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Dirichlet Process

• Cornerstone of modern Bayesian nonparametrics.

• Rediscovered many times as the infinite limit of finite mixture models.

• Formally defined by [Ferguson 1973] as a distribution over measures.

• Can be derived in different ways, and as special cases of different processes.

• Random partition view: 

• Chinese restaurant process, Blackwell-mcQueen urn scheme

• Random measure view: 

• stick-breaking construction, Poisson-Dirichlet, gamma process



The Infinite Limit of
Finite Mixture Models



Finite Mixture Models

• Model for data from heterogeneous unknown sources.

• Each cluster (source) modelled using a parametric 
model (e.g. Gaussian).

• Data item i:

• Mixing proportions:

• Cluster k:

zi|π ∼ Discrete(π)

xi|zi, θ∗k ∼ F (θ∗zi)

θ∗k|H ∼ H

π = (π1, . . . ,πK)|α ∼ Dirichlet(α/K, . . . ,α/K)
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Finite Mixture Models

• Dirichlet distribution on the K-dimensional 
probability simplex { π | Σk πk = 1 }:

• with                                      .

• Standard distribution on probability vectors, due to 
conjugacy with multinomial. 
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Dirichlet Distribution
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Dirichlet-Multinomial Conjugacy

• Joint distribution over zi and π:

• where nc = #{ zi = c }.

• Posterior distribution:

• Marginal distribution:
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Gibbs Sampling

• All conditional distributions are simple to compute:

• Not as efficient as collapsed Gibbs sampling, which 
integrates out π, θ*’s:

• Conditional distributions can be efficiently computed if 
F is conjugate to H.
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Infinite Limit of Collapsed Gibbs Sampler

• We will take K → ∞.

• Imagine a very large value of K.

• There are at most n < K occupied clusters, so most 
components are empty.  We can lump these empty 
components together:
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[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]
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Infinite Limit

• The actual infinite limit of the finite mixture model does not make sense:

• any particular cluster will get a mixing proportion of 0.

• Better ways of making this infinite limit precise:

• Chinese restaurant process.

• Stick-breaking construction.

• Both are different views of the Dirichlet process (DP).

• DPs can be thought of as infinite dimensional Dirichlet distributions.

• The K → ∞ Gibbs sampler is for DP mixture models.



Ferguson’s Definition of the
Dirichlet Process



Ferguson’s Definition of Dirichlet Processes

• A Dirichlet process (DP) is a random probability measure G over (Θ, Σ) 
such that for any finite set of measurable sets A1,...AK ∈ Σ partitioning Θ, i.e.

• we have

• where α and H are parameters of the DP.

A1∪̇ · · · ∪̇AK = Θ

(G(A1), . . . , G(AK)) ∼ Dirichlet(αH(A1), . . . ,αH(AK))
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Parameters of the Dirichlet Process

• α is called the strength, mass or concentration parameter.

• H is called the base distribution.

• Mean and variance:

• where A is a measurable subset of Θ.

• H is the mean of G, and α is an inverse variance.

E[G(A)] = H(A)

V[G(A)] =
H(A)(1−H(A))

α+ 1



Posterior Dirichlet Process

• Suppose

• We can define random variables that are G distributed:

• The usual Dirichlet-multinomial conjugacy carries over to the DP as well:

G ∼ DP(α, H)

θi|G ∼ G for i = 1, . . . , n

G|θ1, . . . , θn ∼ DP(α+ n,
αH+

�n
i=1 δθi

α+n
)



Pólya Urn Scheme

• Marginalizing out G, we get:

• This is called the Pólya, Hoppe or Blackwell-MacQueen urn scheme.

• Start with an urn with α balls of a special colour.

• Pick a ball randomly from urn:

• If it is a special colour, make a new ball with colour sampled from H, 
note the colour, and return both balls to urn.

• If not, note its colour and return two balls of that colour to urn.

G ∼ DP(α, H)

θi|G ∼ G for i = 1, 2, . . .

θn+1|θ1, . . . , θn ∼ αH+
�n

i=1 δθi
α+n

[Blackwell & MacQueen 1973, Hoppe 1984]



Clustering Property

• The n variables θ1,θ2,...,θn can take on K ≤ n distinct values.

• Let the distinct values be θ1*,...,θK*.  This defines a partition of {1,...,n} such 
that i is in cluster k if and only if θi = θk*.

• The induced distribution over partitions is the Chinese restaurant process.

G ∼ DP(α, H)

θi|G ∼ G for i = 1, 2, . . .



