
Outline

Supervised Learning: Parametric Methods
Decision Theory
Linear Discriminant Analysis
Quadratic Discriminant Analysis
Naíve Bayes
Logistic Regression
Evaluating Learning Methods

Logistic Regression

Recall that for LDA, upon assuming that X|Y = k ∼ N(µk,Σ), the Bayes
Classifier classified to class 1 over class k if

0 > 2 log P(Y = k|x)− 2 log P(Y = 1|x)
= µT

k Σ
−1µk − 2µT

k Σ
−1x − 2 log(πk)

−(µT
1Σ

−1µ1 − 2µT
1Σ

−1x − 2 log(π1))

= ak + bT
k x

i.e. hyperplanes separate classes in the feature space X .
The separating hyperplane can be rewritten more clearly as

2 log
P(Y = k|x)
P(Y = 1|x) = ak + bT

k x.

For QDA, X|Y = k ∼ N(µk,Σk), we in turn found a quadratic function
0 > ak + bT

k x + xTckx i.e.

2 log
P(Y = k|x)
P(Y = 1|x) = ak + bT

k x + xTckx.

The exact value of the parameters ak and bk (ck) had expressions which could
be evaluated once the parameters µk and Σ (Σk) were in turn found by plug-in
estimation (via ML estimation)
We can model these decision boundaries directly instead. This is called
logistic discrimination.

Logistic discrimination model posterior probabilities P(Y = k|x) directly.
Assuming a parametric family of discriminant functions gβ(x), we model the
conditional probabilities as

P̂(Y = k|x) = exp gβk(x)�K
j=1 exp gβj(x)

.

Note that the log probability of a class k, with respect to a reference class 1 is:

log
P(Y = k|x)
P(Y = 1|x) = gβk(x)− gβ1(x)

This reduces to LDA and QDA for linear and quadratic discriminant functions
(assuming also that the parameters βk were estimated as before).

The parameter β̂ = (β̂1, . . . , β̂K) is typically chosen by computing the
(Conditional) Maximum Likelihood estimate.
Given a training set, the likelihood of the model is given by

L(β) =
n�

i=1

P(Y = yi|xi) =
n�

i=1

exp gβyi
(xi)

�K
j=1 exp gβj(xi)

and so the (conditional) log-likelihood is

�(β) =
n�

i=1

log P(Y = Yi|xi).

Choosing gβ(x) = βTx results in linear decision boundaries and ensures that
�(β) is concave.
This particular logistic discrimination model is known as logistic regression
and is an example of empirical risk minimization, where the risk is measured
in terms of the ’logistic’ loss function.

For the case of K = 2 classes (binomial logistic regression), the log-likelihood
collapses into a much simpler form than when K > 2 (multinomial logistic
regression). We concentrate on the case where K = 2 though it should be
noted that the theory still applies for K > 2.
Looking at K = 2, we can derive an explicit expression for the log-likelihood as
follows.
For the following let Y ∈ {−1, 1}. Let gβ = βTx and β−1 ≡ 0 (so class −1 is the
reference class). Let β = β1. Then

P(Y = 1|x) =
exp(βTx)

exp(βTx) + 1
=

1
1 + exp(−βTx)

P(Y = −1|x) =
1

1 + exp(βTx)
.

Or, shorthand for both classes, P(Y = y|x) = 1
1+exp(−y·βT x) .

Continuing with this notation, the (conditional) log-likelihood is

�(β) =
n�

i=1

log P(Y = yi|xi)

=
n�

i=1

log
1

1 + exp(−yi · βTxi)

=
n�

i=1

− log(1 + exp(−yi · βTxi)),

where L(y, f) = log(1 + exp(−y · f)) is the so-called logistic loss, using notation
f = βTxi.
(Note that for under 0-1 loss, the optimal classification is 1 if f > 0 and -1 if
f ≤ 0.)

Compare the logistic loss L(y, f) = log(1 + exp(−y · f)) with the 0-1
misclassification loss L(y, f) = 1{sign(y) �= sign(f)} = 1{y · f < 0}.

!3 !2 !1 0 1 2 3

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

f

L
o
s
s

Loss L as a function of y · f = y · βTX.

