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Survival analysis [Cox, 1972]
Let X ≥ 0 be the lifetime of a process with cdf F (t).
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Survival analysis [Cox, 1972]

We want to estimate the hazard rate:

h(t) = lim
δ→0+

δ−1 Pr(X ≤ t + δ|X > t). (1)

We are given right censored observations:

Xi lifetime, (2)
Ti time of last observation, (3)
di censoring indicator, (4)
ci time of censoring, (5)
Ti = min{Xi , ci}, (6)
di = I{Xi ≤ ci}. (7)
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Discrete approximation [Hjort, 1990]

First, we will look at the sets [t , t + δ) for t = 0, δ,2δ, . . .

h(t) = Pr(X ∈ [t , t + δ)|T ≥ t). (8)

Define the counting process N(t) and the number at risk Y (t) as
follows:

dN(t) =
n∑

i=1

I{Ti ∈ [t , t + δ) and di = 1}, (9)

Y (t) =
n∑

i=1

I{Ti ≥ t}. (10)
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Hazard rates
We assume that hazard rates h(t) are independent r.v.’s in [0,1].
Suppose that a priori h(t) is distributed as αt (u).

Theorem
The posterior density of h(t) after observing (Ti ,di)

n
i=1 is:

p(h(t) = u|Ti ,di) ∝ Pr(Ti ,di |h(t) = u)p(h(t) = u), (11)

= u#i:Ti∈[t ,t+δ) and di=1(1− u)#i:Ti≥t+δαt (u) (12)

= udN(t)(1− u)Y (t)−dN(t)αt (u). (13)

This suggests that we should place a beta prior on h(t):

h(t) ∼ Beta(c(t)µδ(t), c(t)(1− µδ(t))), (14)
h(t)|Ti ,di ∼ Beta(c(t)µδ(t) + dN(t), c(t)µδ(t) + Y (t)− dN(t)), (15)

µδ(t) = µ[t , t + δ) is a mean measure and c(t) ≥ 0 is a concentration.
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Continuous hazard rates
We can write the cdf of the lifetime X in terms of the hazard rate:

F (t) � 1−
bt/δc∏
k=0

(1− h(kδ)). (16)

� 1− exp(−
bt/δc∑
k=0

h(kδ)︸ ︷︷ ︸
limit is A(t)

) (17)

Theorem
Let µ be a measure and let c(t) ≥ 0 be piecewise continuous. The
cumulative hazard exists & is called a beta process:

A(t) = lim
δ→0+

bt/δc∑
k=0

h(kδ). (18)
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Properties of the cumulative hazard

Corollary

1. A(0) = 0,
2. A(ti)− A(ti−1) are independent for all 0 ≤ t1 < t2 < . . . ,
3. A(t) is right continuous,

The beta process A can be seen as a measure on R≥0 by defining
A(t0, t1] = A(t1)− A(t0). By the above corollary, A is a completely
random measure (CRM): if B1, . . . ,Bn are disjoint then
A(B1), . . . ,A(Bn) are independent.
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Representation as a CRM

By the Lévy–Khinchine representation theorem (from lecture 2), there
exists a measure λ(du,ds) such that for all functions f (s) on R≥0:

E
[
exp

(
−
∫ ∞

0
f (s)A(ds)

)]
= exp

(
−
∫ ∞

0

∫ 1

0
1− e−uf (s)λ(du,ds)

)
,

(19)

λ(du,ds) = c(s)u−1(1− u)c(s)−1µ(ds). (20)

Write A ∼ BP(c, µ) in this case.
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Link to completely random measures
Corollary

A beta process A ∼ BP(c, µ) is a completely random measure s.t.:

A =
∞∑

k=1

wkδsk , (21)

where (wk , sk )∞k=1 is a Poisson process on [0,1]× R≥0 with rate
λ(du,ds) = cu−1(1− u)c−1µ(ds).

Beta Processes

10 / 1
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Latent feature models
Suppose s1, . . . , sK are features, and zik indicates if data item i has
feature k .

zik =

{
1 if data item i has feature k ,
0 otherwise.

