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Dirichlet Process

* Cornerstone of modern Bayesian nonparametrics.
« Rediscovered many times as the infinite limit of finite mixture models.
* Formally defined by [Ferguson 1973] as a distribution over measures.

« Can be derived 1n different ways, and as special cases of different processes.

 Random partition view:
* Chinese restaurant process, Blackwell-mcQueen urn scheme
« Random measure view:

* stick-breaking construction, Poisson-Dirichlet, gamma process



The Infinite Limit of
Finite Mixture Models



Finite Mixture Models

e Model for data from heterogeneous unknown sources. ﬁé)
* Each cluster (source) modelled using a parametric

model (e.g. Gaussian). o @

Data item i:

z;|m ~ Discrete(m)

Ti|2i, O ~ F(‘g;kz)
* Mixing proportions: Ve k=1 K

w = (m1,...,7x)|a ~ Dirichlet (a/K, ..., a/K) @/

e Cluster £:

HZ‘HNH 1=1,..., n



Finite Mixture Models

e Dirichlet distribution on the K-dimensional
probability simplex { T | Zk T = ] }

a/K 1

P(r|a) = T a/K 1_]

with T'(a fo x® et dy.

 Standard dlStI'lbutIOIl on probability vectors, due to
conjugacy with multinomial.




Dirichlet Distribution

(1,1,1) (2,2,2)

(2,5,5) (2,2,5) (0.7,0.7,0.7)




Dirichlet-Multinomial Conjugacy

e Joint distribution over z; and m:

P(7|a) x HP(ZZ-\W) =

Nl@)

[Ti—i D(a/K) 5

a/K 1><H7T

where nc=#{zi=c }.

e Posterior distribution:

K
I'(n+ «) H ne+o/K—1

H§:1 [(ng + O‘/K

P(r|z,a) =

* Marginal distribution:

P(Z‘a) — F(a) Hk;:1 F(nk -+ Oé/K)

H?:l [(a/K) ['(n+a)




Gibbs Sampling

 All conditional distributions are simple to compute:

p(z; = k|others) o< i f(x;|0;)

7|others ~ Dilrichlet(g +ni,..., % +nK)
p(6;,, = Olothers) o h(6 H f(x;]0)
J:zj=k

* Not as efficient as collapsed Gibbs sampling, which
integrates out 7, 0°’s:

-7
+nk

p(zi = klothers) oc Lt f(z;|{z; : j#1,2;=k})

f(xil{x; 1 7#1,2=k}) x /h(@)f(a:zw) H f(x;]60)do
j#i:Zj =k
« Conditional distributions can be efficiently computed 1f
F1s conjugate to H.




Infinite Limit of Collapsed Gibbs Sampler

e We will take K — 0.

e Imagine a very large value of K.

* There are at most n < K occupied clusters, so most @ @
components are empty. We can lump these empty

components together:

ng'+ 5% .
p(zs = Klothers) = —E—B 1| {a; : j#1, 2= k})
ozK_K* k=1,..., K
pzi = Kumpisfothers) = “—E— f(a,|{(} v
1=1,..., n

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]



Infinite Limit of Collapsed Gibbs Sampler

e We will take K — 0.

e Imagine a very large value of K.

* There are at most n < K occupied clusters, so most @ @
components are empty. We can lump these empty

components together:

n . . .
p(zi = klothers) = —E——— f(xil{x; : i, 2 =k})

() /k:1 ..... K

P(2; = kempty|Others) = Y af

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]



Infinite Limit

* The actual infinite limit of the finite mixture model does not make sense:
 any particular cluster will get a mixing proportion of 0.

* Better ways of making this infinite limit precise:
* Chinese restaurant process.

 Stick-breaking construction.

Both are different views of the Dirichlet process (DP).
* DPs can be thought of as infinite dimensional Dirichlet distributions.

* The K — o Gibbs sampler 1s for DP mixture models.



Ferguson’s Definition of the
Dirichlet Process



A

Ferguson’s Definition of Dirichlet Processes

* A Dirichlet process (DP) 1s a random probability measure G over (6, 2)
such that for any finite set of measurable sets 4,,...Ax € 2 partitioning 0, 1.¢.

