今JC!

Bayesian Nonparametrics: Dirichlet Process

Yee Whye Teh
Gatsby Computational Neuroscience Unit, UCL

http://www.gatsby.ucl.ac.uk/~ywteh/teaching/npbayes2012

Dirichlet Process

- Cornerstone of modern Bayesian nonparametrics.
- Rediscovered many times as the infinite limit of finite mixture models.
- Formally defined by [Ferguson 1973] as a distribution over measures.
- Can be derived in different ways, and as special cases of different processes.
- Random partition view:
- Chinese restaurant process, Blackwell-mcQueen urn scheme
- Random measure view:
- stick-breaking construction, Poisson-Dirichlet, gamma process

IUCI

The Infinite Limit of Finite Mixture Models

Finite Mixture Models

- Model for data from heterogeneous unknown sources.
- Each cluster (source) modelled using a parametric model (e.g. Gaussian).
- Data item i :

$$
\begin{aligned}
z_{i} \mid \pi & \sim \operatorname{Discrete}(\pi) \\
x_{i} \mid z_{i}, \theta_{k}^{*} & \sim F\left(\theta_{z_{i}}^{*}\right)
\end{aligned}
$$

- Mixing proportions:

$$
\pi=\left(\pi_{1}, \ldots, \pi_{K}\right) \mid \alpha \sim \operatorname{Dirichlet}(\alpha / K, \ldots, \alpha / K)
$$

- Cluster k :

$$
\theta_{k}^{*} \mid H \sim H
$$

Finite Mixture Models

- Dirichlet distribution on the K-dimensional probability simplex $\left\{\pi \mid \Sigma_{k} \pi_{k}=1\right\}$:

$$
P(\pi \mid \alpha)=\frac{\Gamma(\alpha)}{\prod_{k} \Gamma(\alpha / K)} \prod_{k=1}^{K} \pi_{k}^{\alpha / K-1}
$$

with $\Gamma(a)=\int_{0}^{\infty} x^{a-1} e^{x} d x$.

- Standard distribution on probability vectors, due to conjugacy with multinomial.

Dirichlet Distribution

$(2,2,2)$
$(5,5,5)$
$(2,5,5)$
$(2,2,5)$

$$
P(\pi \mid \alpha)=\frac{\Gamma\left(\sum_{k} \alpha_{k}\right)}{\prod_{k} \Gamma\left(\alpha_{k}\right)} \prod_{k=1}^{K} \pi_{k}^{\alpha_{k}-1}
$$

Dirichlet-Multinomial Conjugacy

- Joint distribution over z_{i} and π :

$$
P(\pi \mid \alpha) \times \prod_{i=1}^{n} P\left(z_{i} \mid \pi\right)=\frac{\Gamma(\alpha)}{\prod_{k=1}^{K} \Gamma(\alpha / K)} \prod_{k=1}^{K} \pi_{k}^{\alpha / K-1} \times \prod_{k=1}^{K} \pi_{k}^{n_{k}}
$$

where $n_{c}=\#\left\{z_{i}=c\right\}$.

- Posterior distribution:

$$
P(\pi \mid \mathbf{z}, \alpha)=\frac{\Gamma(n+\alpha)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\alpha / K\right)} \prod_{k=1}^{K} \pi_{k}^{n_{k}+\alpha / K-1}
$$

- Marginal distribution:

$$
P(\mathbf{z} \mid \alpha)=\frac{\Gamma(\alpha)}{\prod_{k=1}^{K} \Gamma(\alpha / K)} \frac{\prod_{k=1}^{K} \Gamma\left(n_{k}+\alpha / K\right)}{\Gamma(n+\alpha)}
$$

Gibbs Sampling

- All conditional distributions are simple to compute:

$$
\begin{aligned}
p\left(z_{i}=k \mid \text { others }\right) & \propto \pi_{k} f\left(x_{i} \mid \theta_{k}^{*}\right) \\
\pi \mid \text { others } & \sim \operatorname{Dirichlet}\left(\frac{\alpha}{K}+n_{1}, \ldots, \frac{\alpha}{K}+n_{K}\right) \\
p\left(\theta_{k}^{*}=\theta \mid \text { others }\right) & \propto h(\theta) \prod_{j: z_{j}=k} f\left(x_{j} \mid \theta\right)
\end{aligned}
$$

- Not as efficient as collapsed Gibbs sampling, which integrates out π, θ^{*} 's:

$$
p\left(z_{i}=k \mid \text { others }\right) \propto \frac{\frac{\alpha}{K}+n_{k}^{i}}{\alpha+n-1} f\left(x_{i} \mid\left\{x_{j}: j \neq i, z_{j}=k\right\}\right)
$$

$$
f\left(x_{i} \mid\left\{x_{j}: j \neq i, z_{j}=k\right\}\right) \propto \int h(\theta) f\left(x_{i} \mid \theta\right) \prod_{j \neq i: z_{j}=k} f\left(x_{j} \mid \theta\right) d \theta
$$

- Conditional distributions can be efficiently computed if F is conjugate to H.