(22)

This is a popular situation in Bayesian statistics, for example the
elimination by aspects choice model [Görür et al., 2006]. Subjects are
asked ‘with whom they would prefer to spend an hour of conversation’
given pairs from 9 celebrities (Rumelhart and Greeno 1971).

1. Celebredies have features zi ,
2. Subjects form preferences based on the features.

Generative process:
I A binary feature matrix Z is selected,
I w1, . . . ,wk ∼ N (1,1).

Pr(i beats j) ∝
K∑

k=1

wkZi(sk )(1− Zj(sk ), (23)
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Prior for features

Let πk be the prior probability of having feature sk . If we assume the πk
are independent r.v.s, the posterior densities are:

p(πk |z1, . . . , zn) ∝ p(z1, . . . , zn|πk )p(πk ), (24)

= πmk
k (1− πk )n−mk p(πk ). (25)

This is the same situation as for the hazard function, suggesting a beta
prior for πk .
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Latent feature models
[Griffiths and Ghahramani, 2005]
Assume the prior probability of having feature sk is πk ∼ Beta(α/K ,1).
The marginal probability of Z is:

Pr(Z ) =
K∏

k=1

∫ 1

0

n∏
i=1

Pr(zik = 1|πk )p(πk )dπk , (26)

=
K∏

k=1

α/K
Γ(mk + α/K )Γ(n −mk + 1)

Γ(n + 1 + α/K )
. (27)

As K →∞, the expected number of nonzero columns of Z is finite.

lim
K→∞

Pr([Z ]) = αK+ exp

(
−α

n∑
i=1

1/i

) K+∏
k=1

(n −mk )!(mk − 1)!

n!
. (28)

Here, K+ is the number of nonzero columns.
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The Indian buffet process
[Griffiths and Ghahramani, 2005]
n customers enter an Indian buffet in sequence.

I Customer 1 chooses Poisson(α) dishes.
I Customer i > 1 picks a previously chosen dish with probability

mk/i and Poisson(α/i) new dishes. (mk is the # of customers
who have already chosen dish k .)

The IBP is exchangeable and it induces a prior on binary matrices with
n rows and an arbitrary number of columns.

I Row i , column k indicates if customer i chose dish k .
I Columns are labelled with draws sk .
I Posterior probability is:

αK exp

(
−α

n∑
i=1

1/i

)
K∏

i=1

(mk − 1)!(n −mk )!

n!
h(θ∗k ). (29)
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Applications to machine learning:

I Elimination by aspects choice model [Görür et al., 2006],
I Infinite ICA [Knowles and Ghahramani, 2007, Doshi et al., 2009].
I Latent feature relational model [Miller et al., 2009].
I Word frequency models [Teh and Görür, 2009].
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Applications: infinite ICA
[Knowles and Ghahramani, 2007, Doshi et al., 2009]
Given signals Yi . Assume latent sources X are selected by a binary
feature matrix, and then mixed by G.

Yi = G(Zi � Xi) + E , (30)

I Z ∼ IBP(c, µ),

We collected daily closing prices, pt, adjusted for dividends and splits, from

1st January 2002 to 29th December 2006, a total of N = 1298 samples. To make

this data stationary we transform the data under the assumption of exponential

growth:

yt = log
pt

pt−1

(89)

The raw and transformed data is shown in Appendix B. We ran each algorithm

variant for 2000 iterations and then calculated the predictive performance. This

showed iICA2 to best model the data, so we show the mean average G matrix for

this and FastICA in Figure 16.

(a) Hinton diagram of the average mixing
matrix, G, for iICA2 applied to the finan-
cial dataset.

(b) Hinton diagram of the mixing matrix
for FastICA (pow3) applied to the financial
dataset.

Figure 16: Application to financial data set.

Figure 16(a) shows the results for iICA2. The red rectangles highlight the hid-

den features which account for the correlation between stocks in the same industry.

Feature 1 is universally expressed across these stocks: this feature would probably

be found across all FTSE100 stocks, and accounts for the shared effects. Feature 6

is expressed by the two pharmaceutical companies, feature 8 by the telecoms com-

panies, feature 9 by the energy companies, and feature 5 by the property company.

