

Bayesian Nonparametrics: Dirichlet Process

Yee Whye Teh Gatsby Computational Neuroscience Unit, UCL

http://www.gatsby.ucl.ac.uk/~ywteh/teaching/npbayes2012

Dirichlet Process

- Cornerstone of modern Bayesian nonparametrics.
- Rediscovered many times as the infinite limit of finite mixture models.
- Formally defined by [Ferguson 1973] as a distribution over measures.
- Can be derived in different ways, and as special cases of different processes.
- Random partition view:
 - Chinese restaurant process, Blackwell-mcQueen urn scheme
- Random measure view:
 - stick-breaking construction, Poisson-Dirichlet, gamma process

The Infinite Limit of Finite Mixture Models

Finite Mixture Models

- Model for data from heterogeneous unknown sources.
- Each cluster (source) modelled using a parametric model (e.g. Gaussian).
- Data item *i*:

 $z_i | \pi \sim \text{Discrete}(\pi)$ $x_i | z_i, \theta_k^* \sim F(\theta_{z_i}^*)$

• Mixing proportions:

$$\pi = (\pi_1, \dots, \pi_K) | \alpha \sim \text{Dirichlet}(\alpha/K, \dots, \alpha/K)$$

• Cluster k:

 $\theta_k^* | H \sim H$

UCI

Finite Mixture Models

Dirichlet distribution on the *K*-dimensional probability simplex { π | Σ_k π_k = 1 }:

$$P(\pi|\alpha) = \frac{\Gamma(\alpha)}{\prod_k \Gamma(\alpha/K)} \prod_{k=1}^K \pi_k^{\alpha/K-1}$$

with $\Gamma(a) = \int_0^\infty x^{a-1} e^x dx$.

• Standard distribution on probability vectors, due to **conjugacy** with multinomial.

Dirichlet Distribution

Dirichlet-Multinomial Conjugacy

• Joint distribution over z_i and π :

$$P(\pi|\alpha) \times \prod_{i=1}^{n} P(z_i|\pi) = \frac{\Gamma(\alpha)}{\prod_{k=1}^{K} \Gamma(\alpha/K)} \prod_{k=1}^{K} \pi_k^{\alpha/K-1} \times \prod_{k=1}^{K} \pi_k^{n_k}$$

where $n_c = \#\{ z_i = c \}$.

• Posterior distribution:

$$P(\pi | \mathbf{z}, \alpha) = \frac{\Gamma(n + \alpha)}{\prod_{k=1}^{K} \Gamma(n_k + \alpha/K)} \prod_{k=1}^{K} \pi_k^{n_k + \alpha/K - 1}$$

• Marginal distribution:

$$P(\mathbf{z}|\alpha) = \frac{\Gamma(\alpha)}{\prod_{k=1}^{K} \Gamma(\alpha/K)} \frac{\prod_{k=1}^{K} \Gamma(n_k + \alpha/K)}{\Gamma(n + \alpha)}$$

[•]UCl

Gibbs Sampling

• All conditional distributions are simple to compute:

$$p(z_i = k | \text{others}) \propto \pi_k f(x_i | \theta_k^*)$$

$$\pi | \text{others} \sim \text{Dirichlet}(\frac{\alpha}{K} + n_1, \dots, \frac{\alpha}{K} + n_K)$$

$$p(\theta_k^* = \theta | \text{others}) \propto h(\theta) \prod_{j: z_j = k} f(x_j | \theta)$$

• Not as efficient as collapsed Gibbs sampling, which integrates out π , θ^* 's:

$$p(z_i = k | \text{others}) \propto \frac{\frac{\alpha}{K} + n_k^{\neg i}}{\alpha + n - 1} f(x_i | \{x_j : j \neq i, z_j = k\})$$

$$f(x_i | \{x_j : j \neq i, z_j = k\}) \propto \int h(\theta) f(x_i | \theta) \prod_{\substack{j \neq i: z_j = k}} f(x_j | \theta) d\theta$$

 π Н z_i \square $k = 1, \ldots$ \mathcal{X}_{i} $i = 1, \ldots, n$

 α

• Conditional distributions can be efficiently computed if *F* is conjugate to *H*.

