Latent feature models
[Griffiths and Ghahramani, 2005]

Assume the prior probability of having feature sy is 7 ~ Beta(a/K, 1).
The marginal probability of Z is:

H/ HPr zj = 1|mi)p(mi ), (26)

B mk+a/K)I'(n mg+1)
1:[ Mn+1+a/K) '

As K — oo, the expected number of nonzero columns of Z is finite.
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Latent feature models
[Griffiths and Ghahramani, 2005]

Assume the prior probability of having feature sy is 7 ~ Beta(a/K, 1).
The marginal probability of Z is:

H/ HPr zj = 1|mi)p(mi ), (26)

B mk+a/K)I'(n mg+1)
1:[ Mn+1+a/K) '

As K — oo, the expected number of nonzero columns of Z is finite.

}JianPr([Z])_aK+exp< QZU/)H (n = mlme = 1! g,

n!
k=1

Here, Kt is the number of nonzero columns.
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The Indian buffet process

[Griffiths and Ghahramani, 2005]

n customers enter an Indian buffet in sequence.
» Customer 1 chooses Poisson(«) dishes.

» Customer i > 1 picks a previously chosen dish with probability
my /i and Poisson(c«/i) new dishes. (my is the # of customers
who have already chosen dish k.)
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The Indian buffet process
[Griffiths and Ghahramani, 2005]

n customers enter an Indian buffet in sequence.
» Customer 1 chooses Poisson(«) dishes.

» Customer i > 1 picks a previously chosen dish with probability
my /i and Poisson(c«/i) new dishes. (my is the # of customers
who have already chosen dish k.)

The IBP is exchangeable and it induces a prior on binary matrices with
n rows and an arbitrary number of columns.

14/24



The Indian buffet process

[Griffiths and Ghahramani, 2005]

n customers enter an Indian buffet in sequence.
» Customer 1 chooses Poisson(«) dishes.

» Customer i > 1 picks a previously chosen dish with probability
my /i and Poisson(c«/i) new dishes. (my is the # of customers
who have already chosen dish k.)

The IBP is exchangeable and it induces a prior on binary matrices with
n rows and an arbitrary number of columns.

» Row /, column k indicates if customer i chose dish k.
» Columns are labelled with draws s.
» Posterior probability is:

n K
oK exp (—az 1//) (M = DU =M ooy (2g)

n!
i=1 i=1
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Applications to machine learning:

v

Elimination by aspects choice model [GorUr et al., 2006],

Infinite ICA [Knowles and Ghahramani, 2007, Doshi et al., 2009].
Latent feature relational model [Miller et al., 2009].

Word frequency models [Teh and Gérar, 2009].

v

v

v
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Applications: infinite ICA
[Knowles and Ghahramani, 2007, Doshi et al., 2009]

Given signals Y;. Assume latent sources X are selected by a binary
feature matrix, and then mixed by G.

Y= G(Z © X))+ E. (30)

» Z ~ IBP(c, ),
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(a) Hinton diagram of the average mixing (b) Hinton diagram of the mixing matrix

matrix, G, for ilCA, applied to the finan- for FastICA (pow3) applied to the financial
cial dataset. dataset.

Figure 16: Application to financial data set.
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Applications: latent feature relational model
[Miller et al., 2009]

Prior for directed graphs. Each vertex has a latent binary feature
vector z;. Probability of an edge between vertices is an inner product
of the feature vectors passed through a sigmoid.

> Z ~ IBP(),
> Pr(ej = 1) = sigmoid(z:Bz/).

Countries single | Countries global | Alyawarra single | Alyawarra global
LFRM w/IRM | 0.8521 + 0.0035 | 0.8772 £ 0.0075 | 0.9346 & 0.0013 | 0.9183 & 0.0108
LFRMrand | 0.8529 & 0.0037 [ 0.7067 & 0.0534 [ 0.9443 £0.0018 | 0.7127 £ 0.030
IRM 0.8423 £ 0.0034 | 0.8500 + 0.0033 | 0.9310 & 0.0023 | 0.8943 £ 0.0300
MMSB 0.8212 £ 0.0032 | 0.8643 £ 0.0077 | 0.9005 & 0.0022 | 0.9143 £ 0.0097

220

s 10 150 200 50 10 10 200

(a) True relations (b) Feature predictions (c) IRM predictions (d) MMSB predictions
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Language modelling [Teh and Gérur, 2009].

number of words
)

—
o_A

10 ]
10 10 10
number of documents per word
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Beta process conditionals[Thibaux and Jordan, 2007]

Let A=) wydgsk be a beta process with base measure (. If

1[0, 00) = a, then E[> wy] = a < oo. This means, if we sample from
Bernoulli distributions with weight wy at each of the atoms of A, we will
get a finite number of 1s.
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Beta process conditionals[Thibaux and Jordan, 2007]

Let A=) wydgsk be a beta process with base measure (. If

1[0, 00) = a, then E[> wy] = a < oo. This means, if we sample from
Bernoulli distributions with weight wy at each of the atoms of A, we will
get a finite number of 1s.

k=1

Z = Z ZikOsk (32)
k=1

Zix ~ Bernoulli(wy). (33)
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Beta process conditionals

A [, | | | ] ‘ | L |‘ |||

20/24



Beta process conditionals

Z11A |
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Beta process conditionals
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Beta process conditionals

Z11A
Z21A
Z3IA
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Beta process conditionals
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Beta process conditionals
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Beta process conditionals
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Beta process conditionals[Thibaux and Jordan, 2007]

A= Z Wk58k7
k=1

oo
Z =" Zidsk,
k=1

Zi ~ Bernoulli(wy),i=1,...

,n.

(34)

(35)

(36)
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Beta process conditionals[Thibaux and Jordan, 2007]

A= Z Wk(ssk?
k=1

oo
Z =" Zidsk,
k=1

Zjix ~ Bernoulli(wg),i=1,...,n.
Then,

K 00
AZi,....Zn = Fods: + > Widsk.
k=1 k=1
where (s;) = {sx: 3is.t.zx = 1} and

Frk ~ Beta(my, n — my + ¢),

And (w/, sx) are drawn from a Poisson process with rate
cu~'(1 — u)™ " dup(ds).

(34)

(35)

(36)

(37)
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Beta process conditionals [Thibaux and Jordan, 2007]

Furthermore, the conditional distribution of Z,. 1 with A marginalized
can be found as follows:

K 00
Zni1 = Zibs + Y 20, (40)
k=1 k=1
" . my n_ n
z, ~ Bernoulli ned .z = Bernoulli(wy). (41)
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Beta process conditionals [Thibaux and Jordan, 2007]

Furthermore, the conditional distribution of Z,. 1 with A marginalized
can be found as follows:

n+1 Z Zk(SSk + Z Zl,(76$k7 (40)
* H mk n __ i n
z, ~ Bernoulli ned .z = Bernoulli(wy). (41)

And as before (w/, sx) are drawn from a Poisson process with rate
cu™'(1 — u)"™°'duu(ds). So:

= nu[o, %), (43)

This is the link to the IBP.
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