Discreteness of the Dirichlet Process

• Suppose

• G is discrete if 

• Above holds, since joint distribution is equivalent to:

G ∼ DP(α, H)

θ|G ∼ G

P(G({θ}) > 0) = 1

θ ∼ H

G|θ ∼ DP(α+ 1, αH+δθ
α+1 )



A draw from a Dirichlet Process 
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Atomic Distributions

• Draws from Dirichlet processes will always be atomic:

• where Σk πk = 1 and θk* ∈ Θ. 

• A number of ways to specify the joint distribution of {πk, θk*}.

• Stick-breaking construction;

• Poisson-Dirichlet distribution.

G =
∞�

k=1

πkδθ∗
k



Random Partitions

[Aldous 1985, Pitman 2006]



Partitions

• A partition ϱ of a set S is:

• A disjoint family of non-empty subsets of S whose union in S.

• S = {Alice, Bob, Charles, David, Emma, Florence}.

• ϱ = { {Alice, David}, {Bob, Charles, Emma}, {Florence} }.

• Denote the set of all partitions of S as PS.

• Random partitions are random variables taking values in PS.

• We will work with partitions of S = [n] = {1,2,...n}.

Alice
David

Bob
Charles
Emma

Florence



Chinese Restaurant Process

• Each customer comes into restaurant and sits at a table:

• Customers correspond to elements of S, and tables to clusters in ϱ.

• Rich-gets-richer: large clusters more likely to attract more customers.

• Multiplying conditional probabilities together, the overall probability of ϱ, 
called the exchangeable partition probability function (EPPF), is:
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[Aldous 1985, Pitman 2006]
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Number of Clusters
• The prior mean and variance of K are:

ψ(α) = ∂
∂α logΓ(α)
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Model-based Clustering with 
Chinese Restaurant Process



Partitions in Model-based Clustering

• Partitions are the natural latent objects of 
inference in clustering.

• Given a dataset S, partition it into clusters 
of similar items.

• Cluster c ∈ ϱ described by a model

parameterized by θc*.

• Bayesian approach: introduce prior over ϱ and 
θc*; compute posterior over both.

F (θ∗c )



Finite Mixture Model

• Explicitly allow only K clusters in partition:

• Each cluster k has parameter θk.

• Each data item i assigned to k with mixing 
probability πk.

• Gives a random partition with at most K clusters.

• Priors on the other parameters:

•
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Induced Distribution over Partitions

• P(z|α) describes a partition of the data set into clusters, and a labelling of 
each cluster with a mixture component index.

• Induces a distribution over partitions ϱ (without labelling) of the data set:

• where                                                         .

• Taking K → ∞, we get a proper distribution over partitions without a limit on 
the number of clusters:

P (�|α) = [K]k−1
Γ(α)

Γ(n+ α)
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Chinese Restaurant Process

• An important representation of the Dirichlet process

• An important object of study in its own right.

• Predates the Dirichlet process and originated in genetics (related to Ewen’s 
sampling formula there).

• Large number of MCMC samplers using CRP representation.

• Random partitions are useful concepts for clustering problems in machine 
learning

• CRP mixture models for nonparametric model-based clustering.

• hierarchical clustering using concepts of fragmentations and coagulations.

• clustering nodes in graphs, e.g. for community discovery in social nets.

• Other combinatorial structures can be built from partitions.



Random Probability Measures



A draw from a Dirichlet Process 
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Atomic Distributions

• Draws from Dirichlet processes will always be atomic:

• where Σk πk = 1 and θk* ∈ Θ. 

• A number of ways to specify the joint distribution of {πk, θk*}.

• Stick-breaking construction;

• Poisson-Dirichlet distribution.

G =
∞�

k=1

πkδθ∗
k



Stick-breaking Construction

• Stick-breaking construction for the joint distribution:

• πk’s are decreasing on average but not strictly.

• Distribution of {πk} is the Griffiths-Engen-McCloskey (GEM) distribution.

• Poisson-Dirichlet distribution [Kingman 1975] gives a strictly decreasing 
ordering (but is not computationally tractable). 

θ∗k ∼ H vk ∼ Beta(1,α) for k = 1, 2, . . ..
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Finite Mixture Model

• Explicitly allow only K clusters in partition:

• Each cluster k has parameter θk.

• Each data item i assigned to k with mixing 
probability πk.

• Gives a random partition with at most K clusters.

• Priors on the other parameters:

•
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Size-biased Permutation

• Reordering clusters do not change the marginal distribution on partitions or 
data items.

• By strictly decreasing πk: Poisson-Dirichlet distribution.

• Reorder stochastically as follows gives stick-breaking construction:

• Pick cluster k to be first cluster with probability πk .

• Remove cluster k and renormalize rest of { πk : j ≠ k }; repeat.