Infinite Limit of Collapsed Gibbs Sampler

- We will take $K \to \infty$.
- Imagine a very large value of *K*.
- There are at most *n* < *K* occupied clusters, so most components are empty. We can lump these empty components together:

$$p(z_i = k | \text{others}) = \frac{n_k^{\neg i} + \frac{\alpha}{K}}{n - 1 + \alpha} f(x_i | \{x_j : j \neq i, z_j = k\}$$
$$p(z_i = k_{\text{empty}} | \text{others}) = \frac{\alpha \frac{K - K^*}{K}}{n - 1 + \alpha} f(x_i | \{\})$$

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]

Infinite Limit of Collapsed Gibbs Sampler

- We will take $K \to \infty$.
- Imagine a very large value of *K*.
- There are at most *n* < *K* occupied clusters, so most components are empty. We can lump these empty components together:

$$p(z_i = k | \text{others}) = \frac{n_k^{\neg i}}{n - 1 + \alpha} f(x_i | \{x_j : j \neq i, z_j = k\}$$

$$p(z_i = k_{\text{empty}} | \text{others}) = \frac{\alpha}{n - 1 + \alpha} f(x_i | \{\})$$

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]

Infinite Limit

- The actual infinite limit of the finite mixture model does not make sense:
 - any particular cluster will get a mixing proportion of 0.
- Better ways of making this infinite limit precise:
 - Chinese restaurant process.
 - Stick-breaking construction.
- Both are different views of the Dirichlet process (DP).
- DPs can be thought of as infinite dimensional Dirichlet distributions.
- The $K \rightarrow \infty$ Gibbs sampler is for DP mixture models.

Ferguson's Definition of the Dirichlet Process

Ferguson's Definition of Dirichlet Processes

• A **Dirichlet process** (DP) is a random probability measure *G* over (Θ, Σ) such that for any finite set of measurable sets $A_{1,...,A_{K}} \in \Sigma$ partitioning Θ , i.e.

$$A_1 \dot{\cup} \cdots \dot{\cup} A_K = \Theta$$

we have

$$(G(A_1),\ldots,G(A_K)) \sim \text{Dirichlet}(\alpha H(A_1),\ldots,\alpha H(A_K))$$

where α and H are parameters of the DP.

Parameters of the Dirichlet Process

- α is called the **strength**, mass or concentration parameter.
- *H* is called the **base distribution**.
- Mean and variance:

$$\mathbb{E}[G(A)] = H(A)$$
$$\mathbb{V}[G(A)] = \frac{H(A)(1 - H(A))}{\alpha + 1}$$

where A is a measurable subset of Θ .

• *H* is the mean of *G*, and α is an inverse variance.

Posterior Dirichlet Process

• Suppose

 $G \sim \mathrm{DP}(\alpha, H)$

• We can define random variables that are *G* distributed:

 $\theta_i | G \sim G \quad \text{for } i = 1, \dots, n$

• The usual Dirichlet-multinomial conjugacy carries over to the DP as well: $G|\theta_1, \dots, \theta_n \sim \mathrm{DP}(\alpha + n, \frac{\alpha H + \sum_{i=1}^n \delta_{\theta_i}}{\alpha + n})$

Pólya Urn Scheme

 $G \sim \mathrm{DP}(\alpha, H)$ $\theta_i | G \sim G \quad \text{for } i = 1, 2, \dots$

• Marginalizing out *G*, we get:

$$\theta_{n+1}|\theta_1,\ldots,\theta_n \sim \frac{\alpha H + \sum_{i=1}^n \delta_{\theta_i}}{\alpha + n}$$

- This is called the **Pólya**, **Hoppe** or **Blackwell-MacQueen urn scheme**.
 - Start with an urn with α balls of a special colour.
 - Pick a ball randomly from urn:
 - If it is a special colour, make a new ball with colour sampled from *H*, note the colour, and return both balls to urn.
 - If not, note its colour and return two balls of that colour to urn.

