
MS1b Statistical Data Mining
Part 4: Supervised Learning

Ensemble Methods

Yee Whye Teh
Department of Statistics

Oxford

http://www.stats.ox.ac.uk/~teh/datamining.html

http://www.stats.ox.ac.uk/~teh/datamining.html

Outline

Supervised Learning: Ensemble Methods
Bagging
Random Forests
Boosting

Outline

Supervised Learning: Ensemble Methods
Bagging
Random Forests
Boosting

Bagging

An appeal of trees is their interpretability. Recall classification tree for Pima
Indians example.

library(rpart)
library(MASS)
data(Pima.tr) ## load data
Diabetes <- Pima.tr[,8] ## response
X <- Pima.tr[,-8] ## predictor
tree <- rpart(Diabetes ~ ., data=X,

control=rpart.control(xval=10))) ## 10-fold CV

> plot(tree); text(tree)

|glu< 123.5

age< 28.5

glu< 90

bp>=68

ped< 0.3095

glu< 166 bmi< 28.65

No

No

No Yes

No Yes
No Yes

Tree is very interpretable, selecting a subset of all predictor variables.
Is the tree also ‘stable’ under small perturbations of the data or if we have
slightly different training data? Can we do formal ‘significance testing’ as in
linear models? How do we know we are not including irrelevant variables?

To fit the classification tree, we used all observations i = 1, . . . , n with n = 200.
What would the tree have looked like for a slightly different set of
observations?
The Bootstrap (Efron, 79) is a natural way to assess the variance of
estimators, fitting the tree repeatedly on so-called bootstrap samples. These
are random sets of size n, where each element is drawn with replacement
from the original n observations {1, . . . , n}.

> n <- nrow(X)
> subsample <- sample(1:n, n , replace=TRUE)

> sort(subsample)
[1] 2 4 4 5 6 7 9 10 11 12 12 12 12 13 13 15 15 20 ...

Some of the original observations do not appear in the bootstrap sample (e.g.
i = 1 or i = 3); some appear once (e.g. i = 2 or i = 5) and some twice or more
often (e.g. i = 4).
Fit the tree on these resampled observations.

> tree_boot <- rpart(Diabetes ~ ., data=X, subset=subsample,
control=rpart.control(xval=10))) ## 10-fold CV

Doing this twice, we get the two following trees, each fitted on a different
(random) subset of the data.

|glu< 123.5

age< 28.5

glu< 94.5

npreg< 5.5

glu< 156.5

ped< 0.421No

No

No Yes

No Yes

Yes

|glu< 123.5

ped< 0.348

glu< 164.5 bmi< 28.65

No

No Yes
No Yes

Classification trees are typically not very stable under subsampling of the
data. This affects both interpretability and also prediction.
We might for example be suspicious of a particular classification (e.g. “No”) if a
large fraction of resampled trees is classifying otherwise (classifying as “Yes”).

Can also look at regression trees.
Take the previous example of the Boston Housing data, trying to predict
median house prices, based on the (univariate) predictor variable crime rate.

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●
●

●
●

●

● ●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●
●

● ●●●

●

●
●
●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●● ●●

● ●
●

●
● ●

● ●●●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●
●● ●

●●●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

10
20

30
40

50

LOG(CRIME)

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

|crime>=1.918

13.44 24.44

Fit a stump (the simplest tree – just a root node) to the data. This yields the
fitted function Ŷ(x), shown as a red solid line.

We fitted (tree) predictor Ŷ(x) on the observations

(X1,Y1), . . . , (Xn,Yn), i = 1, . . . , n.

Assess the variance of the fitted function Ŷ(x) by taking B = 20 random
subsamples of the original data. Fit bootstrap estimators (trees)

Ŷ∗,b(x), b = 1, . . . ,B

where each tree Ŷ∗,b is fitted on the resampled data

(Xj1 ,Yj1), . . . , (Xjn ,Yjn), i = 1, . . . , n,

each index jk, k = 1, . . . , n, being chosen at random from the set {1, . . . , n}
with replacement.

Trees Ŷ∗,1, . . . , Ŷ∗,20 each fitted on a different (random) bootstrap sample of
the original n = 500 observations.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●
●

●
●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●

●

● ●● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

● ●

●

●
● ●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●● ●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

0
10

20
30

40

LOG(CRIME)

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

The variance of the fit Ŷ∗ is high in the region where the splitpoint is placed.

Idea of Bagging (Bootstrap Aggregation): average across all B trees fitted on
different bootstrap samples,

ŶBag =
1
B

B∑
i=1

Ŷ∗,i.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●
●

●
●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●

●

● ●● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

● ●

●

●
● ●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●● ●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

0
10

20
30

40

LOG(CRIME)

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●
●

●
●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●

●

● ●● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

● ●

●

●
● ●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●● ●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

0
10

20
30

40

LOG(CRIME)

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

Empirically, Bagging seems to reduce the variance of Ŷ, e.g.

E
(
(Ŷ − E(Ŷ))2) ≥ E

(
(ŶBag − E(ŶBag))

2).

Bagged trees are an example of an ensemble of trees, as prediction is
based on many individual predictors.
In summary, bagging trees has the following algorithm. Let Ŷ be a tree (or
other predictor), based on samples (X1,Y1), . . . , (Xn,Yn).

1. Draw indices (j1, . . . , jn) from the set {1, . . . , n} with replacement. Fit the
tree Ŷ∗ based on samples

(Xj1 ,Yj1), . . . , (Xjn ,Yjn).

2. Repeat first step B times to obtain

Ŷ∗,1, . . . , Ŷ∗,B.

3. Bagged estimator is

ŶBag =
1
B

B∑
b=1

Ŷ∗,b.

Variance reduction

Suppose, in an ideal world, we could instead base trees Ỹ∗,b, b = 1, . . . ,B on n
samples drawn from the (unknown) joint distribution of (X,Y), instead of
resampling from the original n observations.
The bagged estimator is then

ỸBag =
1
B

B∑
b=1

Ỹ∗,b.