These results are very satisfying: the algorithm is able to find underlying driving

forces of the various industries. An interesting further investigation would be to

compare these inferred driving forces to factors that would be expected to control

35
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Applications: latent feature relational model
[Miller et al., 2009]
Prior for directed graphs. Each vertex has a latent binary feature
vector zi . Probability of an edge between vertices is an inner product
of the feature vectors passed through a sigmoid.

I Z ∼ IBP(α),
I Pr(eij = 1) = sigmoid(ziBzT

j ).

On both datasets, we initialized Z and W randomly. With the very simple, class-based model, 50%
of the sampled feature matrices were identical to the generating feature matrix with another 25%
differing by a single bit. However, on the other dataset, only 25% of the samples were at most a
single bit different than the true matrix. It is not the case that the other 75% of the samples were bad
samples, though. A randomly chosen sample of Z is shown in Figure 1(e). Though this matrix is
different from the true generating features, with the appropriate weight matrix it predicts just as well
as the true feature matrix. These tests show that while our latent feature approach is able to learn
features that explain the data well, due to subtle interactions between sets of features and weights,
the features themselves will not in general correspond to interpretable features. However, we can
expect the inferred features to do a good job explaining the data. This also indicates that there are
many local optima in the feature space, further motivating the need for good initialization.

4.2 Multi-relational datasets

In the original IRM paper, the IRM was applied to several datasets [6]. These include a dataset
containing 54 relations of 14 countries (such as “exports to” and “protests”) along with 90 given
features of the countries [19] and a dataset containing 26 kinship relationships of 104 people in the
Alyawarra tribe in Central Australia [20]. See [6, 19, 20] for more details on the datasets.

Our goal in applying the latent feature relational model to these datasets was to demonstrate the
effectiveness of our algorithm when compared to two established class-based algorithms, the IRM
and the MMSB, and to demonstrate the effectiveness of our full algorithm. For the Alyawarra
dataset, we had no known covariates. For the countries dataset, Xp = Xc was the set of known
features of the countries and X was the country distance similarity matrix described in Section 2.3.

As mentioned in the synthetic data section, the inferred features do not necessarily have any inter-
pretable meaning, so we restrict ourselves to a quantitative comparison. For each dataset, we held
out 20% of the data during training and we report the AUC, the area under the ROC (Receiver Oper-
ating Characteristic) curve, for the held-out data [21]. We report results for inferring a global set of
features for all relations as described in Section 2.3 which we refer to as “global” as well as results
when a different set of features is independently learned for each relation and then the AUCs of all
relations are averaged together, which we refer to as “single.” In addition, we tried initializing our
sampler for the latent feature relational model with either a random feature matrix (“LFRM rand”)
or class-based features from the IRM (“LFRM w/ IRM”). We ran our sampler for 1000 iterations for
each configuration using a logistic squashing function (though results using the probit are similar),
throwing out the first 200 samples as burn-in. Each method was given five random restarts.

Table 1: AUC on the countries and kinship datasets. Bold identifies the best performance.

Countries single Countries global Alyawarra single Alyawarra global
LFRM w/ IRM 0.8521 ± 0.0035 0.8772 ± 0.0075 0.9346 ± 0.0013 0.9183 ± 0.0108

LFRM rand 0.8529 ± 0.0037 0.7067 ± 0.0534 0.9443 ± 0.0018 0.7127 ± 0.030
IRM 0.8423 ± 0.0034 0.8500 ± 0.0033 0.9310 ± 0.0023 0.8943 ± 0.0300

MMSB 0.8212 ± 0.0032 0.8643 ± 0.0077 0.9005 ± 0.0022 0.9143 ± 0.0097

Results of these tests are in Table 1. As can be seen, the LFRM with class-based initialization out-
performs both the IRM and MMSB. On the individual relations (“single”), the LFRM with random
initialization also does well, beating the IRM initialization on both datasets. However, the random
initialization does poorly at inferring the global features due to the coupling of features and the
weights for each of the relations. This highlights the importance of proper initialization. To demon-
strate that the covariates are helping, but that even without them, our model does well, we ran the
global LFRM with class-based initialization without covariates on the countries dataset and the AUC
dropped to 0.8713 ± 0.0105, which is still the best performance.