As shown above, ML estimation is (in the case Y ∈ {−1, 1} equivalent to
solving the equations),

β̂ = argminβ

n�

i=1

log(1 + exp(−yi · βTxi)),

numerical methods must be applied. A high-dimensional version of the
Newton-Raphson algorithm is typically used, where locally the objective
function is approximated by a quadratic function and the solution is then found
by iterated least squares.
When using the univariate Newton-Raphson approach, we need information
about the slope of the curve, in our case we need the Hessian matrix

∂2�(β)

∂β∂βT = −
n�

i=1

xixT
i p(xi|β) [1 − p(xi|β)] .

Extending Newton-Raphson to higher dimensions, starting with βold, a single
Newton-Raphson update is given by

βnew = βold −
�
∂2�(β)

∂β∂βT

�−1
∂�(β)

∂β

where the derivatives are evaluated at βold.

Logistic Regression
� Writing everything in vectorial form,

- c = (Yi)
n
i=1, a vector of the classes

- p =
�
P(Yi = 1|Xi, β

old)
�n

i=1, the vector of fitted probabilities
- X, an n × p matrix with ith row as Xi

- W, a diagonal matrix with ith diagonal as
P(Yi = 1|Xi, β

old)
�
1 − P(Yi = 1|Xi, β

old)
�

� Lets us write ∂�(β)
∂β = XT(c − p) and ∂2�(β)

∂β∂βT = −XTWX so

βnew = βold − ∂2�(β)

∂β∂βT

−1
∂�(β)

∂β

= βold + XTWX−1XT(c − p)
= (XTWX)−1XTW

�
Xβold + W−1(c − p)

�

Each Newton-Raphson step can be seen as a weighted least squares step,
this algorithm is more commonly known as Iteratively Reweighted Least
Squares.
A few (even just 2 or 3) steps of the algorithm are usually sufficient.

Example: O-ring failures during shuttle starts (preceeeding the Challenger
incident), as a function of temperatures.

library(alr3)
data(challeng)
temp <- challeng[,1]
failure <- challeng[,3]
Y <- as.numeric(failure>0)

plot(temp,Y,xlab="TEMPERATURE",
ylab="O-RING FAILURES",cex=2)

LEFT: Number of failures. Original analysis left out all measurements with 0
failures.
RIGHT: Number of O-Ring failures reduced here to “Failures Yes/No” binary
variable.

●

●● ●

●●●●●●

●

●

●

● ●● ●

●

●● ●● ●

55 60 65 70 75 80

0.
0

0.
5

1.
0

1.
5

2.
0

TEMPERATURE

O
−R

IN
G

 F
AI

LU
R

ES

● ●● ●

●●●●●●

●

●

●

● ●● ●

●

●● ●● ●

55 60 65 70 75 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TEMPERATURE

O
−R

IN
G

 F
AI

LU
R

ES

Fit logistic regression with glm function and plot ‘link’ function f = βTX, where
X is here simply temperature (p = 1).

log_reg <- glm(Y ~ temp ,family=binomial)
xvec <- seq(min(temp),max(temp),length=200)
g <- predict(log_reg,newdata=data.frame(temp=xvec),

type="link")
plot(xvec, g ,

type="l",lwd=1.8,
xlab="TEMPERATURE",ylab="g(TEMPERATURE)")

55 60 65 70 75 80

−4
−3

−2
−1

0
1

2

TEMPERATURE

g(
TE

M
PE

R
AT

U
R
E)

Now plot P(Y = 1|X) = 1/(1 + exp(−βTX)).
prob <- predict(log_reg,newdata=data.frame(temp=xvec),

type="response")
plot(xvec, prob ,

type="l",lwd=1.8,
xlab="TEMPERATURE",ylab="P(Y=1| TEMP)",ylim=c(0,1))

points(temp,Y,cex=2)

55 60 65 70 75 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TEMPERATURE

P(
Y=

1|
 T

EM
P)

● ●● ●

●●●●●●

●

●

●

● ●● ●

●

●● ●● ●

Logistic Regression or LDA?

Both LR and LDA possess linear decision boundaries
� LDA as a consequence of assuming X|Y = k ∼ Np(µk,Σ) and
� Logistic Regression by construction of the log-odds. However, we can

easily replace a, say, two-dimensional predictor with intercept,
x = (1, x(1), x(2)) with x̃ = (1, x(1), x(2), (x(1))2, (x(2))2) to model non-linear
decision boundaries.

However, actual decision boundaries for both models differ and do so
because of differences in how the coefficients of class decision boundaries
(hyperplanes) are estimated, which approach is ‘better’?