[Blackwell & MacQueen 1973, Hoppe 1984]

Clustering Property

 $G \sim \mathrm{DP}(\alpha, H)$ $\theta_i | G \sim G \quad \text{for } i = 1, 2, \dots$

- The *n* variables $\theta_1, \theta_2, \dots, \theta_n$ can take on $K \le n$ distinct values.
- Let the distinct values be $\theta_1^*, \dots, \theta_K^*$. This defines a partition of $\{1, \dots, n\}$ such that i is in cluster k if and only if $\theta_i = \theta_k^*$.
- The induced distribution over partitions is the **Chinese restaurant process**.

Discreteness of the Dirichlet Process

• Suppose

 $G \sim \mathrm{DP}(\alpha, H)$ $\theta | G \sim G$

• *G* is discrete if

 $\mathbb{P}(G(\{\theta\}) > 0) = 1$

• Above holds, since joint distribution is equivalent to:

 $\theta \sim H$ $G|\theta \sim \mathrm{DP}(\alpha + 1, \frac{\alpha H + \delta_{\theta}}{\alpha + 1})$

A draw from a Dirichlet Process

Atomic Distributions

• Draws from Dirichlet processes will always be atomic:

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k^*}$$

where $\Sigma_k \pi_k = 1$ and $\theta_k^* \in \Theta$.

- A number of ways to specify the joint distribution of $\{\pi_k, \theta_k^*\}$.
 - Stick-breaking construction;
 - Poisson-Dirichlet distribution.

Random Partitions

[Aldous 1985, Pitman 2006]

Partitions

- A **partition** ϱ of a set *S* is:
 - A disjoint family of non-empty subsets of *S* whose union in *S*.
 - $S = \{Alice, Bob, Charles, David, Emma, Florence\}.$
 - $\rho = \{ \{Alice, David\}, \{Bob, Charles, Emma\}, \{Florence\} \}.$

- Denote the set of all partitions of *S* as \mathcal{P}_S .
- **Random partitions** are random variables taking values in \mathcal{P}_{S} .
- We will work with partitions of $S = [n] = \{1, 2, ..., n\}$.

Chinese Restaurant Process

$$3 \xrightarrow{1}{6} 2 \xrightarrow{1}{7} 3 \xrightarrow{4}{8} 9 \xrightarrow{6} 6 \xrightarrow{6$$

- Each customer comes into restaurant and sits at a table: $p(\text{sit at table } c) = \frac{n_c}{\alpha + \sum_{c \in o} n_c}$ $p(\text{sit at new table}) = \frac{\alpha}{\alpha + \sum_{c \in o} n_c}$
- Customers correspond to elements of S, and tables to clusters in ρ .
- **Rich-gets-richer**: large clusters more likely to attract more customers.
- Multiplying conditional probabilities together, the overall probability of ρ , called the **exchangeable partition probability function** (EPPF), is:

$$P(\varrho|\alpha) = \frac{\alpha^{|\varrho|} \Gamma(\alpha)}{\Gamma(n+\alpha)} \prod_{c \in \varrho} \Gamma(|c|)$$

[Aldous 1985, Pitman 2006]

UCI

Number of Clusters

• The prior mean and variance of *K* are: $\mathbb{E}[|\rho||\alpha, n] = \alpha(\psi(\alpha + n) - \psi(\alpha)) \approx \alpha \log\left(1 + \frac{n}{\alpha}\right)$ $\mathbb{V}[|\rho||\alpha, n] = \alpha(\psi(\alpha + n) - \psi(\alpha)) + \alpha^{2}(\psi'(\alpha + n) - \psi'(\alpha)) \approx \alpha \log\left(1 + \frac{n}{\alpha}\right)$ $\psi(\alpha) = \frac{\partial}{\partial \alpha} \log \Gamma(\alpha)$