Infinite Limit of Collapsed Gibbs Sampler

- We will take $K \rightarrow \infty$.
- Imagine a very large value of K.
- There are at most $n<K$ occupied clusters, so most components are empty. We can lump these empty components together:

$$
p\left(z_{i}=k \mid \text { others }\right)=\frac{n_{k}^{\neg i}+\frac{\alpha}{K}}{n-1+\alpha} f\left(x_{i} \mid\left\{x_{j}: j \neq i, z_{j}=k\right\}\right)
$$

$$
p\left(z_{i}=k_{\text {empty }} \mid \text { others }\right)=\frac{\alpha \frac{K-K^{*}}{K}}{n-1+\alpha} f\left(x_{i} \mid\{ \}\right)
$$

[Neal 2000, Rasmussen 2000, Ishwaran \& Zarepour 2002]

Infinite Limit of Collapsed Gibbs Sampler

- We will take $K \rightarrow \infty$.
- Imagine a very large value of K.
- There are at most $n<K$ occupied clusters, so most components are empty. We can lump these empty components together:

$$
p\left(z_{i}=k \mid \text { others }\right)=\frac{n_{k}^{\neg^{i}}}{n-1+\alpha} f\left(x_{i} \mid\left\{x_{j}: j \neq i, z_{j}=k\right\}\right)
$$

$$
p\left(z_{i}=k_{\text {empty }} \mid \text { others }\right)=\frac{\alpha}{n-1+\alpha} f\left(x_{i} \mid\{ \}\right)
$$

[Neal 2000, Rasmussen 2000, Ishwaran \& Zarepour 2002]

Infinite Limit

- The actual infinite limit of the finite mixture model does not make sense:
- any particular cluster will get a mixing proportion of 0 .
- Better ways of making this infinite limit precise:
- Chinese restaurant process.
- Stick-breaking construction.
- Both are different views of the Dirichlet process (DP).
- DPs can be thought of as infinite dimensional Dirichlet distributions.
- The $K \rightarrow \infty$ Gibbs sampler is for DP mixture models.

IUCI

Ferguson's Definition of the Dirichlet Process

Ferguson's Definition of Dirichlet Processes

- A Dirichlet process (DP) is a random probability measure G over (Θ, Σ) such that for any finite set of measurable sets $A_{1}, \ldots A_{K} \in \Sigma$ partitioning Θ, i.e.

$$
A_{1} \dot{\cup} \cdots \dot{\cup} A_{K}=\Theta
$$

we have

$$
\left(G\left(A_{1}\right), \ldots, G\left(A_{K}\right)\right) \sim \operatorname{Dirichlet}\left(\alpha H\left(A_{1}\right), \ldots, \alpha H\left(A_{K}\right)\right)
$$

where α and H are parameters of the DP.

[Ferguson 1973]

Parameters of the Dirichlet Process

- α is called the strength, mass or concentration parameter.
- H is called the base distribution.
- Mean and variance:

$$
\begin{aligned}
& \mathbb{E}[G(A)]=H(A) \\
& \mathbb{V}[G(A)]=\frac{H(A)(1-H(A))}{\alpha+1}
\end{aligned}
$$

where A is a measurable subset of Θ.

- H is the mean of G, and α is an inverse variance.