� Where X|Y = k ∼ Np(µk,Σ) is true, LDA seems better positioned.
� It can be shown that where X|Y = k ∼ Np(µk,Σ), using LR results in a

∼30% reduction in the efficiency.
� However, if the assumptions are far from true LDA will suffer.

In support of Logistic Regression over LDA, it can be noted that Logistic
Regression is simply a generalised linear model (GLM).
Knowing this, we can take advantage of all of the theory developed for GLMs.

� assessment of fit via deviance and plots,
� interpretation of βk’s via odds-ratios,
� fitting categorical data (code it via indicator functions),
� well founded approaches to removing insignificant terms (via the drop-in

deviance test and the Wald test),
� model selection via AIC/BIC.

Ultimately, we have to let the data speak!

Spam dataset: Look at examples of spam emails and non-spam emails. The
predictor variables count occurrence of specific words/characters. Look at the
first 2 emails in the database (which are spam).
> library(kernlab)
> data(spam)
> dim(spam)
[1] 4601 58

> spam[1:2,]
make address all num3d our over remove internet order mail receive will

1 0.00 0.64 0.64 0 0.32 0.00 0.00 0.00 0 0.00 0.00 0.64
2 0.21 0.28 0.50 0 0.14 0.28 0.21 0.07 0 0.94 0.21 0.79
people report addresses free business email you credit your font num000

1 0.00 0.00 0.00 0.32 0.00 1.29 1.93 0 0.96 0 0.00
2 0.65 0.21 0.14 0.14 0.07 0.28 3.47 0 1.59 0 0.43
money hp hpl george num650 lab labs telnet num857 data num415 num85

1 0.00 0 0 0 0 0 0 0 0 0 0 0
2 0.43 0 0 0 0 0 0 0 0 0 0 0
technology num1999 parts pm direct cs meeting original project re edu table

1 0 0.00 0 0 0 0 0 0 0 0 0 0
2 0 0.07 0 0 0 0 0 0 0 0 0 0
conference charSemicolon charRoundbracket charSquarebracket charExclamation

1 0 0 0.000 0 0.778
2 0 0 0.132 0 0.372
charDollar charHash capitalAve capitalLong capitalTotal type

1 0.00 0.000 3.756 61 278 spam
2 0.18 0.048 5.114 101 1028 spam
>

Fit a GLM to the data (look at ?glm for help on the command).

library(kernlab)
data(spam)

let Y=0 be non-spam and Y=1 be spam.
Y <- as.numeric(spam[, ncol(spam)])-1
X <- spam[,-ncol(spam)]

gl <- glm(Y ~ ., data=X,family=binomial)

Which predictor variables seem to be important? Can for example check
which ones are significant in the GLM.

summary(gl)

> summary(gl)

Call:
glm(formula = Y ~ ., family = binomial, data = X)

Deviance Residuals:
Min 1Q Median 3Q Max

-4.127e+00 -2.030e-01 -1.967e-06 1.140e-01 5.364e+00

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.569e+00 1.420e-01 -11.044 < 2e-16 ***
make -3.895e-01 2.315e-01 -1.683 0.092388 .
address -1.458e-01 6.928e-02 -2.104 0.035362 *
all 1.141e-01 1.103e-01 1.035 0.300759
num3d 2.252e+00 1.507e+00 1.494 0.135168
our 5.624e-01 1.018e-01 5.524 3.31e-08 ***
over 8.830e-01 2.498e-01 3.534 0.000409 ***
remove 2.279e+00 3.328e-01 6.846 7.57e-12 ***
internet 5.696e-01 1.682e-01 3.387 0.000707 ***
order 7.343e-01 2.849e-01 2.577 0.009958 **
mail 1.275e-01 7.262e-02 1.755 0.079230 .
receive -2.557e-01 2.979e-01 -0.858 0.390655
will -1.383e-01 7.405e-02 -1.868 0.061773 .
people -7.961e-02 2.303e-01 -0.346 0.729557
report 1.447e-01 1.364e-01 1.061 0.288855
addresses 1.236e+00 7.254e-01 1.704 0.088370 .
...