Model-based Clustering with Chinese Restaurant Process

Partitions in Model-based Clustering

- Partitions are the natural latent objects of inference in clustering.
 - Given a dataset S, partition it into clusters of similar items.
- Cluster c $\in \varrho$ described by a model $F(\theta_c^*)$

parameterized by θ_c^* .

• Bayesian approach: introduce prior over ϱ and θ_c^* ; compute posterior over both.

Finite Mixture Model

- Explicitly allow only *K* clusters in partition:
 - Each cluster k has parameter θ_k .
 - Each data item *i* assigned to *k* with **mixing probability** π_k .
 - Gives a random partition with at most *K* clusters.
- Priors on the other parameters:

 $\pi | \alpha \sim \text{Dirichlet}(\alpha/K, \dots, \alpha/K)$ $\theta_k^* | H \sim H$

Induced Distribution over Partitions

$$P(\mathbf{z}|\alpha) = \frac{\Gamma(\alpha)}{\prod_k \Gamma(\alpha/K)} \frac{\prod_k \Gamma(n_k + \alpha/K)}{\Gamma(n + \alpha)}$$

- $P(\mathbf{z}|\alpha)$ describes a partition of the data set into clusters, and a labelling of each cluster with a mixture component index.
- Induces a distribution over partitions ρ (without labelling) of the data set:

$$P(\varrho|\alpha) = [K]_{-1}^k \frac{\Gamma(\alpha)}{\Gamma(n+\alpha)} \prod_{c \in \varrho} \frac{\Gamma(|c|+\alpha/K)}{\Gamma(\alpha/K)}$$

where $[x]_b^a = x(x+b) \cdots (x+(a-1)b).$

• Taking $K \to \infty$, we get a proper distribution over partitions without a limit on the number of clusters:

$$P(\varrho|\alpha) \to \frac{\alpha^{|\varrho|} \Gamma(\alpha)}{\Gamma(n+\alpha)} \prod_{c \in \varrho} \Gamma(|c|)$$

Chinese Restaurant Process

- An important representation of the Dirichlet process
- An important object of study in its own right.
- Predates the Dirichlet process and originated in genetics (related to Ewen's sampling formula there).
- Large number of MCMC samplers using CRP representation.
- Random partitions are useful concepts for clustering problems in machine learning
 - CRP mixture models for nonparametric model-based clustering.
 - hierarchical clustering using concepts of fragmentations and coagulations.
 - clustering nodes in graphs, e.g. for community discovery in social nets.
 - Other combinatorial structures can be built from partitions.

Random Probability Measures

A draw from a Dirichlet Process

Atomic Distributions

• Draws from Dirichlet processes will always be atomic:

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k^*}$$

where $\Sigma_k \pi_k = 1$ and $\theta_k^* \in \Theta$.

- A number of ways to specify the joint distribution of $\{\pi_k, \theta_k^*\}$.
 - Stick-breaking construction;
 - Poisson-Dirichlet distribution.

Stick-breaking Construction

• **Stick-breaking construction** for the joint distribution:

$$\theta_k^* \sim H \qquad v_k \sim \text{Beta}(1, \alpha) \qquad \text{for } k = 1, 2, \dots$$

$$\pi_k^* = v_k \prod_{j=1}^{k-1} (1 - v_j) \qquad G = \sum_{k=1}^{\infty} \pi_k^* \delta_{\theta_k^*}$$

- π_k 's are decreasing on average but not strictly.
- Distribution of $\{\pi_k\}$ is the **Griffiths-Engen-McCloskey** (GEM) distribution.
- **Poisson-Dirichlet distribution** [Kingman 1975] gives a strictly decreasing ordering (but is not computationally tractable).