Posterior Dirichlet Process

- Suppose

$$
G \sim \mathrm{DP}(\alpha, H)
$$

- We can define random variables that are G distributed:

$$
\theta_{i} \mid G \sim G \quad \text { for } i=1, \ldots, n
$$

- The usual Dirichlet-multinomial conjugacy carries over to the DP as well:

$$
G \mid \theta_{1}, \ldots, \theta_{n} \sim \operatorname{DP}\left(\alpha+n, \frac{\alpha H+\sum_{i=1}^{n} \delta_{\theta_{i}}}{\alpha+n}\right)
$$

Pólya Urn Scheme

$$
\begin{aligned}
G & \sim \mathrm{DP}(\alpha, H) \\
\theta_{i} \mid G & \sim G \quad \text { for } i=1,2, \ldots
\end{aligned}
$$

- Marginalizing out G, we get:

$$
\theta_{n+1} \mid \theta_{1}, \ldots, \theta_{n} \sim \frac{\alpha H+\sum_{i=1}^{n} \delta_{\theta_{i}}}{\alpha+n}
$$

- This is called the Pólya, Hoppe or Blackwell-MacQueen urn scheme.
- Start with an urn with α balls of a special colour.
- Pick a ball randomly from urn:
- If it is a special colour, make a new ball with colour sampled from H, note the colour, and return both balls to urn.
- If not, note its colour and return two balls of that colour to urn.

Clustering Property

$$
\begin{aligned}
G & \sim \mathrm{DP}(\alpha, H) \\
\theta_{i} \mid G & \sim G \quad \text { for } i=1,2, \ldots
\end{aligned}
$$

- The n variables $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$ can take on $K \leq n$ distinct values.
- Let the distinct values be $\theta_{1}{ }^{*}, \ldots, \theta_{K}{ }^{*}$. This defines a partition of $\{1, \ldots, n\}$ such that i is in cluster k if and only if $\theta_{i}=\theta_{k}{ }^{*}$.
- The induced distribution over partitions is the Chinese restaurant process.

Discreteness of the Dirichlet Process

- Suppose

$$
\begin{aligned}
G & \sim \mathrm{DP}(\alpha, H) \\
\theta \mid G & \sim G
\end{aligned}
$$

- G is discrete if

$$
\mathbb{P}(G(\{\theta\})>0)=1
$$

- Above holds, since joint distribution is equivalent to:

$$
\begin{aligned}
\theta & \sim H \\
G \mid \theta & \sim \operatorname{DP}\left(\alpha+1, \frac{\alpha H+\delta_{\theta}}{\alpha+1}\right)
\end{aligned}
$$

A draw from a Dirichlet Process

Atomic Distributions

- Draws from Dirichlet processes will always be atomic:

$$
G=\sum_{k=1}^{\infty} \pi_{k} \delta_{\theta_{k}^{*}}
$$

where $\Sigma_{k} \pi_{k}=1$ and $\theta_{k}{ }^{*} \in \Theta$.

- A number of ways to specify the joint distribution of $\left\{\pi_{k}, \theta_{k}^{*}\right\}$.
- Stick-breaking construction;
- Poisson-Dirichlet distribution.

IUCL

Random Partitions

[Aldous 1985, Pitman 2006]

Partitions

- A partition ϱ of a set S is:
- A disjoint family of non-empty subsets of S whose union in S.
- $S=$ \{Alice, Bob, Charles, David, Emma, Florence .
- $\varrho=\{$ \{Alice, David $\},\{$ Bob, Charles, Emma $\}$, \{Florence $\}$ \}.

- Denote the set of all partitions of S as \mathcal{P}_{S}.
- Random partitions are random variables taking values in \mathcal{P}_{S}.
- We will work with partitions of $S=[n]=\{1,2, \ldots n\}$.

Chinese Restaurant Process

- Each customer comes into restaurant and sits at a table:
$p($ sit at table $c)=\frac{n_{c}}{\alpha+\sum_{c \in \varrho} n_{c}} \quad p($ sit at new table $)=\frac{\alpha}{\alpha+\sum_{c \in \varrho} n_{c}}$
- Customers correspond to elements of S, and tables to clusters in ϱ.
- Rich-gets-richer: large clusters more likely to attract more customers.
- Multiplying conditional probabilities together, the overall probability of ϱ, called the exchangeable partition probability function (EPPF), is:

$$
P(\varrho \mid \alpha)=\frac{\alpha^{|\varrho|} \Gamma(\alpha)}{\Gamma(n+\alpha)} \prod_{c \in \varrho} \Gamma(|c|)
$$

[Aldous 1985, Pitman 2006]

Number of Clusters

- The prior mean and variance of K are:

$$
\begin{aligned}
\mathbb{E}[\mid \rho \| \alpha, n] & =\alpha(\psi(\alpha+n)-\psi(\alpha)) \approx \alpha \log \left(1+\frac{n}{\alpha}\right) \\
\mathbb{V}[\mid \rho \| \alpha, n] & =\alpha(\psi(\alpha+n)-\psi(\alpha))+\alpha^{2}\left(\psi^{\prime}(\alpha+n)-\psi^{\prime}(\alpha)\right) \approx \alpha \log \left(1+\frac{n}{\alpha}\right) \\
\psi(\alpha) & =\frac{\partial}{\partial \alpha} \log \Gamma(\alpha)
\end{aligned}
$$