For B→∞ (many bootstrap samples),

ỸBag → E(Ŷ),

where the expectation is with respect to the random sample of n observations
and Ŷ is the standard estimator (tree) fitted on these n observations.

Now compare the squared error loss of ỸBag with the loss of the original tree
estimator Ŷ,

E
(
(Y − Ŷ)2),

where both Ŷ = Ŷ(x) and ŶBag = ŶBag(x) are evaluated at some x ∈ Rp and the
expectation is with respect to a random new observation Y and a new training
sample on which Ŷ is fitted.
Using ỸBag → E(Ŷ) for B→∞,

E
(
(Y − Ŷ)2) = E

(
(Y − ỸBag + ỸBag − Ŷ)2)

= E
(
(Y − ỸBag)

2)+ E
(
(ỸBag − Ŷ)2)

≥ E
(
(Y − ỸBag)

2).
The (population) bagging estimator ỸBag thus reduced the squared error loss
by eliminating the variance of Ŷ around its mean E(Ŷ).

The variance reduction still applies if the idealized (population) estimate ỸBag

is replaced by the actual bagging estimator Ŷ. This variance reduction is
traded for a (small) increase in the bias in the procedure.
Bagging helps thus most for ‘flexible’ estimators Ŷ which have a high variance

E
(
(Ŷ − E(Ŷ))2).

For trees, this means that bagging has a very beneficial effect on trees with a
large size (number of leaf nodes), whereas the benefit of bagging on trees
with small size is much less pronounced.

Look again at previous example of predicting house prices, using crime rate
as the univariate predictor.

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

−4 −2 0 2 4

10
20

30
40

50

LOG(CRIME)

 M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

|crime>=1.918

13.44 24.44

Fitting a single tree with depth d = 1 (a stump).

Bagged stumps Ŷ∗,b, b = 1, . . . , 10.

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

−4 −2 0 2 4

10
20

30
40

50

LOG(CRIME)

 M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

Averaged bagged estimator ŶBag.

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

−4 −2 0 2 4

10
20

30
40

50
LOG(CRIME)

 M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

A stump Ŷ has (relative to larger trees) a low variance (and a high bias).
Bagging leads to a small but not a dramatic improvement.

Now fit a tree with depth d = 3.

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

−4 −2 0 2 4

10
20

30
40

50

LOG(CRIME)

 M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

|crime>=1.918

crime>=2.695

crime< 2.936 crime< 2.669

crime>=−2.647

crime< 1.87 crime>=−3.799

7.7 11.66 14.2 27.5 22.52 34.75 27.12 32.38

The fit of a single tree has a high variance and will have poor performance
(when trying to predict new observations).

Bagged trees of depth d = 3, Ŷ∗,b,
b = 1, . . . , 10.

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

−4 −2 0 2 4

10
20

30
40

50

LOG(CRIME)

 M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

Averaged bagged estimator ŶBag.

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

−4 −2 0 2 4

10
20

30
40

50

LOG(CRIME)
 M

E
D

IA
N

 H
O

U
S

E
 P

R
IC

E

As Ŷ has a high variance (and a low bias), bagging leads to a large
improvement.
Even though improvement through bagging is largest in general for trees with
large depths, the optimal tree depth (yielding smallest prediction error when
bagging) is not obvious a priori.

Out-of-bag test error estimation

To answer this question, we need again a good approximation to the test error
(here for the squared error loss function L),

Rtest := E(L(Y, ŶBag)),

where the expectation is with respect to new random pairs (X,Y) and
ŶBag = ŶBag(X), to

I tune the parameters of the algorithm (e.g. select depth of the tree)
I or assess the true performance (and compare with other approaches).

Could compute generalization error R̂test by cross-validation (CV), as
discussed previously.

Here schematic illustration of V = 4-fold CV for n = 12 samples.

● ● ● ● ● ● ● ● ●v=4

● ● ● ● ● ● ● ● ●v=3

● ● ● ● ● ● ● ● ●v=2

● ● ● ● ● ● ● ● ●v=1

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12

For each v = 1, . . . ,V,
I fit ŶBag on the training samples, shown as red and filled dots.
I predict with this tree the left-out test observations, shown as white

unfilled circles.
Compute the CV test error by averaging the loss across all test observations.

But to fit ŶBag on the training samples for each v = 1, . . . ,V, need another set
of B bootstrap samples on which the original tree is fitted (and whose average
gives the ŶBag for these training observations).

● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● b=5
● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● b=4
● ● ● ● ● ● ● ● ● ● ● ●● ●● ●● b=3
● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● b=2
● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● ●● b=1

v=4

● ● ● ● ● ● ● ● ● ● ● ●●● ●● b=5
● ● ● ● ● ● ● ● ● ● ● ●●●●● ● ●● b=4
● ● ● ● ● ● ● ● ● ● ● ●●●●● ● ●● b=3
● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● b=2
● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● b=1

v=3

● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● b=5
● ● ● ● ● ● ● ● ● ● ● ●●●● ●●● b=4
● ● ● ● ● ● ● ● ● ● ● ●●● ● ●● b=3
● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ●● b=2
● ● ● ● ● ● ● ● ● ● ● ●●●● ●● ● b=1

v=2

● ● ● ● ● ● ● ● ● ● ● ●●●● ● ● b=5
● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● b=4
● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● b=3
● ● ● ● ● ● ● ● ● ● ● ●●● ●●● b=2
● ● ● ● ● ● ● ● ● ● ● ●● ●●● ●● b=1

v=1

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12

For each v = 1, . . . ,V, the tree needs to be fitted B times. In total, V × B fits
are necessary. This can be very expensive computationally.
⇒ Out-of-bag estimation !

Idea: test on the “unused” data points in each bootstrap iteration to estimate
the test error.

● ● ●●●●● b=10

● ●●● ●● ● b=9

●●● ● ●● ● b=8

●● ● ●● b=7

●● ●● ●●● ● b=6

● ●●●● ●●● ● b=5

●●● ● ●● ●● ● b=4

●● ●● ●●● ● b=3

● ●● ●● ● ● ● b=2

● ● ●● ●● ●● b=1
i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12

If fitting B bootstrap estimates Ŷ∗,b, to assess the prediction for i = 1, average
only over such b, where observation i = 1 has not been used in fitting Ŷ∗,b.