AU---UAx =06
we have
(G(Aq1),...,G(Ak)) ~ Dirichlet(aH (A1), ..., aH(Ak))

where o and H are parameters of the DP.

|[Ferguson 1973]



Parameters of the Dirichlet Process

o 1s called the strength, mass or concentration parameter.
* H 1s called the base distribution.

e Mean and variance:

where A4 1s a measurable subset of @.

« H 1s the mean of G, and «a 1s an 1nverse variance.



Posterior Dirichlet Process

e Suppose
G ~ DP(a, H)

* We can define random variables that are G distributed:
HZ‘GNG fOI’iZl,...,n

* The usual Dirichlet-multinomial conjugacy carries over to the DP as well:

G|01,. .. ,0n ~ DP(a + n, 2= 00y




Polya Urn Scheme

G ~ DP(a, H)
;|G ~G fori=1,2,...

* Marginalizing out G, we get:

(XH—I—Z:-L: 59@.
9n+1’917"°79nN :

a-+n

e This 1s called the Polya, Hoppe or Blackwell-MacQueen urn scheme.
 Start with an urn with a balls of a special colour.
 Pick a ball randomly from urn:

 If it 1s a special colour, make a new ball with colour sampled from H,
note the colour, and return both balls to urn.

 If not, note 1ts colour and return two balls of that colour to urn.

[Blackwell & MacQueen 1973, Hoppe 1984]



Clustering Property

G ~ DP(a, H)
;|G ~G fori=1,2,...

 The n variables 0,,0,,...,6, can take on K < n distinct values.

 Let the distinct values be 6;%,...,0x". This defines a partition of {/,...,n} such
that 1 is in cluster k if and only if 8, = 6.

* The induced distribution over partitions 1s the Chinese restaurant process.



Discreteness of the Dirichlet Process

e Suppose
G ~ DP(a, H)
0|G ~ G

e (G1s discrete 1f

P(G(10}) > 0) =1

« Above holds, since joint distribution 1s equivalent to:
0~ H

oaH-+6
G|0 ~ DP(a + 1, 27550 )




A draw from a Dirichlet Process
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Atomic Distributions

e Draws from Dirichlet processes will always be atomic:
o
G =) mido;
k=1

where 2= I and 6, € O.

« A number of ways to specify the joint distribution of {m, 0x"}.
e Stick-breaking construction;

 Poisson-Dirichlet distribution.



Random Partitions

[Aldous 1985, Pitman 2006]



Partitions

* A partition p of a set §S'1s:

A disjoint family of non-empty subsets of S whose union in S.

« §= {Alice, Bob, Charles, David, Emma, Florence}.
* o= { {Alice, David}, {Bob, Charles, Emma}, {Florence} }.

Bob
Charles

Alice

David
Emma

 Denote the set of all partitions of S as Ps.
« Random partitions are random variables taking values in Ps.

* We will work with partitions of S = [n] = {1,2,...n}.



Chinese Restaurant Process

O OO O

e Each customer comes into restaurant and sits at a table:
Ne Q!

sit at table ¢) = sit at new table) =
p( ) S S p( ) Ty n

* Customers correspond to elements of S, and tables to clusters 1n .

* Rich-gets-richer: large clusters more likely to attract more customers.

* Multiplying conditional probabilities together, the overall probability of g,
called the exchangeable partition probability function (EPPF), is:

|Q|I‘
P(ola) = — Hr )

n Oé
T ccpo

[Aldous 1985, Pitman 2006]



Number of Clusters

* The prior mean and variance of K are:

E % Oé,TL: — 04(1?(04 o n)
Viplla,n] = a(¥(a +n)

P(a) = L log(a)
a=30, d=0
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Model-based Clustering with
Chinese Restaurant Process



Partitions in Model-based Clustering

 Partitions are the natural latent objects of
inference 1n clustering.

 Given a dataset S, partition it into clusters \
of similar items. "‘f'"‘ R )
e Cluster ¢ € ¢ described by a model - ,'a
F(67) o

parameterized by 6.”.