$\alpha=30, d=0$

\#10al

Model-based Clustering with Chinese Restaurant Process

Partitions in Model-based Clustering

- Partitions are the natural latent objects of inference in clustering.
- Given a dataset S, partition it into clusters of similar items.
- Cluster $\mathrm{c} \in \varrho$ described by a model

$$
F\left(\theta_{c}^{*}\right)
$$

parameterized by $\theta_{c}{ }^{*}$.

- Bayesian approach: introduce prior over ϱ and $\theta_{c}{ }^{*}$; compute posterior over both.

Finite Mixture Model

- Explicitly allow only K clusters in partition:
- Each cluster k has parameter θ_{k}.
- Each data item i assigned to k with mixing probability π_{k}.
- Gives a random partition with at most K clusters.
- Priors on the other parameters:

$$
\begin{aligned}
\pi \mid \alpha & \sim \operatorname{Dirichlet}(\alpha / K, \ldots, \alpha / K) \\
\theta_{k}^{*} \mid H & \sim H
\end{aligned}
$$

Induced Distribution over Partitions

$$
P(\mathbf{z} \mid \alpha)=\frac{\Gamma(\alpha)}{\prod_{k} \Gamma(\alpha / K)} \frac{\prod_{k} \Gamma\left(n_{k}+\alpha / K\right)}{\Gamma(n+\alpha)}
$$

- $\mathrm{P}(\mathbf{z} \mid \alpha)$ describes a partition of the data set into clusters, and a labelling of each cluster with a mixture component index.
- Induces a distribution over partitions ϱ (without labelling) of the data set:

$$
P(\varrho \mid \alpha)=[K]_{-1}^{k} \frac{\Gamma(\alpha)}{\Gamma(n+\alpha)} \prod_{c \in \varrho} \frac{\Gamma(|c|+\alpha / K)}{\Gamma(\alpha / K)}
$$

where $[x]_{b}^{a}=x(x+b) \cdots(x+(a-1) b)$.

- Taking $K \rightarrow \infty$, we get a proper distribution over partitions without a limit on the number of clusters:

$$
P(\varrho \mid \alpha) \rightarrow \frac{\alpha^{|\varrho|} \Gamma(\alpha)}{\Gamma(n+\alpha)} \prod_{c \in \varrho} \Gamma(|c|)
$$

Chinese Restaurant Process

- An important representation of the Dirichlet process
- An important object of study in its own right.
- Predates the Dirichlet process and originated in genetics (related to Ewen's sampling formula there).
- Large number of MCMC samplers using CRP representation.
- Random partitions are useful concepts for clustering problems in machine learning
- CRP mixture models for nonparametric model-based clustering.
- hierarchical clustering using concepts of fragmentations and coagulations.
- clustering nodes in graphs, e.g. for community discovery in social nets.
- Other combinatorial structures can be built from partitions.

IUCL

Random Probability Measures

A draw from a Dirichlet Process

Atomic Distributions

- Draws from Dirichlet processes will always be atomic:

$$
G=\sum_{k=1}^{\infty} \pi_{k} \delta_{\theta_{k}^{*}}
$$

where $\Sigma_{k} \pi_{k}=1$ and $\theta_{k}{ }^{*} \in \Theta$.

- A number of ways to specify the joint distribution of $\left\{\pi_{k}, \theta_{k}^{*}\right\}$.
- Stick-breaking construction;
- Poisson-Dirichlet distribution.

Stick-breaking Construction

- Stick-breaking construction for the joint distribution:

$$
\begin{array}{lll}
\theta_{k}^{*} \sim H & v_{k} & \sim \operatorname{Beta}(1, \alpha)
\end{array} \quad \text { for } k=1,2, \ldots .
$$

- π_{k} 's are decreasing on average but not strictly.
- Distribution of $\left\{\pi_{k}\right\}$ is the Griffiths-Engen-McCloskey (GEM) distribution.
- Poisson-Dirichlet distribution [Kingman 1975] gives a strictly decreasing ordering (but is not computationally tractable).