Recall that, for B bootstrap samples Ŷ∗,b, the bagged estimator at observation
i is given by Ŷi := ŶBag(Xi),

Ŷi =
1
B

∑
b∈{1,...,B}

Ŷ∗,b(Xi)

Instead, let now

Ŷoob
i =

1
|B̃i|

∑
b∈B̃i

Ŷ∗,b(Xi),

where the sum is only taken over the set

B̃i = {b : Xi is not in training set} ⊆ {1, . . . ,B}.

The estimate of the test error is then computed, as usual, by

R̂test = n−1
n∑

i=1

L(Yi, Ŷoob
i).

● ● ●●●●● b=10

● ●●● ●● ● b=9

●●● ● ●● ● b=8

●● ● ●● b=7

●● ●● ●●● ● b=6

● ●●●● ●●● ● b=5

●●● ● ●● ●● ● b=4

●● ●● ●●● ● b=3

● ●● ●● ● ● ● b=2

● ● ●● ●● ●● b=1
i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12

In this example with B = 10 and n = 12, to get prediction for i = 1, average
only over trees Ŷ∗,b(X1) with b ∈ {3, 4, 8, 10}, e.g.

Ŷoob
1 =

1
4

∑
b∈{3,4,8,10}

Ŷ∗,b(X1).

● ● ●●●●● b=10

● ●●● ●● ● b=9

●●● ● ●● ● b=8

●● ● ●● b=7

●● ●● ●●● ● b=6

● ●●●● ●●● ● b=5

●●● ● ●● ●● ● b=4

●● ●● ●●● ● b=3

● ●● ●● ● ● ● b=2

● ● ●● ●● ●● b=1
i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12

For predicting observation i = 2, average only over trees Ŷ∗,b(X2) with
b ∈ {2, 8, 10}.

Ŷoob
2 =

1
3

∑
b∈{2,8,10}

Ŷ∗,b(X2).

We clearly need to average over many bootstrap samples in practice to get
accurate results, e.g. |B̃i| needs to be reasonably large for all i = 1, . . . , n.

What is the relation between |B̃i| and B?
The probability πoob of an observation NOT being included in a bootstrap
sample (j1, . . . , jn) (and hence being ‘out-of-bag’) is, as all jk for k = 1, . . . , n
are drawn with replacement from {1, . . . , n},

πoob =

n∏
i=1

(1− 1
n
)

n→∞→ exp(−1) ≈ 0.367.

Hence E(|B̃i|) = exp(−1) · B ≈ 0.367 · B for all i = 1, . . . , n.
In practice, number of bootstrap samples B is typically between 200 and 1000,
meaning that the number |B̃i| of out-of-bag samples will be approximately in
the range 70− 350. The obtained test error estimate is asymptotically
unbiased for large number B of bootstrap samples and large sample size n.

Apply out of bag estimation to select optimal tree depth and assess
performance of bagged trees for Boston Housing data.
Use the entire dataset with p = 13 predictor variables. Fit first an ordinary tree
of depth d ∈ {1, 2, 3, . . . , 30}.

n <- nrow(BostonHousing) ## n samples

X <- BostonHousing[,-14]
Y <- BostonHousing[,14]

maxdepth <- 3 ## fit here trees of depth 3
use function ‘rpart’ to fit tree

tree <- rpart(Y ~ ., data=X ,
control=rpart.control(maxdepth=maxdepth,minsplit=2))

Plot trees of depth d = 3 and d = 5.
plot(tree, margin=.1, uniform=TRUE)
text(tree, cex=1.3)

|
rm< 6.543

lstat>=14.4

crim>=5.583 lstat>=7.57

lstat>=3.88

tax>=417.5 rm< 6.935

12.07 17.35 20.97 24.01 20.33 31.82 32 45.83

|rm< 6.543

lstat>=14.4

crim>=5.583

lstat>=25.12

rm>=5.156lstat>=15.09

age>=84.1

rm< 5.246b>=382.6

lstat>=7.57

dis>=1.438

rm< 6.087

b>=359.5

rm< 6.133crim< 2.915

lstat>=3.88

tax>=417.5

crim>=17.02

crim>=54.29b< 130.3

rm< 6.791

dis>=3.793rm< 8.082

rm< 6.935

rm>=8.037

age>=79.9b< 383.8

7.4211.3312.7118.48.116.2720.2823.4519.9821.78

27.9

22.1524.082727.510.41514.123.9226.252934.2348.8

32

37.642.254649.62

Bagging with B = 100 bootstrap samples, computing the out-of-bag (OOB)
estimate of prediction error.

B <- 100
prediction_oob <- rep(0,length(Y)) ## vector with oob predictions
numbertrees_oob <- rep(0,length(Y)) ## how many oob trees

for each sample ?

for (b in 1:B){ ## loop over bootstrap samples
subsample <- sample(1:n,n,replace=TRUE) ## "in-bag" samples
outofbag <- (1:n)[-subsample] ## "out-of-bag" samples

fit tree on "in-bag" samples
treeboot <- rpart(Y ~ ., data=X, subset=subsample,

control=rpart.control(maxdepth=maxdepth,minsplit=2))

predict on oob-samples
prediction_oob[outofbag] <- prediction_oob[outofbag] +

predict(treeboot, newdata=X[outofbag,])
numbertrees_oob[outofbag] <- numbertrees_oob[outofbag] + 1

}
final oob-prediction is average across all "out-of-bag" trees
prediction_oob <- prediction_oob / numbertrees_oob

Plot out-of-bag predictions.

plot(prediction_oob, Y, xlab="PREDICTED", ylab="ACTUAL")

For depth d = 1.

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●●
●

●

●● ●●
●

●●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

● ●●●

● ●
●

●
●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

● ●

●●
●

●
●

●

●

●

●●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

20 25 30

10
20

30
40

50

PREDICTED

A
C

T
U

A
L

For depth d = 10.