On the countries data, the latent feature model inferred on average 5-7 features when seeded with
the IRM and 8-9 with a random initialization. On the kinship data, it inferred 9-11 features when
seeded with the IRM and 13-19 when seeded randomly.
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(d) MMSB predictions

Figure 2: Predictions for all algorithms on the NIPS coauthorship dataset. In (a), a white entry
means two people wrote a paper together. In (b-d), the lighter an entry, the more likely that algorithm
predicted the corresponding people would interact.

4.3 Predicting NIPS coauthorship

As our final example, highlighting the expressiveness of the latent feature relational model, we used
the coauthorship data from the NIPS dataset compiled in [22]. This dataset contains a list of all
papers and authors from NIPS 1-17. We took the 234 authors who had published with the most
other people and looked at their coauthorship information. The symmetric coauthor graph can be
seen in Figure 2(a). We again learned models for the latent feature relational model, the IRM and the
MMSB training on 80% of the data and using the remaining 20% as a test set. For the latent feature
model, since the coauthorship relationship is symmetric, we learned a full, symmetric weight matrix
W as described in Section 2.4. We did not use any covariates. A visualization of the predictions for
each of these algorithms can be seen in Figure 2(b-d). Figure 2 really drives home the difference
in expressiveness. Stochastic blockmodels are required to group authors into classes, and assumes
that all members of classes interact similarly. For visualization, we have ordered the authors by
the groups the IRM found. These groups can clearly be seen in Figure 2(c). The MMSB, by
allowing partial membership is not as restrictive. However, on this dataset, the IRM outperformed
it. The latent feature relational model is the most expressive of the models and is able to much more
faithfully reproduce the coauthorship network.

The latent feature relational model also quantitatively outperformed the IRM and MMSB. We again
ran our sampler for 1000 samples initializing with either a random feature matrix or a class-based
feature matrix from the IRM and reported the AUC on the held-out data. Using five restarts for each
method, the LFRM w/ IRM performed best with an AUC of 0.9509, the LFRM rand was next with
0.9466 and much lower were the IRM at 0.8906 and the MMSB at 0.8705 (all at most ±0.013). On
average, the latent feature relational model inferred 20-22 features when initialized with the IRM
and 38-44 features when initialized randomly.

5 Conclusion

We have introduced the nonparametric latent feature relational model, an expressive nonparametric
model for inferring latent binary features in relational entities. This model combines approaches
from the statistical network analysis community, which have emphasized feature-based methods for
analyzing network data, with ideas from Bayesian nonparametrics in order to simultaneously infer
the number of latent binary features at the same time we infer the features of each entity and how
those features interact. Existing class-based approaches infer latent structure that is a special case
of what can be inferred by this model. As a consequence, our model is strictly more expressive
than these approaches, and can use the solutions produced by these approaches for initialization.
We showed empirically that the nonparametric latent feature model performs well at link prediction
on several different datasets, including datasets that were originally used to argue for class-based
approaches. The success of this model can be traced to its richer representations, which make it able
to capture subtle patterns of interaction much better than class-based models.

Acknowledgments KTM was supported by the U.S. Department of Energy contract DE-AC52-
07NA27344 through Lawrence Livermore National Laboratory. TLG was supported by grant number FA9550-
07-1-0351 from the Air Force Office of Scientific Research.
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Language modelling [Teh and Görür, 2009].
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Figure 2: Power-law properties of the 20newsgroups dataset. The faint dashed lines are the distribu-
tions of words in the documents in each class, the solid curve is the mean of these lines. The dashed
lines are the means of the word distributions generated by the ML parameters for the beta process
(pink) and the SBP (green).