Finite Mixture Model

- Explicitly allow only K clusters in partition:
- Each cluster k has parameter θ_{k}.
- Each data item i assigned to k with mixing probability π_{k}.
- Gives a random partition with at most K clusters.
- Priors on the other parameters:

$$
\begin{aligned}
\pi \mid \alpha & \sim \operatorname{Dirichlet}(\alpha / K, \ldots, \alpha / K) \\
\theta_{k}^{*} \mid H & \sim H
\end{aligned}
$$

Size-biased Permutation

- Reordering clusters do not change the marginal distribution on partitions or data items.
- By strictly decreasing π_{k} : Poisson-Dirichlet distribution.
- Reorder stochastically as follows gives stick-breaking construction:
- Pick cluster k to be first cluster with probability π_{k}.
- Remove cluster k and renormalize rest of $\left\{\pi_{k}: j \neq k\right\}$; repeat.
- Stochastic reordering is called a size-biased permutation.
- After reordering, taking $K \rightarrow \infty$ gives the corresponding DP representations.

Stick-breaking Construction

- Easy to generalize stick-breaking construction:
- to other random measures;
- to random measures that depend on covariates or vary spatially.
- Easy to work with different algorithms:
- MCMC samplers;
- variational inference;
- parallelized algorithms.
[Ishwaran \& James 2001, Dunson 2010 and many others]

IUCI

DP Mixture Model:

Representations and Inference

DP Mixture Model

- A DP mixture model:

$$
\begin{aligned}
G \mid \alpha, H & \sim \operatorname{DP}(\alpha, H) \\
\theta_{i} \mid G & \sim G \\
x_{i} \mid \theta_{i} & \sim F\left(\theta_{i}\right)
\end{aligned}
$$

- Different representations:
- $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$ are clustered according to Pólya urn scheme, with induced partition given by a CRP.
- G is atomic with weights and atoms described by stick-breaking construction.

[Neal 2000, Rasmussen 2000, Ishwaran \& Zarepour 2002]

CRP Representation

- Representing the partition structure explicitly with a CRP:

$$
\begin{aligned}
\rho \mid \alpha & \sim \operatorname{CRP}([n], \alpha) \\
\theta_{c}^{*} \mid H & \sim H \text { for } c \in \rho \\
x_{i} \mid \theta_{c}^{*} & \sim F\left(\theta_{c}^{*}\right) \text { for } c \ni i
\end{aligned}
$$

- Makes explicit that this is a clustering model.
- Using a CRP prior for ϱ obviates need to limit number of clusters as in finite mixture models.

[Neal 2000, Rasmussen 2000, Ishwaran \& Zarepour 2002]

Marginal Sampler

- "Marginal" MCMC sampler.
- Marginalize out G, and Gibbs sample partition.
- Conditional probability of cluster of data item i :

$$
P\left(\rho_{i} \mid \rho_{\backslash i}, \mathbf{x}, \boldsymbol{\theta}\right)=P\left(\rho_{i} \mid \rho_{\backslash i}\right) P\left(x_{i} \mid \rho_{i}, \mathbf{x}_{\backslash i}, \boldsymbol{\theta}\right)
$$

$$
P\left(\rho_{i} \mid \rho_{\backslash i}\right)= \begin{cases}\frac{|c|}{n-1+\alpha} & \text { if } \rho_{i}=c \in \rho_{\backslash i} \\ \frac{\alpha}{n-1+\alpha} & \text { if } \rho_{i}=\text { new }\end{cases}
$$

$P\left(x_{i} \mid \rho_{i}, \mathbf{x}_{\backslash i}, \boldsymbol{\theta}\right)= \begin{cases}f\left(x_{i} \mid \theta_{\rho_{i}}\right) & \text { if } \rho_{i}=c \in \rho_{\backslash i} \\ \int f\left(x_{i} \mid \theta\right) h(\theta) d \theta & \text { if } \rho_{i}=\text { new }\end{cases}$

- A variety of methods to deal with new clusters.
- Difficulty lies in dealing with new clusters, especially when prior h is not conjugate to f.