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●●
●

●

●● ●●
●

●●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

● ●●●

● ●
●

●
●

●

●

●

●
● ●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●

● ●

●●
●

●
●

●

●

●

●● ●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

10 20 30 40

10
20

30
40

50

PREDICTED

A
C

T
U

A
L

Out-of-bag estimates of test error

E
(
(Ŷ − Y)2)

as a function of tree depth d. Table shows CV-mean squared error loss (with
out-of-bag prediction for the bagged estimator).

tree depth d 1 2 3 4 5 10 30
single tree Ŷ 60.7 44.8 32.8 31.2 27.7 26.5 27.3

bagged trees ŶBag 43.4 27.0 22.8 21.5 20.7 20.1 20.1
Without bagging, the optimal tree depth seems to be d = 10. With bagging,
we could also take the depth up to d = 30.
Bagging strongly improves performance.
On the other hand, bagged trees cannot be displayed as nicely as single trees
and some of the interpretability of trees is lost.

For classification, it is easily possible to construct (artifical) examples where
bagging leads to a deterioration of performance.
Consider a two-class problem Y ∈ {0, 1}. Suppose all labels are truly Y = 1
and there is a random predictor Ŷ which predicts

Ŷ =

{
1 with probability 0.3
0 with probability 0.7 .

This classifier would have a misclassification error of 0.7.
Now bag this classifier by taking a mean ŶBag =

∑B
b=1 Ŷ∗,b and classify by

majority decision among all bagged trees, i.e. classify as Y = 1 if and only if
ŶBag > 0.5.
The misclassification error of the bagged trees is now 1 and bagging made a
bad predictor even worse.

Bagging trees typically improves prediction for real-life datasets. Consider the
following datasets.

STATISTICAL MODELING: THE TWO CULTURES 207

Table 1
Data set descriptions

Training Test
Data set Sample size Sample size Variables Classes

Cancer 699 — 9 2
Ionosphere 351 — 34 2
Diabetes 768 — 8 2
Glass 214 — 9 6
Soybean 683 — 35 19

Letters 15,000 5000 16 26
Satellite 4,435 2000 36 6
Shuttle 43,500 14,500 9 7
DNA 2,000 1,186 60 3
Digit 7,291 2,007 256 10

that in many states, the trials were anything but
speedy. It funded a study of the causes of the delay.
I visited many states and decided to do the anal-
ysis in Colorado, which had an excellent computer-
ized court data system. A wealth of information was
extracted and processed.

The dependent variable for each criminal case
was the time from arraignment to the time of sen-
tencing. All of the other information in the trial his-
tory were the predictor variables. A large decision
tree was grown, and I showed it on an overhead and
explained it to the assembled Colorado judges. One
of the splits was on District N which had a larger
delay time than the other districts. I refrained from
commenting on this. But as I walked out I heard one
judge say to another, “I knew those guys in District
N were dragging their feet.”

While trees rate an A+ on interpretability, they
are good, but not great, predictors. Give them, say,
a B on prediction.

9.1 Growing Forests for Prediction

Instead of a single tree predictor, grow a forest of
trees on the same data—say 50 or 100. If we are
classifying, put the new x down each tree in the for-
est and get a vote for the predicted class. Let the for-
est prediction be the class that gets the most votes.
There has been a lot of work in the last five years on
ways to grow the forest. All of the well-known meth-
ods grow the forest by perturbing the training set,
growing a tree on the perturbed training set, per-
turbing the training set again, growing another tree,
etc. Some familiar methods are bagging (Breiman,
1996b), boosting (Freund and Schapire, 1996), arc-
ing (Breiman, 1998), and additive logistic regression
(Friedman, Hastie and Tibshirani, 1998).

My preferred method to date is random forests. In
this approach successive decision trees are grown by
introducing a random element into their construc-
tion. For example, suppose there are 20 predictor

variables. At each node choose several of the 20 at
random to use to split the node. Or use a random
combination of a random selection of a few vari-
ables. This idea appears in Ho (1998), in Amit and
Geman (1997) and is developed in Breiman (1999).

9.2 Forests Compared to Trees

We compare the performance of single trees
(CART) to random forests on a number of small
and large data sets, mostly from the UCI repository
(ftp.ics.uci.edu/pub/MachineLearningDatabases). A
summary of the data sets is given in Table 1.

Table 2 compares the test set error of a single tree
to that of the forest. For the five smaller data sets
above the line, the test set error was estimated by
leaving out a random 10% of the data, then run-
ning CART and the forest on the other 90%. The
left-out 10% was run down the tree and the forest
and the error on this 10% computed for both. This
was repeated 100 times and the errors averaged.
The larger data sets below the line came with a
separate test set. People who have been in the clas-
sification field for a while find these increases in
accuracy startling. Some errors are halved. Others
are reduced by one-third. In regression, where the

Table 2
Test set misclassification error (%)

Data set Forest Single tree

Breast cancer 2.9 5.9
Ionosphere 5.5 11.2
Diabetes 24.2 25.3
Glass 22.0 30.4
Soybean 5.7 8.6

Letters 3.4 12.4
Satellite 8.6 14.8
Shuttle ×103 7.0 62.0
DNA 3.9 6.2
Digit 6.2 17.1

Both trees and bagged trees (Forests) are fitted on these data.

The misclassification errors on the test sets for single trees and bagged trees
(‘Forests’).

STATISTICAL MODELING: THE TWO CULTURES 207

Table 1
Data set descriptions

Training Test
Data set Sample size Sample size Variables Classes

Cancer 699 — 9 2
Ionosphere 351 — 34 2
Diabetes 768 — 8 2
Glass 214 — 9 6
Soybean 683 — 35 19

Letters 15,000 5000 16 26
Satellite 4,435 2000 36 6
Shuttle 43,500 14,500 9 7
DNA 2,000 1,186 60 3
Digit 7,291 2,007 256 10

that in many states, the trials were anything but
speedy. It funded a study of the causes of the delay.
I visited many states and decided to do the anal-
ysis in Colorado, which had an excellent computer-
ized court data system. A wealth of information was
extracted and processed.

