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Supervised Learning: Ensemble Methods

Boosting



Boosting

Boosting is a very different method to generate multiple predictions (function
estimates) and combine them linearly. As with bagging, we have a base
procedure yielding function estimates g(-) (e.g. a tree algorithm).



The so-called L,Boosting method (for regression) works as follows.

1. Fit a first function estimate from the data {(X;,Y;); i = 1,...,n} yielding a
first function estimate g, (-).
Compute residuals

Ui = Yi—Vgl(Xl') (l: 1,...,]1).

Denote by fi(-) = v2,(-) (with shrinkage 0 < v < 1).
2. Form=2,3,...,M do:
Fit the residuals (X;, U;) — g,.(-) and set

() = Fn1 () + v8u().

Compute the current residuals U; = Y; — f,,(X;) fori=1,...,n.



Example again Boston Housing data with single predictor variable crime rate.
First iteration: fit original observation with a stump.
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Fit of tree g;(x) in red.

Shrunken fit vg;(x) in blue.

Some residuals U; = Y;— vg;(X;) plotted with vertical bars. Fit these residuals
In the next step.



second iteration: fit residuals U; = Y; — vg;(X;) from first iteration with a stump
(after setting mean of Y to 0).
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Fit of tree g>(x) in red. Shrunken fit vg,(x) in blue.
Some of the new residuals

Ui —vg(Xi) =Y —vg1(Xi) — vg (X))
plotted with vertical bars. Fit these residuals in the next step.



after 10 iterations:

crim>=!—2.336
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Fit of tree g,0(x) in red. Shrunken fit #g,0(x) in blue. )
Note that there is not a lot of signal left in the data to be fitted by Y (x). The
changes in the fit are very small after many iterations.



Some notes on Boosting:

» The shrinkage parameter v can and should be chosen to be small, e.g.
v =20.1.

» The stopping parameter M is a tuning parameter of boosting. For » small
we typically can choose M large.

Boosting is a bias reduction technique, in contrast to bagging. Boosting
typically improves the performance of a single (simple) tree model.

» We often cannot construct trees which are sufficiently large due to
thinning out of observations in the terminal nodes.

» Boosting is then a device to come up with a more complex solution by
taking linear combination of trees.

» In presence of high-dimensional predictors, boosting is also very useful
as a regularization technique for additive or interaction modeling.



Boosting can be viewed as function gradient descent.
Let L(f) be a differentiable loss function defined on the empirical data sample,
e.g. for squared error loss,

L(f)=n"" Z(Yi — f(X))*.

The Boosting algorithm can be viewed as functional gradient descent.

1. Fit a first function estimate from {(X;, —VL(f =0)); i =1,...,n} yielding
21(-). Denote by
i) =v&().
2. Form=2,3,...,M do: A
Fit the gradient (X;, (—VL)(f,,—1)) — &u(:) and set

]}m<) :fm—l('> + v8m(+).



For classification with ¥; € {—1, 1},

=n"" Z¢(YJ(Xi))-
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» Obtain L,Boosting when using the quadratic loss function

L(f)=n"" Z(Yi —f(X))>.

» Obtain AdaBoost (the original boosting algorithm by Freund and Shapire)
when using the exponential loss (for Y € {—1,1})

L) =n" Zexp(—Yf(X,-)).

» Obtain LogitBoost when using the logistic loss function (again
Y E {_17 1})5

L(f) =n"") log(l + exp(—Yf(X;)))-

i=1



Boosting is implemented in package mboost.

> library (mboost)

> library (help=mboost)

> ?blackboost

blackboost package:mboost R Documentation

Gradient Boosting with Regression Trees

Description:
Gradient boosting for optimizing arbitrary loss functions where

regression trees are utilized as base learners.
Usage:
## S3 method for class ’formula’:
blackboost (formula, data = 1list (), weights = NULL, ...)
## S3 method for class 'matrix’:
blackboost (x, y, weights = NULL, ...)
blackboost_fit (object, tree_controls =

ctree_control (teststat = "max",
testtype = "Teststatistic",
mincriterion = 0,
maxdepth = 2),

fitmem = ctree_memory (object, TRUE), family = GaussReg(),
control = boost_control (), weights = NULL)



A simple cross-validation scheme.

library (mboost)
?blackboost
n <- length (y)

Mvec <— 1:500

nM <- length (Mvec)
loss <= numeric (nM)
losscv <— numeric (nM)
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help function for tree boosting
number of observations

Mvec is vector with various stopping times
number of possible stopping times

loss contains the training error

losscv contains the cross—-validated

test error



for (mc in 1:nM) { ## loop over stopping times (not efficient)

vhat <- numeric (n) ## vhat are the fitted wvalues

vhatcv <- numeric (n) ## yvhatcv the cross-validated fitted wvalues
M <— Mvec [mc] ## use M iterations

V <= 10 ## 10-fold cross validation

## 1indCV contains the ‘block’ in 1,...,10
## each observation falls into
indCV <- sample( rep(l:V,each=ceiling(n/V)), n)

for (cv in 1:V) { ## loop over all blocks
bb <- blackboost (y[indCV!=cv] ~ .,data=x[indCV!=cv, ],
control=boost_control (mstop=M) )
## predict the unused observations
vhatcv [1indCV==cv] <- predict (bb,x[1indCV==cv, ])
}

losscv[mc] <- sqgrt (mean( (y—-yhatcv)”"2 )) ## CV test error

bb <- blackboost(y ~ .,data=x,control=boost_control (mstop=M))
vhat <- predict (bb, x)
loss[mc] <- sgrt (mean( (y—-yhat)”"2 )) ## training error



Plot CV-test error in red as a function of the boosting iterations and training
error in black.

matplot ( cbind(loss, losscv), type="p", lwd=2,col=c(1l,2),1lty=1)
abline (h= sqgrt (mean(( predict(rf)-y)~"2)),1lwd=1l,1lty=2)
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Comparison with RF

Both RF and Boosting are tree ensembles.

» As RF, Boosting does not seem to overfit (the CV curve stays flat).
This is not quite true, though: what is
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Need to stop early (after having done M iterations)!

» The stopping parameter M needs to be adjusted by either

» cross-validation, which is computationally expensive or
» model selection, which does not work very well for trees as base learners
(what are the degrees of freedom of a tree?)

» Predictive performance is very similar.

» Properties of Boosting (and why it is successful) are rather well
understood (e.g. by bias reduction), but remain more of a mystery for RF.