« Bayesian approach: introduce prior over ¢ and
6."; compute posterior over both.




Finite Mixture Model

* Explicitly allow only K clusters in partition:

* Each cluster £ has parameter 6.

« Each data item i assigned to £ with mixing
probability 7.

* Gives a random partition with at most K clusters.

e Priors on t

T

e other parameters:
a ~ Dirichlet(a/K, ..., a/K)

0| H ~ H




Induced Distribution over Partitions

D(a)  [[, T(ng + a/K)
[[;T(a/K)  T'(n+«a)

P(z|a) =

* P(z|«x) describes a partition of the data set into clusters, and a labelling of
each cluster with a mixture component index.

* Induces a distribution over partitions ¢ (without labelling) of the data set:

() L] +a/K)
'T(n+ a) H ['a/K)

where [z]y = x(z +D)--- (x4 (a — 1)b).

* Taking K — oo, we get a proper distribution over partitions without a limit on
the number of clusters:

|Q|I‘

Q)

P > | | F
(Q‘a n+az i C‘

P(gla) = [K]=

cco




Chinese Restaurant Process

« An important representation of the Dirichlet process
* An important object of study 1n 1ts own right.

» Predates the Dirichlet process and originated in genetics (related to Ewen’s
sampling formula there).

e Large number of MCMC samplers using CRP representation.

* Random partitions are useful concepts for clustering problems in machine
learning

* CRP mixture models for nonparametric model-based clustering.
* hierarchical clustering using concepts of fragmentations and coagulations.
e clustering nodes 1n graphs, e.g. for community discovery in social nets.

« Other combinatorial structures can be built from partitions.



Random Probability Measures



A draw from a Dirichlet Process
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Atomic Distributions

e Draws from Dirichlet processes will always be atomic:
o
G =) mido;
k=1

where 2= I and 6, € O.

« A number of ways to specify the joint distribution of {m, 0x"}.
 Stick-breaking construction;

 Poisson-Dirichlet distribution.



Stick-breaking Construction

——— T |
—— (5

' *
ﬁ g

® Ty
®

Stick-breaking construction for the joint distribution:

0, ~ H vr ~ Beta(l, a) for k=1,2,....
k—1 00

T = Uk H(l—fuj) G:ZW};%Z
j=1 k=1

* mi’s are decreasing on average but not strictly.
 Distribution of {7zx} 1s the Griffiths-Engen-McCloskey (GEM) distribution.

* Poisson-Dirichlet distribution [Kingman 1975] gives a strictly decreasing
ordering (but 1s not computationally tractable).



Finite Mixture Model

* Explicitly allow only K clusters in partition:

* Each cluster £ has parameter 6.

» Each data item i assigned to £ with mixing
probability 7.

* Gives a random partition with at most K clusters.

e Priors on t

T

e other parameters:
a ~ Dirichlet(a/K, ..., a/K)

0| H ~ H




Size-biased Permutation

* Reordering clusters do not change the marginal distribution on partitions or
data items.

By strictly decreasing mx: Poisson-Dirichlet distribution.

Reorder stochastically as follows gives stick-breaking construction:
 Pick cluster £ to be first cluster with probability 7 .
 Remove cluster k£ and renormalize rest of { mx : j # k }; repeat.

» Stochastic reordering 1s called a size-biased permutation.

 After reordering, taking K — oo gives the corresponding DP representations.



Stick-breaking Construction

* Easy to generalize stick-breaking construction:

e to other random measures;

 to random measures that depend on covariates or vary spatially.
* Easy to work with different algorithms:

« MCMC samplers;

 variational inference;

* parallelized algorithms.

[Ishwaran & James 2001, Dunson 2010 and many others]



DP Mixture Model:
Representations and Inference



DP Mixture Model

* A DP mixture model: °

G|o, H ~ DP(a, H)

0,|G ~ G <§}€D

v
 Different representations: @

e 01,0,,...,0, are clustered according to Polya urn
scheme, with induced partition given by a CRP.