The dependent variable for each criminal case
was the time from arraignment to the time of sen-
tencing. All of the other information in the trial his-
tory were the predictor variables. A large decision
tree was grown, and I showed it on an overhead and
explained it to the assembled Colorado judges. One
of the splits was on District N which had a larger
delay time than the other districts. I refrained from
commenting on this. But as I walked out I heard one
judge say to another, “I knew those guys in District
N were dragging their feet.”

While trees rate an A+ on interpretability, they
are good, but not great, predictors. Give them, say,
a B on prediction.

9.1 Growing Forests for Prediction

Instead of a single tree predictor, grow a forest of
trees on the same data—say 50 or 100. If we are
classifying, put the new x down each tree in the for-
est and get a vote for the predicted class. Let the for-
est prediction be the class that gets the most votes.
There has been a lot of work in the last five years on
ways to grow the forest. All of the well-known meth-
ods grow the forest by perturbing the training set,
growing a tree on the perturbed training set, per-
turbing the training set again, growing another tree,
etc. Some familiar methods are bagging (Breiman,
1996b), boosting (Freund and Schapire, 1996), arc-
ing (Breiman, 1998), and additive logistic regression
(Friedman, Hastie and Tibshirani, 1998).

My preferred method to date is random forests. In
this approach successive decision trees are grown by
introducing a random element into their construc-
tion. For example, suppose there are 20 predictor

variables. At each node choose several of the 20 at
random to use to split the node. Or use a random
combination of a random selection of a few vari-
ables. This idea appears in Ho (1998), in Amit and
Geman (1997) and is developed in Breiman (1999).

9.2 Forests Compared to Trees

We compare the performance of single trees
(CART) to random forests on a number of small
and large data sets, mostly from the UCI repository
(ftp.ics.uci.edu/pub/MachineLearningDatabases). A
summary of the data sets is given in Table 1.

Table 2 compares the test set error of a single tree
to that of the forest. For the five smaller data sets
above the line, the test set error was estimated by
leaving out a random 10% of the data, then run-
ning CART and the forest on the other 90%. The
left-out 10% was run down the tree and the forest
and the error on this 10% computed for both. This
was repeated 100 times and the errors averaged.
The larger data sets below the line came with a
separate test set. People who have been in the clas-
sification field for a while find these increases in
accuracy startling. Some errors are halved. Others
are reduced by one-third. In regression, where the

Table 2
Test set misclassification error (%)

Data set Forest Single tree

Breast cancer 2.9 5.9
Ionosphere 5.5 11.2
Diabetes 24.2 25.3
Glass 22.0 30.4
Soybean 5.7 8.6

Letters 3.4 12.4
Satellite 8.6 14.8
Shuttle ×103 7.0 62.0
DNA 3.9 6.2
Digit 6.2 17.1

from Breiman: ‘Statistical Modelling: the two cultures’.
Note that ‘Forests’ are not standard bagged trees, but so-called Random
Forests, which employ additional randomization (more later).

Outline

Supervised Learning: Ensemble Methods
Bagging
Random Forests
Boosting

Random Forests

The following misclassification errors compare “Random Forests” with single
trees. RF are closely related to bagged trees.

STATISTICAL MODELING: THE TWO CULTURES 207

Table 1
Data set descriptions

Training Test
Data set Sample size Sample size Variables Classes

Cancer 699 — 9 2
Ionosphere 351 — 34 2
Diabetes 768 — 8 2
Glass 214 — 9 6
Soybean 683 — 35 19

Letters 15,000 5000 16 26
Satellite 4,435 2000 36 6
Shuttle 43,500 14,500 9 7
DNA 2,000 1,186 60 3
Digit 7,291 2,007 256 10

that in many states, the trials were anything but
speedy. It funded a study of the causes of the delay.
I visited many states and decided to do the anal-
ysis in Colorado, which had an excellent computer-
ized court data system. A wealth of information was
extracted and processed.

The dependent variable for each criminal case
was the time from arraignment to the time of sen-
tencing. All of the other information in the trial his-
tory were the predictor variables. A large decision
tree was grown, and I showed it on an overhead and
explained it to the assembled Colorado judges. One
of the splits was on District N which had a larger
delay time than the other districts. I refrained from
commenting on this. But as I walked out I heard one
judge say to another, “I knew those guys in District
N were dragging their feet.”

While trees rate an A+ on interpretability, they
are good, but not great, predictors. Give them, say,
a B on prediction.

9.1 Growing Forests for Prediction

Instead of a single tree predictor, grow a forest of
trees on the same data—say 50 or 100. If we are
classifying, put the new x down each tree in the for-
est and get a vote for the predicted class. Let the for-
est prediction be the class that gets the most votes.
There has been a lot of work in the last five years on
ways to grow the forest. All of the well-known meth-
ods grow the forest by perturbing the training set,
growing a tree on the perturbed training set, per-
turbing the training set again, growing another tree,
etc. Some familiar methods are bagging (Breiman,
1996b), boosting (Freund and Schapire, 1996), arc-
ing (Breiman, 1998), and additive logistic regression
(Friedman, Hastie and Tibshirani, 1998).

My preferred method to date is random forests. In
this approach successive decision trees are grown by
introducing a random element into their construc-
tion. For example, suppose there are 20 predictor

variables. At each node choose several of the 20 at
random to use to split the node. Or use a random
combination of a random selection of a few vari-
ables. This idea appears in Ho (1998), in Amit and
Geman (1997) and is developed in Breiman (1999).

9.2 Forests Compared to Trees

We compare the performance of single trees
(CART) to random forests on a number of small
and large data sets, mostly from the UCI repository
(ftp.ics.uci.edu/pub/MachineLearningDatabases). A
summary of the data sets is given in Table 1.