Induced Prior on the Number of Clusters

- The prior expectation and variance of $|\varrho|$ are:

$$
\begin{aligned}
\mathbb{E}[\mid \rho \| \alpha, n] & =\alpha(\psi(\alpha+n)-\psi(\alpha)) \approx \alpha \log \left(1+\frac{n}{\alpha}\right) \\
\mathbb{V}[\mid \rho \| \alpha, n] & =\alpha(\psi(\alpha+n)-\psi(\alpha))+\alpha^{2}\left(\psi^{\prime}(\alpha+n)-\psi^{\prime}(\alpha)\right) \approx \alpha \log \left(1+\frac{n}{\alpha}\right)
\end{aligned}
$$

Marginal Gibbs Sampler Pseudocode

- Initialize: randomly assign each data item to some cluster.
- $K:=$ the number of clusters used.
- For each cluster $k=1 \ldots K$:
- Compute sufficient statistics $s_{k}:=\Sigma\left\{s\left(x_{i}\right): z_{i}=k\right\}$.
- Compute cluster sizes $n_{k}:=\#\left\{i: z_{i}=k\right\}$.
- Iterate until convergence:
- For each data item $i=1 \ldots n$:
- Let $k:=z_{i}$ be the current cluster data item is assigned to.
- Remove data item: $s_{k}-=s\left(x_{i}\right), n_{k}-=1$.
- If $n_{k}=0$ then remove cluster k ($K-=1$ and relabel rest of clusters).
- Compute conditional probabilities $\mathrm{p}(\mathrm{zi}=\mathrm{c} \mid$ others) for $c=1 \ldots K, k_{\text {empty }}:=K+1$.
- Sample new cluster for data item from conditional probabilities.
- If $\mathrm{c}=k_{\text {empty }}$ then create new cluster: $K_{+}=1, s_{c}:=0, n_{c}=0$.
- Add data item: $z_{i}:=c, s_{c}+=s\left(x_{i}\right), n_{c}+=1$.

Stick-breaking Representation

- Dissecting stick-breaking representation for G :

$$
\begin{aligned}
\pi^{*} \mid \alpha & \sim \operatorname{GEM}(\alpha) \\
\theta_{k}^{*} \mid H & \sim H \\
z_{i} \mid \pi^{*} & \sim \operatorname{Discrete}\left(\pi^{*}\right) \\
x_{i} \mid z_{i}, \theta_{z_{i}}^{*} & \sim F\left(\theta_{z_{i}}^{*}\right)
\end{aligned}
$$

- Makes explicit that this is a mixture model with an infinite number of components.
- Conditional sampler:
- Standard Gibbs sampler, except need to truncate the number of clusters.
- Easy to work with non-conjugate priors.

- For sampler to mix well need to introduce moves for permuting the order of clusters.
[Ishwaran \& James 2001, Walker 2007, Papaspiliopoulos \& Roberts 2008]

Explicit G Sampler

- Represent G explicitly, alternately sampling $\left\{\theta_{i}\right\} \mid G$ (simple) and $G \mid\left\{\theta_{i}\right\}$:.

$$
\begin{aligned}
G \mid \theta_{1}, \ldots, \theta_{n} & \sim \operatorname{DP}\left(\alpha+n, \frac{\alpha H+\sum_{i=1}^{n} \delta_{\theta_{i}}}{\alpha+n}\right) \\
G & =\pi_{0}^{*} G^{\prime}+\sum_{k=1}^{K} \pi_{k}^{*} \delta_{\theta_{k}^{*}}
\end{aligned}
$$

$$
\begin{aligned}
\left(\pi_{0}^{*}, \pi_{1}^{*}, \ldots, \pi_{K}^{*}\right) & \sim \operatorname{Dirichlet}\left(\alpha, n_{1}, \ldots, n_{K}\right) \\
G^{\prime} & \sim \operatorname{DP}(\alpha, H)
\end{aligned}
$$

- Use a stick-breaking representation for G^{\prime} and truncate as before.
- No explicit ordering of the non-empty clusters makes for better mixing.
- Explicit representation of G allows for posterior estimates of functionals of G.

$$
\begin{aligned}
G \mid \alpha, H & \sim \operatorname{DP}(\alpha, H) \\
\theta_{i} \mid G & \sim G \\
x_{i} \mid \theta_{i} & \sim F\left(\theta_{i}\right)
\end{aligned}
$$

Other Inference Algorithms

- Split-merge algorithms [Jain \& Neal 2004].
- Close in spirit to reversible-jump MCMC methods [Green \& richardson 2001].
- Sequential Monte Carlo methods [Liu 1996, Ishwaran \& James 2003, Fearnhead 2004, Mansingkha et al 2007].
- Variational algorithms [Blei \& Jordan 2006, Kurihara et al 2007, Teh et al 2008].
- Expectation propagation [Minka \& Ghahramani 2003, Tarlow et al 2008].