* (5 1s atomic with weights and atoms described
by stick-breaking construction. i

Il
-y

Rl

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]



CRP Representation

* Representing the partition structure explicitly with
a CRP: °

pla ~ CRP(|n}, a)

0" |H ~ H for c € p ~-
x;|0% ~ F(07) for ¢ > i

v

P
v
« Makes explicit that this 1s a clustering model. @. @

*
C
» Using a CRP prior for ¢ obviates need to limit | i
number of clusters as in finite mixture models. =1 cicep

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]



A

Marginal Sampler pla ~ CRP([n], o)
0°|H ~ H for c € p
e “Marginal” MCMC sampler. |0F ~ F(07) for ¢ 34

* Marginalize out G, and Gibbs sample partition.
« Conditional probability of cluster of data item i:

P(pilp\i, x,0) =P(pi|p\i) P(xi|piy X\i, 0)

(

<]

Plpilp) =4 "L
 n—1+«o

P
( 2(9 : f 7 — i y
[ f(x:|0)R(0)d0  if p; = new -« 0

if p; =c € p\;

if p;, = new

* A variety of methods to deal with new clusters.

 Difficulty lies in dealing with new clusters,
especially when prior £ 1s not conjugate to f.

[Neal 2000]



Induced Prior on the Number of Clusters

* The prior expectation and variance of |p| are:
Ellplla, n] = a(i(a+n) = v(a)) = alog (1+ %)
Vlplla, n] = a(¥(a +n) —(a)) + o* (¥’ (a +n) — ¢'(@)) = alog (1 + )
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Marginal Gibbs Sampler Pseudocode

e |nitialize: randomly assign each data item to some cluster.
e K :=the number of clusters used.
e For each cluster k = 1...K:
e Compute sufficient statistics si:= 2 { s(x;) : zi = k }.
e Compute cluster sizesng:=#{i:zi=k}.
e [terate until convergence:
 For each data item /i = T1...n:
* Let k := z; be the current cluster data item is assigned to.
e Remove data item: sk —= s(x;), nk—=1.

* |If nk = 0 then remove cluster k (K —= T and relabel rest of clusters).
e Compute conditional probabilities p(zi=c|others)
for c = 1...K, Kempty := K+1.
e Sample new cluster for data item from conditional probabilities.
* |[f ¢ = kempty then create new cluster: K+=1, sc:= 0, nc= 0.
e Add data item: z; := ¢, sc += s(xj), nc+= 1.



Stick-breaking Representation

 Dissecting stick-breaking representation for G:
™ |a ~ GEM(a)
0.|H ~H

z;|m* ~ Discrete(n™)

» Makes explicit that this 1s a mixture model with an

@
infinite number of components. 0*
-
... k
* Conditional sampler:

« Standard Gibbs sampler, except need to truncate the
number of clusters.

* Easy to work with non-conjugate priors. i=1..n

* For sampler to mix well need to introduce moves
for permuting the order of clusters.

[Ishwaran & James 2001, Walker 2007, Papaspiliopoulos & Roberts 2008]



Explicit G Sampler

* Represent G explicitly, alternately sampling {6;}|G
(simple) and G|{6;}:. v

G =m, —I—Z7Tk53*

(WS,WT,...,T('K) NDlrlchlet(oz,nl,..,,nK) @
G~ DP(a, H)

» Use a stick-breaking representation for G’ and @
truncate as before.

* No explicit ordering of the non-empty clusters Glo, H ~ DP (o, H)
makes for better mixing. ’ ’

* Explicit representation of G allows for posterior
estimates of functionals of G.




Other Inference Algorithms

* Split-merge algorithms [Jain & Neal 2004].

* Close 1n spirit to reversible-jump MCMC methods [Green & richardson
2001].

* Sequential Monte Carlo methods [Liu 1996, Ishwaran & James 2003,
Fearnhead 2004, Mansingkha et al 2007].

* Variational algorithms [Ble1 & Jordan 2006, Kurihara et al 2007, Teh et al
2008].

* Expectation propagation [Minka & Ghahramani 2003, Tarlow et al 2008].