Table 2 compares the test set error of a single tree
to that of the forest. For the five smaller data sets
above the line, the test set error was estimated by
leaving out a random 10% of the data, then run-
ning CART and the forest on the other 90%. The
left-out 10% was run down the tree and the forest
and the error on this 10% computed for both. This
was repeated 100 times and the errors averaged.
The larger data sets below the line came with a
separate test set. People who have been in the clas-
sification field for a while find these increases in
accuracy startling. Some errors are halved. Others
are reduced by one-third. In regression, where the

Table 2
Test set misclassification error (%)

Data set Forest Single tree

Breast cancer 2.9 5.9
Ionosphere 5.5 11.2
Diabetes 24.2 25.3
Glass 22.0 30.4
Soybean 5.7 8.6

Letters 3.4 12.4
Satellite 8.6 14.8
Shuttle ×103 7.0 62.0
DNA 3.9 6.2
Digit 6.2 17.1

from Breiman: “Statistical Modelling: the two cultures”.

Random Forests (Breiman, 2001) are widely believed to be the best
“off-the-shelf” classifiers for high-dimensional data.

Similar to bagged decision trees with a few key differences:
I For each splitpoint, the search is not over all p variables but just over mtry

variables (where e.g. mtry = bp/3c)
I No pruning necessary. Trees can be grown until each node contains just

very few observations (1 or 5).

Bagged decision trees can be seen as a special case of Random Forests (for
mtry=p), if trees are not pruned, e.g. always grown to maximal depth.

Advantages of RF over bagged decision trees
I better prediction (in general).
I almost no parameter tuning necessary with RF (although it still helps to

vary the value of mtry). Tree depth needs to be chosen carefully with
bagging, while we can always grow trees without pruning with RF.

Random Forests are implemented in package randomForest.
Looking at the Boston Housing data again (and at the help page for
randomForest first).

library(randomForest)
library(MASS)
data(Boston)

y <- Boston[,14]
x <- Boston[,1:13]

?randomForest

> randomForest package:randomForest R Documentation

Classification and Regression with Random Forest

Description:
’randomForest’ implements Breiman’s random forest algorithm (based
on Breiman and Cutler’s original Fortran code) for classification
and regression. It can also be used in unsupervised mode for
assessing proximities among data points.

Usage:
S3 method for class ’formula’:
randomForest(formula, data=NULL, ..., subset, na.action=na.fail)
Default S3 method:
randomForest(x, y=NULL, xtest=NULL, ytest=NULL, ntree=500,

mtry=if (!is.null(y) && !is.factor(y))
max(floor(ncol(x)/3), 1) else floor(sqrt(ncol(x))),
replace=TRUE, classwt=NULL, cutoff, strata,
sampsize = if (replace) nrow(x) else ceiling(.632*nrow(x)),
nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,
importance=FALSE, localImp=FALSE, nPerm=1,
proximity=FALSE, oob.prox=proximity,
norm.votes=TRUE, do.trace=FALSE,
keep.forest=!is.null(y) && is.null(xtest), corr.bias=FALSE,
keep.inbag=FALSE, ...)

Boston Housing data, again.

> rf <- randomForest(x,y)
> print(rf)
>
Call:
randomForest(x = x, y = y)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 4

Mean of squared residuals: 10.26161
% Var explained: 87.84

Can plot the predicted values (out-of-bag estimation) vs. true values by

> plot(predict(rf), y)
> abline(c(0,1),col=2)

Same if treating the training data as new data

> plot(predict(rf,newdata=x), y)

Out-of-bag error.

> plot(predict(rf), y)
> abline(c(0,1),col=2)

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●
●
●

●

●

●

●
●
●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●
●

●
●

●

● ●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●
●

●●
●

●●

●
●

●● ●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●
● ●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●● ●●●

●●
●

●
●●

● ●●●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●● ●

●

● ●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●

●
●
●

●

●
●

●
●

●

●
●● ●

●● ●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

10 20 30 40

10
20

30
40

50

predict(rf)

y

Training error.

> plot(predict(rf,newdata=x), y)
> abline(c(0,1),col=2)

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●

●

●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●●
●
●●

●
●

●●●●

●

●
●
●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

● ●●●●

●●
●

●
●●

● ●●●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●

●

● ●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●
●● ●

●● ●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

10 20 30 40 50

10
20

30
40

50

predict(rf, newdata = x)

y

Try mtry 2

> (rf <- randomForest(x,y,mtry=2))
Call:
randomForest(x = x, y = y, mtry = 2)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 2

Mean of squared residuals: 12.17176
% Var explained: 85.58

Try mtry 4

> (rf <- randomForest(x,y,mtry=4))
Call:
randomForest(x = x, y = y, mtry = 4)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 4

Mean of squared residuals: 10.01574
% Var explained: 88.14

And mtry 8 and 10.

> (rf <- randomForest(x,y,mtry=8))
Call:
randomForest(x = x, y = y, mtry = 8)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 8

Mean of squared residuals: 9.552806
% Var explained: 88.68

> > (rf <- randomForest(x,y,mtry=10))
Call:
randomForest(x = x, y = y, mtry = 10)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 10

Mean of squared residuals: 9.774435
% Var explained: 88.42

Choice of mtry makes little difference but is the only real tuning parameter.

Variable “importance”

Despite the better predictive performance, single trees seem to have an edge
over tree ensembles in terms of interpretability.
How do you interpret a forest of trees ?
Idea: denote by ê the out-of bag estimate of the loss when using the original
data samples.
For each variable k ∈ {1, . . . , p},

I permute randomly the k-th predictor variable to generate a new set of
samples (X̃1,Y1), . . . , (X̃n,Yn).

I compute the out-of-bag estimate êk of the prediction error with these new
samples.

A measure of importance of variable k is then êk − ê, the increase in error rate
due to random permutation of the k-th variable.

