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Clustering

K-means



K-means

Partition methods seek to divide examples into a pre-assigned number of
clusters Cy,...,Cg where for all k, k" € {1,...,K},

> CkC{xl,...,xn}
>CkﬂCk/:(Z) \Vlk#k,
> UfZICk:{x1,...,xn}

For Euclidean space, we can assign a centre r, to each cluster in order to
measure within-cluster deviance

We(r) = Y Il —nlla:

i:x;€Cy



K-means

The overall objective is to choose both the cluster centres and allocation of
points to minimize total within-cluster deviance given by

K
W = Z ch(l”k).
k=1

Given the contents of a cluster, simple differentiation of W, () with respect to
r. shows that within-cluster deviance is least when

where |G| = #{i : x; € C;} is the number of members of cluster k.
The hard part is the combinatorial task of allocating points to clusters.



K-means

The K-means algorithm is a well-known method that heuristically minimizes W

to partition x;, ..., x, into K clusters for some K.
1. Randomly fix K cluster centres r, ..., r«.
2. Foreachi=1,...,n,assign each x; to the cluster with the nearest centre,

xi € Cr & |xi—nrl < |lxi — ]| VK # k.

3. Move cluster centres rq, ..., rx to the average of the new clusters.
4. Repeat 2 and 3 until there is no change.
5. Return the partitions Cy, ..., Ck at the end.



Some Properties

Some notes about the K-means algorithm.

» The algorithm stops in a finite number of iterations. Between steps 2
and 3, W either stays constant -in which case we stop- or it decreases,
this implies that we never revisit the same partition. As there are only
finitely many partitions, the number of iterations cannot exceed this.

» The K-means algorithm need not converge to a globally optimal
assignhment. K-means is a heuristic search algorithm so it can get stuck
at suboptimal configurations. The result depends on the starting
configuration.

» Other partition based methods. There are many other partition based
methods that employ related ideas for example K-medoids differs from
K-means in requiring cluster centres r; to be an observation x;.



Example: Crabs

Looking at the Crabs data again.

library (MASS)
library (lattice)
data (crabs)

splom(~log(crabs[,4:8]),
col=as.numeric (crabs[,1]),
pch=as.numeric (crabs|[,2]),
main="circle/triangle is gender, black/red is species")



Example: Crabs

circle/triangle is gender, black/red is species
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Example: Crabs

Apply kmeans with 2 clusters and plot results.

cl <— kmeans( log(crabs[,4:8]), 2, nstart=1, iter.max=10)

splom(~log(crabs[,4:8]),
col=clScluster+2,
main="blue/green is cluster finds big/small")



Example: Crabs

blue/green is cluster finds big/small
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Example: Crabs

Sphere the data.

pcp <— princomp( log(crabs[,4:8]) )

spc <— pcpS$scores %*% diag(l/pcp$sdev)

splom( ~spcl,1:3],
col=as.numeric(crabs[,1]),
pch=as.numeric (crabs|[,2]),

main="circle/triangle is gender, black/red is species")



Example: Crabs

circle/triangle is gender, black/red is species

Scatter Plot Matrix



Example: Crabs

And apply K-means again.

cl <- kmeans(spc, 2, nstart=1, 1ter.max=20)
splom( ~spcl,1:3],
col=clScluster+2, main="blue/green is cluster")



Example: Crabs

blue/green is cluster

Scatter Plot Matrix



Example: Crabs

circle/triangle is gender, black/red is species blue/green is cluster

Scatter Plot Matrix Scatter Plot Matrix

Discovers gender difference...
Results depends crucially on sphering the data first.



Example: Crabs
Using 4 cluster centers.

colors are clusters
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Scatter Plot Matrix



Example: Crabs

circle/triangle is gender, black/red is species

colors are clusters

Scatter Plot Matrix
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