• Stochastic reordering is called a size-biased permutation.

• After reordering, taking K → ∞ gives the corresponding DP representations.



 Stick-breaking Construction

• Easy to generalize stick-breaking construction:

• to other random measures;

• to random measures that depend on covariates or vary spatially.

• Easy to work with different algorithms:

•  MCMC samplers;

• variational inference;

• parallelized algorithms.

[Ishwaran & James 2001, Dunson 2010 and many others]



DP Mixture Model: 
Representations and Inference



DP Mixture Model

• A DP mixture model: 

• Different representations:

• θ1,θ2,...,θn are clustered according to Pólya urn 
scheme, with induced partition given by a CRP.

• G is atomic with weights and atoms described 
by stick-breaking construction.

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]

G|α, H ∼ DP(α, H)

θi|G ∼ G

xi|θi ∼ F (θi)



CRP Representation

• Representing the partition structure explicitly with 
a CRP:

• Makes explicit that this is a clustering model.

• Using a CRP prior for ϱ obviates need to limit 
number of clusters as in finite mixture models.

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]

ρ|α ∼ CRP([n],α)

θ
∗
c |H ∼ H for c ∈ ρ

xi|θ∗c ∼ F (θ∗c ) for c � i



Marginal Sampler
• “Marginal” MCMC sampler.

• Marginalize out G, and Gibbs sample partition.

• Conditional probability of cluster of data item i:

• A variety of methods to deal with new clusters.

• Difficulty lies in dealing with new clusters, 
especially when prior h is not conjugate to f.

[Neal 2000]

ρ|α ∼ CRP([n],α)

θ
∗
c |H ∼ H for c ∈ ρ

xi|θ∗c ∼ F (θ∗c ) for c � i
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�
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f(xi|θ)h(θ)dθ if ρi = new



Induced Prior on the Number of Clusters
• The prior expectation and variance of |ϱ| are:
E[|ρ||α, n] = α(ψ(α+ n)− ψ(α)) ≈ α log
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Marginal Gibbs Sampler Pseudocode
• Initialize: randomly assign each data item to some cluster.
• K := the number of clusters used.
• For each cluster k = 1...K:

• Compute sufficient statistics sk := Σ { s(xi) : zi = k }.
• Compute cluster sizes nk := # { i : zi = k }.

• Iterate until convergence:
• For each data item i = 1...n:

• Let k := zi be the current cluster data item is assigned to.
• Remove data item: sk −= s(xi), nk −= 1.
• If nk = 0 then remove cluster k (K −= 1 and relabel rest of clusters). 
• Compute conditional probabilities p(zi=c|others)                        

for c = 1...K, kempty := K+1.
• Sample new cluster for data item from conditional probabilities.
• If c = kempty then create new cluster: K+=1, sc := 0, nc = 0. 
• Add data item: zi  := c, sc += s(xi), nc += 1.



Stick-breaking Representation
• Dissecting stick-breaking representation for G: 

• Makes explicit that this is a mixture model with an 
infinite number of components.

• Conditional sampler:

• Standard Gibbs sampler, except need to truncate the 
number of clusters.

• Easy to work with non-conjugate priors.

• For sampler to mix well need to introduce moves 
for permuting the order of clusters.

π
∗|α ∼ GEM(α)

θ
∗
k|H ∼ H

zi|π∗ ∼ Discrete(π∗)

xi|zi, θ∗zi ∼ F (θ∗zi)

[Ishwaran & James 2001, Walker 2007, Papaspiliopoulos & Roberts 2008]



Explicit G Sampler
• Represent G explicitly, alternately sampling {θi}|G 

(simple) and G|{θi}:.

• Use a stick-breaking representation for G’ and 
truncate as before.

• No explicit ordering of the non-empty clusters 
makes for better mixing.

• Explicit representation of G allows for posterior 
estimates of functionals of G.

G|α, H ∼ DP(α, H)

θi|G ∼ G

xi|θi ∼ F (θi)

G|θ1, . . . , θn ∼ DP(α+ n,
αH+

�n
i=1 δθi

α+n
)
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∗
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G
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Other Inference Algorithms

• Split-merge algorithms [Jain & Neal 2004].

• Close in spirit to reversible-jump MCMC methods [Green & richardson 
2001].

• Sequential Monte Carlo methods [Liu 1996, Ishwaran & James 2003, 
Fearnhead 2004, Mansingkha et al 2007].

• Variational algorithms [Blei & Jordan 2006, Kurihara et al 2007, Teh et al 
2008].

• Expectation propagation [Minka & Ghahramani 2003, Tarlow et al 2008]. 