≜UCI

Finite Mixture Model

- Explicitly allow only *K* clusters in partition:
 - Each cluster k has parameter θ_k .
 - Each data item *i* assigned to *k* with mixing probability π_k .
 - Gives a random partition with at most *K* clusters.
- Priors on the other parameters:

 $\pi | \alpha \sim \text{Dirichlet}(\alpha/K, \dots, \alpha/K)$ $\theta_k^* | H \sim H$

Size-biased Permutation

- Reordering clusters do not change the marginal distribution on partitions or data items.
- By strictly decreasing π_k : Poisson-Dirichlet distribution.
- Reorder stochastically as follows gives stick-breaking construction:
 - Pick cluster k to be first cluster with probability π_k .
 - Remove cluster k and renormalize rest of { $\pi_k : j \neq k$ }; repeat.
- Stochastic reordering is called a **size-biased permutation**.
- After reordering, taking $K \rightarrow \infty$ gives the corresponding DP representations.

Stick-breaking Construction

- Easy to generalize stick-breaking construction:
 - to other random measures;
 - to random measures that depend on covariates or vary spatially.
- Easy to work with different algorithms:
 - MCMC samplers;
 - variational inference;
 - parallelized algorithms.

[Ishwaran & James 2001, Dunson 2010 and many others]

DP Mixture Model: Representations and Inference

DP Mixture Model

• A DP mixture model:

 $G|\alpha, H \sim DP(\alpha, H)$ $\theta_i | G \sim G$ $x_i | \theta_i \sim F(\theta_i)$

- Different representations:
 - $\theta_1, \theta_2, \dots, \theta_n$ are clustered according to Pólya urn scheme, with induced partition given by a CRP.
 - *G* is atomic with weights and atoms described by stick-breaking construction.

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]

CRP Representation

• Representing the partition structure explicitly with a CRP:

 $\rho | \alpha \sim \operatorname{CRP}([n], \alpha)$ $\theta_c^* | H \sim H \text{ for } c \in \rho$ $x_i | \theta_c^* \sim F(\theta_c^*) \text{ for } c \ni i$

- Makes explicit that this is a clustering model.
- Using a CRP prior for ϱ obviates need to limit number of clusters as in finite mixture models.

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]

¹UCl

Marginal Sampler

- "Marginal" MCMC sampler.
 - Marginalize out *G*, and Gibbs sample partition.
- Conditional probability of cluster of data item *i*:

$$P(\rho_i | \rho_{\backslash i}, \mathbf{x}, \boldsymbol{\theta}) = P(\rho_i | \rho_{\backslash i}) P(x_i | \rho_i, \mathbf{x}_{\backslash i}, \boldsymbol{\theta})$$

$$P(\rho_i | \rho_{\backslash i}) = \begin{cases} \frac{|c|}{n-1+\alpha} & \text{if } \rho_i = c \in \rho_{\backslash i} \\ \frac{\alpha}{n-1+\alpha} & \text{if } \rho_i = \text{new} \end{cases}$$

$$P(x_i | \rho_i, \mathbf{x}_{\backslash i}, \boldsymbol{\theta}) = \begin{cases} f(x_i | \theta_{\rho_i}) & \text{if } \rho_i = c \in \rho_{\backslash i} \\ \int f(x_i | \theta) h(\theta) d\theta & \text{if } \rho_i = \text{new} \end{cases}$$

- A variety of methods to deal with new clusters.
- Difficulty lies in dealing with new clusters, especially when prior *h* is not conjugate to *f*.