Example for Boston Housing data.

rf <- randomForest(x,y,importance=TRUE)
varImpPlot(rf)

zn

chas

rad

black

indus

tax

age

ptratio

crim

nox

dis

lstat

rm

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20 25 30 35

%IncMSE

Random Forests can be seen as an adaptive nearest neighbour technique.
Let P(x, xi) ∈ [0, 1] be the proportion of trees for which an observation x falls
into the same final leaf node as the original observation xi. If every leaf node
contains the same number of observations, the prediction of Random Forests
(in regression mode) at predictor x is

ŶRF(x) =
∑n

i=1 P(x, xi)Yi∑n
i=1 P(x, xi)

,

which is a weighted (adaptive) nearest neighbour scheme and the weights are
proportional to the proximities P(x, xi).
If the nodes contain different number of original observations, P(x, xi) is the
weighted proportion of trees where x and xi fall into the same leaf node, and
weights are inversely proportional for each tree to the number of samples in
the leaf node where xi falls into.
For classification, the prediction will be the weighted majority vote, where
again weights are proportional to the proximities P(x, xi).

Can visualize weights P(xi, xj) for example by MDS.
Use Glass dataset as example.

> library(MASS)
> data(Glass)
> Glass[1:10,]

RI Na Mg Al Si K Ca Ba Fe Type
1 1.52101 13.64 4.49 1.10 71.78 0.06 8.75 0 0.00 1
2 1.51761 13.89 3.60 1.36 72.73 0.48 7.83 0 0.00 1
3 1.51618 13.53 3.55 1.54 72.99 0.39 7.78 0 0.00 1
4 1.51766 13.21 3.69 1.29 72.61 0.57 8.22 0 0.00 1
5 1.51742 13.27 3.62 1.24 73.08 0.55 8.07 0 0.00 1
6 1.51596 12.79 3.61 1.62 72.97 0.64 8.07 0 0.26 1
7 1.51743 13.30 3.60 1.14 73.09 0.58 8.17 0 0.00 1
8 1.51756 13.15 3.61 1.05 73.24 0.57 8.24 0 0.00 1
9 1.51918 14.04 3.58 1.37 72.08 0.56 8.30 0 0.00 1
10 1.51755 13.00 3.60 1.36 72.99 0.57 8.40 0 0.11 1

Try to predict glass type, based on chemical composition.

> X <- Glass[,-10]
> Y <- Glass[,10]
> rf <- randomForest(X,Y,ntree=500,proximity=TRUE,oob.prox=TRUE)

Calculate the proximities P(xi, xj) based on out-of-bag observations.

> rf

Call:
randomForest(x = X, y = Y, proximity = TRUE, oob.prox = TRUE)

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 3

OOB estimate of error rate: 20.09%
Confusion matrix:

1 2 3 4 5 6 class.error
1 63 6 1 0 0 0 0.1000000
2 9 60 2 2 2 1 0.2105263
3 7 3 7 0 0 0 0.5882353
4 0 3 0 9 0 1 0.3076923
5 0 2 0 0 7 0 0.2222222
6 1 3 0 0 0 25 0.1379310

Visualize proximities P(xi, xj) for i, j = 1, . . . , n by MDS, using as distance
matrix D = 1− P.
> MDSplot(rf,Y)

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●● ●

●

●● ●

●

● ●

● ●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●●●● ●●

●

●

●

●
●●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

● ●
●

●

●●●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●●●●
●●

●●
●

●
●● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●●

●

●●●
●

●

●

●

●

●

●
●●

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

Dim 1

D
im

 2

Outline

Supervised Learning: Ensemble Methods
Bagging
Random Forests
Boosting

Boosting

Boosting is a very different method to generate multiple predictions (function
estimates) and combine them linearly. As with bagging, we have a base
procedure yielding function estimates ĝ(·) (e.g. a tree algorithm).

The so-called L2Boosting method (for regression) works as follows.
1. Fit a first function estimate from the data {(Xi,Yi); i = 1, . . . , n} yielding a

first function estimate ĝ1(·).
Compute residuals

Ui = Yi − νĝ1(Xi) (i = 1, . . . , n).

Denote by f̂1(·) = νĝ1(·) (with shrinkage 0 < ν ≤ 1).
2. For m = 2, 3, . . . ,M do:

Fit the residuals (Xi,Ui)→ ĝm(·) and set

f̂m(·) = f̂m−1(·) + νĝm(·).

Compute the current residuals Ui = Yi − f̂m(Xi) for i = 1, . . . , n.

Example again Boston Housing data with single predictor variable crime rate.
First iteration: fit original observation with a stump.

|crim>=1.918

−9.076 1.925 ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

−4 −2 0 2 4

−
10

0
10

20
CRIME RATE

R
E

S
ID

U
A

LS

Fit of tree ĝ1(x) in red.
Shrunken fit νĝ1(x) in blue.
Some residuals Ui = Yi− νĝ1(Xi) plotted with vertical bars. Fit these residuals
in the next step.

second iteration: fit residuals Ui = Yi − νĝ1(Xi) from first iteration with a stump
(after setting mean of Y to 0).

|crim>=−2.647

−1.742 5.226
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

−4 −2 0 2 4

−
10

0
10

20
CRIME RATE

R
E

S
ID

U
A

LS

Fit of tree ĝ2(x) in red. Shrunken fit νĝ2(x) in blue.
Some of the new residuals

Ui − νĝ2(Xi) = Yi − νĝ1(Xi)− νĝ2(Xi)

plotted with vertical bars. Fit these residuals in the next step.

after 10 iterations:

|crim>=−2.336

−0.4874 1.012
●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

−4 −2 0 2 4

−
10

0
10

20
CRIME RATE

R
E

S
ID

U
A

LS

Fit of tree ˆg10(x) in red. Shrunken fit νĝ10(x) in blue.
Note that there is not a lot of signal left in the data to be fitted by Ŷ(x). The
changes in the fit are very small after many iterations.

Some notes on Boosting:
I The shrinkage parameter ν can and should be chosen to be small, e.g.
ν = 0.1.

I The stopping parameter M is a tuning parameter of boosting. For ν small
we typically can choose M large.

Boosting is a bias reduction technique, in contrast to bagging. Boosting
typically improves the performance of a single (simple) tree model.

I We often cannot construct trees which are sufficiently large due to
thinning out of observations in the terminal nodes.

I Boosting is then a device to come up with a more complex solution by
taking linear combination of trees.

I In presence of high-dimensional predictors, boosting is also very useful
as a regularization technique for additive or interaction modeling.