Table 1: Classification performance of SBP and beta process (BP). The jth column (denoted 1:j)
shows the cumulative rank j classification accuracy of the test documents. The three numbers after
the models are the percentages of training, validation and test sets respectively.

assigned to classes: 1 1:2 1:3 1:4 1:5

BP - 20/20/60 78.7(±0.5) 87.4(±0.2) 91.3(±0.2) 95.1(±0.2) 96.2(±0.2)
SBP - 20/20/60 79.9(±0.5) 87.6(±0.1) 91.5(±0.2) 93.7(±0.2) 95.1(±0.2)
BP - 60/20/20 85.5(±0.6) 91.6(±0.3) 94.2(±0.3) 95.6(±0.4) 96.6(±0.3)
SBP - 60/20/20 85.5(±0.4) 91.9(±0.4) 94.4(±0.2) 95.6(±0.3) 96.6(±0.3)

statistics of word occurrences; see Figure 2). We also plotted the characteristics of data simulated
from the models using the estimated ML parameters. The SBP has a much better fit than the beta
process to the power-law properties of the corpora.

In the second experiment we tested the two models on categorizing test documents into one of the
20 newsgroups. Since this is a discriminative task, we optimized the parameters in both models to
maximize the cumulative ranked classification performance. The rank j classification performance
is defined to be the percentage of documents where the true label is among the top j predicted classes
(as determined by the IBP conditional probabilities of the documents under each of the 20 newsgroup
classes). As the cost function is not differentiable, we did a grid search over the parameter space,
using 20 values of α, c and σ each, and found the parameters maximizing the objective function on
a validation set separate from the test set. To see the effect of sample size on model performance we
tried splitting the documents in each newsgroup into 20% training, 20% validation and 60% test sets,
and into 60% training, 20% validation and 20% test sets. We repeated the experiment five times with
different random splits of the dataset. The ranked classification rates are shown in Table 1. Figure 3
shows that the SBP model has generally higher classification performances than the beta process.

5 Discussion

We have introduced a novel stochastic process called the stable-beta process. The stable-beta process
is a generalization of the beta process, and can be used in nonparametric Bayesian featural models
with an unbounded number of features. As opposed to the beta process, the stable-beta process has
a number of appealing power-law properties. We developed both an Indian buffet process and a
stick-breaking construction for the stable-beta process and applied it to modeling word occurrences
in document corpora. We expect the stable-beta process to find uses modeling a range of natural
phenomena with power-law properties.

7

18 / 24



Beta process conditionals[Thibaux and Jordan, 2007]

Let A =
∑

wkδsk be a beta process with base measure µ. If
µ[0,∞) = α, then E[

∑
wk ] = α <∞. This means, if we sample from

Bernoulli distributions with weight wk at each of the atoms of A, we will
get a finite number of 1s.

A =
∞∑

k=1

wkδsk , (31)

Zi =
∞∑

k=1

zikδsk , (32)

zik ∼ Bernoulli(wk ). (33)
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Beta process conditionals[Thibaux and Jordan, 2007]

A =
∞∑

k=1

wkδsk , (34)

Zi =
∞∑

k=1

zikδsk , (35)

zik ∼ Bernoulli(wk ), i = 1, . . . ,n. (36)

Then,

A|Z1, . . . ,Zn =
K∑

k=1

Fnkδs∗k +
∞∑

k=1

wn
k δsk . (37)

where (s∗k ) = {sk : ∃ i s.t.zik = 1} and

Fnk ∼ Beta(mk ,n −mk + c), (38)
(39)

And (wn
k , sk ) are drawn from a Poisson process with rate

cu−1(1− u)n+c−1duµ(ds). 21 / 24
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Beta process conditionals [Thibaux and Jordan, 2007]
Furthermore, the conditional distribution of Zn+1 with A marginalized
can be found as follows:

Zn+1 =
K∑

k=1

z∗k δs∗k +
∞∑

k=1

zn
k δsk , (40)

z∗k ∼ Bernoulli
(

mk

n + 1

)
, zn

k = Bernoulli(wn
k ). (41)

And as before (wn
k , sk ) are drawn from a Poisson process with rate

cu−1(1− u)n+c−1duµ(ds). So:

∞∑
k=1

zn
k =

∫ ∞
0

∫ 1

0
cu−1(1− u)n+c−1duµ(ds), (42)

=
c

c + n
µ[0,∞). (43)

This is the link to the IBP.
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