...
business 9.599e-01 2.251e-01 4.264 2.01e-05 ***
email 1.203e-01 1.172e-01 1.027 0.304533
you 8.131e-02 3.505e-02 2.320 0.020334 *
credit 1.047e+00 5.383e-01 1.946 0.051675 .
your 2.419e-01 5.243e-02 4.615 3.94e-06 ***
font 2.013e-01 1.627e-01 1.238 0.215838
num000 2.245e+00 4.714e-01 4.762 1.91e-06 ***
money 4.264e-01 1.621e-01 2.630 0.008535 **
hp -1.920e+00 3.128e-01 -6.139 8.31e-10 ***
hpl -1.040e+00 4.396e-01 -2.366 0.017966 *
george -1.177e+01 2.113e+00 -5.569 2.57e-08 ***
num650 4.454e-01 1.991e-01 2.237 0.025255 *
lab -2.486e+00 1.502e+00 -1.656 0.097744 .
labs -3.299e-01 3.137e-01 -1.052 0.292972
telnet -1.702e-01 4.815e-01 -0.353 0.723742
num857 2.549e+00 3.283e+00 0.776 0.437566
data -7.383e-01 3.117e-01 -2.369 0.017842 *
num415 6.679e-01 1.601e+00 0.417 0.676490
num85 -2.055e+00 7.883e-01 -2.607 0.009124 **
technology 9.237e-01 3.091e-01 2.989 0.002803 **
num1999 4.651e-02 1.754e-01 0.265 0.790819
parts -5.968e-01 4.232e-01 -1.410 0.158473
pm -8.650e-01 3.828e-01 -2.260 0.023844 *
direct -3.046e-01 3.636e-01 -0.838 0.402215
cs -4.505e+01 2.660e+01 -1.694 0.090333 .
meeting -2.689e+00 8.384e-01 -3.207 0.001342 **
original -1.247e+00 8.064e-01 -1.547 0.121978
project -1.573e+00 5.292e-01 -2.973 0.002953 **
re -7.923e-01 1.556e-01 -5.091 3.56e-07 ***
edu -1.459e+00 2.686e-01 -5.434 5.52e-08 ***
table -2.326e+00 1.659e+00 -1.402 0.160958
conference -4.016e+00 1.611e+00 -2.493 0.012672 *
charSemicolon -1.291e+00 4.422e-01 -2.920 0.003503 **
charRoundbracket -1.881e-01 2.494e-01 -0.754 0.450663
charSquarebracket -6.574e-01 8.383e-01 -0.784 0.432914
charExclamation 3.472e-01 8.926e-02 3.890 0.000100 ***
charDollar 5.336e+00 7.064e-01 7.553 4.24e-14 ***
charHash 2.403e+00 1.113e+00 2.159 0.030883 *
capitalAve 1.199e-02 1.884e-02 0.636 0.524509
capitalLong 9.118e-03 2.521e-03 3.618 0.000297 ***
capitalTotal 8.437e-04 2.251e-04 3.747 0.000179 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6170.2 on 4600 degrees of freedom
Residual deviance: 1815.8 on 4543 degrees of freedom
AIC: 1931.8

Number of Fisher Scoring iterations: 13

...
project -1.573e+00 5.292e-01 -2.973 0.002953 **
re -7.923e-01 1.556e-01 -5.091 3.56e-07 ***
edu -1.459e+00 2.686e-01 -5.434 5.52e-08 ***
table -2.326e+00 1.659e+00 -1.402 0.160958
conference -4.016e+00 1.611e+00 -2.493 0.012672 *
charSemicolon -1.291e+00 4.422e-01 -2.920 0.003503 **
charRoundbracket -1.881e-01 2.494e-01 -0.754 0.450663
charSquarebracket -6.574e-01 8.383e-01 -0.784 0.432914
charExclamation 3.472e-01 8.926e-02 3.890 0.000100 ***
charDollar 5.336e+00 7.064e-01 7.553 4.24e-14 ***
charHash 2.403e+00 1.113e+00 2.159 0.030883 *
capitalAve 1.199e-02 1.884e-02 0.636 0.524509
capitalLong 9.118e-03 2.521e-03 3.618 0.000297 ***
capitalTotal 8.437e-04 2.251e-04 3.747 0.000179 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6170.2 on 4600 degrees of freedom
Residual deviance: 1815.8 on 4543 degrees of freedom
AIC: 1931.8

Number of Fisher Scoring iterations: 13

How good is the classification?

> proba <- predict(gl,type="response")
> predicted_spam <- as.numeric(proba>0.5)
> table(predicted_spam,Y)

Y
predicted_spam 0 1

0 2666 194
1 122 1619

> predicted_spam <- as.numeric(proba>0.99)
> table(predicted_spam,Y)

Y
predicted_spam 0 1

0 2776 1095
1 12 718

So out of 730 emails marked as spam, 12 were actually not spam. Would you
expect a similar success rate for future classifications?