 $\rho | \alpha \sim \operatorname{CRP}([n], \alpha)$ $\theta_c^* | H \sim H \text{ for } c \in \rho$ $x_i | \theta_c^* \sim F(\theta_c^*) \text{ for } c \ni i$

[Neal 2000]

Induced Prior on the Number of Clusters

• The prior expectation and variance of $|\varrho|$ are:

 $\mathbb{E}[|\rho||\alpha, n] = \alpha(\psi(\alpha + n) - \psi(\alpha)) \approx \alpha \log\left(1 + \frac{n}{\alpha}\right)$ $\mathbb{V}[|\rho||\alpha, n] = \alpha(\psi(\alpha + n) - \psi(\alpha)) + \alpha^2(\psi'(\alpha + n) - \psi'(\alpha)) \approx \alpha \log\left(1 + \frac{n}{\alpha}\right)$

Marginal Gibbs Sampler Pseudocode

- Initialize: randomly assign each data item to some cluster.
- *K* := the number of clusters used.
- For each cluster k = 1...K:
 - Compute sufficient statistics $s_k := \Sigma \{ s(x_i) : z_i = k \}$.
 - Compute cluster sizes $n_k := \# \{ i : z_i = k \}$.
- Iterate until convergence:
 - For each data item i = 1...n:
 - Let $k := z_i$ be the current cluster data item is assigned to.
 - Remove data item: $s_k = s(x_i)$, $n_k = 1$.
 - If $n_k = 0$ then remove cluster k (K = 1 and relabel rest of clusters).
 - Compute conditional probabilities p(zi=c|others) for c = 1...K, k_{empty} := K+1.
 - Sample new cluster for data item from conditional probabilities.
 - If $c = k_{empty}$ then create new cluster: K += 1, $s_c := 0$, $n_c = 0$.
 - Add data item: $z_i := c, s_c += s(x_i), n_c += 1$.

Stick-breaking Representation

• Dissecting stick-breaking representation for G:

$$\pi^* | \alpha \sim \text{GEM}(\alpha)$$

$$\theta_k^* | H \sim H$$

$$z_i | \pi^* \sim \text{Discrete}(\pi^*)$$

$$x_i | z_i, \theta_{z_i}^* \sim F(\theta_{z_i}^*)$$

- Makes explicit that this is a mixture model with an infinite number of components.
- Conditional sampler:
 - Standard Gibbs sampler, except need to truncate the number of clusters.
 - Easy to work with non-conjugate priors.
 - For sampler to mix well need to introduce moves for permuting the order of clusters.

[Ishwaran & James 2001, Walker 2007, Papaspiliopoulos & Roberts 2008]

Explicit *G* Sampler

Represent G explicitly, alternately sampling {θ_i}|G (simple) and G|{θ_i}:.

$$G|\theta_1, \dots, \theta_n \sim \mathrm{DP}(\alpha + n, \frac{\alpha H + \sum_{i=1}^n \delta_{\theta_i}}{\alpha + n})$$
$$G = \pi_0^* G' + \sum_{k=1}^K \pi_k^* \delta_{\theta_k^*}$$

$$(\pi_0^*, \pi_1^*, \dots, \pi_K^*) \sim \text{Dirichlet}(\alpha, n_1, \dots, n_K)$$

 $G' \sim \text{DP}(\alpha, H)$

- Use a stick-breaking representation for *G* ' and truncate as before.
- No explicit ordering of the non-empty clusters makes for better mixing.
- Explicit representation of *G* allows for posterior estimates of functionals of *G*.


```
G|\alpha, H \sim DP(\alpha, H)\theta_i | G \sim Gx_i | \theta_i \sim F(\theta_i)
```


Other Inference Algorithms

- Split-merge algorithms [Jain & Neal 2004].
 - Close in spirit to reversible-jump MCMC methods [Green & richardson 2001].
- Sequential Monte Carlo methods [Liu 1996, Ishwaran & James 2003, Fearnhead 2004, Mansingkha et al 2007].
- Variational algorithms [Blei & Jordan 2006, Kurihara et al 2007, Teh et al 2008].
- Expectation propagation [Minka & Ghahramani 2003, Tarlow et al 2008].