Boosting can be viewed as function gradient descent.
Let L(f) be a differentiable loss function defined on the empirical data sample,
e.g. for squared error loss,

L(f) = n−1
n∑

i=1

(Yi − f (Xi))
2.

The Boosting algorithm can be viewed as functional gradient descent.

1. Fit a first function estimate from {(Xi,−∇L(f ≡ 0)); i = 1, . . . , n} yielding
ĝ1(·). Denote by

f̂1(·) = νĝ1(·).
2. For m = 2, 3, . . . ,M do:

Fit the gradient (Xi, (−∇L)(f̂m−1))→ ĝm(·) and set

f̂m(·) = f̂m−1(·) + νĝm(·).

For classification with Yi ∈ {−1, 1},

L(f) = n−1
n∑

i=1

φ(Yif (Xi)).

!2 !1 0 1 2

0
1

2
3

4
5

6
7

!

0!1

exponential

hinge

logistic

truncated quadratic

Figure 1: A plot of the 0-1 loss function and surrogates corresponding to various practical classifiers.
These functions are plotted as a function of the margin α = yf(x). Note that a classification error
is made if and only if the margin is negative; thus the 0-1 loss is a step function that is equal to one
for negative values of the abscissa. The curve labeled “logistic” is the negative log likelihood, or
scaled deviance, under a logistic regression model; “hinge” is the piecewise-linear loss used in the
support vector machine; and “exponential” is the exponential loss used by the Adaboost algorithm.
The deviance is scaled so as to majorize the 0-1 loss; see Lemma 8.

Consistency results provide reassurance that optimizing a surrogate does not ultimately hinder

the search for a function that achieves the Bayes risk, and thus allow such a search to proceed within

the scope of computationally efficient algorithms. There is, however, an additional motivation for

working with surrogates of 0-1 loss beyond the computational imperative. Minimizing the sample

average of an appropriately-behaved loss function has a regularizing effect: it is possible to obtain

uniform upper bounds on the risk of a function that minimizes the empirical average of the loss φ,

even for classes that are so rich that no such upper bounds are possible for the minimizer of the

empirical average of the 0-1 loss. Indeed a number of such results have been obtained for function

classes with infinite VC-dimension (Bartlett, 1998, Shawe-Taylor et al., 1998), such as the function

3

I Obtain L2Boosting when using the quadratic loss function

L(f) = n−1
n∑

i=1

(Yi − f (Xi))
2.

I Obtain AdaBoost (the original boosting algorithm by Freund and Shapire)
when using the exponential loss (for Y ∈ {−1, 1})

L(f) = n−1
n∑

i=1

exp(−Yf (Xi)).

I Obtain LogitBoost when using the logistic loss function (again
Y ∈ {−1, 1}),

L(f) = n−1
n∑

i=1

log(1 + exp(−Yf (Xi))).

Boosting is implemented in package mboost.

> library(mboost)
> library(help=mboost)
> ?blackboost
blackboost package:mboost R Documentation
Gradient Boosting with Regression Trees

Description:
Gradient boosting for optimizing arbitrary loss functions where
regression trees are utilized as base learners.

Usage:
S3 method for class ’formula’:
blackboost(formula, data = list(), weights = NULL, ...)
S3 method for class ’matrix’:
blackboost(x, y, weights = NULL, ...)
blackboost_fit(object, tree_controls =

ctree_control(teststat = "max",
testtype = "Teststatistic",
mincriterion = 0,
maxdepth = 2),

fitmem = ctree_memory(object, TRUE), family = GaussReg(),
control = boost_control(), weights = NULL)

A simple cross-validation scheme.

library(mboost)
?blackboost ## help function for tree boosting
n <- length(y) ## number of observations

Mvec <- 1:500 ## Mvec is vector with various stopping times
nM <- length(Mvec) ## number of possible stopping times
loss <- numeric(nM) ## loss contains the training error
losscv <- numeric(nM) ## losscv contains the cross-validated

test error

...

...
for (mc in 1:nM){ ## loop over stopping times (not efficient)
yhat <- numeric(n) ## yhat are the fitted values
yhatcv <- numeric(n) ## yhatcv the cross-validated fitted values

M <- Mvec[mc] ## use M iterations

V <- 10 ## 10-fold cross validation
indCV contains the ‘block’ in 1,...,10
each observation falls into

indCV <- sample(rep(1:V,each=ceiling(n/V)), n)

for (cv in 1:V){ ## loop over all blocks
bb <- blackboost(y[indCV!=cv] ~ .,data=x[indCV!=cv,],

control=boost_control(mstop=M))
predict the unused observations

yhatcv[indCV==cv] <- predict(bb,x[indCV==cv,])
}
losscv[mc] <- sqrt(mean((y-yhatcv)^2)) ## CV test error

bb <- blackboost(y ~ .,data=x,control=boost_control(mstop=M))
yhat <- predict(bb,x)
loss[mc] <- sqrt(mean((y-yhat)^2)) ## training error

}

Plot CV-test error in red as a function of the boosting iterations and training
error in black.
matplot(cbind(loss,losscv), type="p",lwd=2,col=c(1,2),lty=1)
abline(h= sqrt(mean((predict(rf)-y)^2)),lwd=1,lty=2)

0 10 20 30 40 50 60

2
3

4
5

6
7

8

BOOSTING ITERATIONS

LO
S

S

Comparison with RF

Both RF and Boosting are tree ensembles.
I As RF, Boosting does not seem to overfit (the CV curve stays flat).

This is not quite true, though: what is

lim
m→∞

f̂m(Xi) ?

Need to stop early (after having done M iterations)!
I The stopping parameter M needs to be adjusted by either

I cross-validation, which is computationally expensive or
I model selection, which does not work very well for trees as base learners

(what are the degrees of freedom of a tree?)
I Predictive performance is very similar.
I Properties of Boosting (and why it is successful) are rather well

understood (e.g. by bias reduction), but remain more of a mystery for RF.

	Supervised Learning: Ensemble Methods
	Bagging
	Random Forests
	Boosting

