### Clustering

Yee Whye Teh
Gatsby Computational Neuroscience Unit
UCL

Adaptive Modelling of Complex Data UCL

### **Outline**

What is Clustering?

K-means

**Spectral Clustering** 

Mixture Models

Hierarchical Clustering

Discussion

### Adaptive Modelling of Complex Data

### We cover:

|                           | Supervised learning | Unsupervised learning    |
|---------------------------|---------------------|--------------------------|
| Discrete output/latents   | Classification      | Clustering               |
| Continuous output/latents | Regression          | Dimensionality reduction |

### and: Time-Series models

#### We will not cover:

- Other learning paradigms:
  - Reinforcement learning
  - Semi-supervised learning

- Other data domains:
  - Relations
    - Strings
  - Graphs
  - **•** ...

### **Outline**

What is Clustering?

K-means

Spectral Clustering

Mixture Models

Hierarchical Clustering

Discussion

It is what you think it is.

- ▶ We naturally put things into categories, or clusters.
- ► People, movies, organisms...

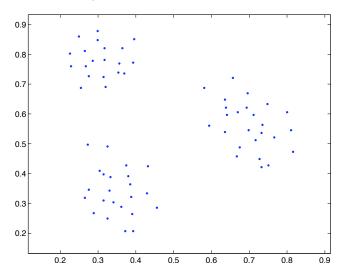
#### An Impossibility Theorem for Clustering

#### Jon Kleinberg

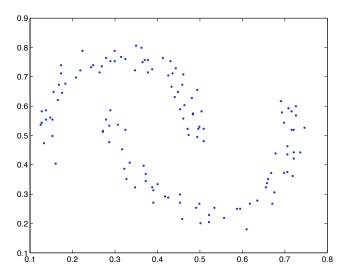
Department of Computer Science Cornell University Ithaca NY 14853

#### Abstract

Although the study of clustering is centered around an intuitively compelling goal, it has been very difficult to develop a unified framework for reasoning about it at a technical level, and profoundly diverse approaches to clustering abound in the research community. Here we suggest a formal perspective on the difficulty in finding such a unification, in the form of an impossibility theorem: for a set of three simple properties, we show that there is no clustering function satisfying all three. Relaxations of these properties expose some of the interesting (and unavoidable) trade-offs at work in well-studied clustering techniques such as single-linkage, sum-of-pairs, k-means, and k-median.



Partitioning or grouping data into "similar" subsets.



Partitioning or grouping data into "similar" subsets.

### Formalizing Clustering

- ▶ Given data vectors  $\mathbf{x}_1, \dots, \mathbf{x}_m$ , a K-clustering is an assignment  $c_i \in \{1, \dots, K\}$  of each data vector  $\mathbf{x}_i$  to a cluster  $c_i$ .
- We can also represent this using a 1-of-K coding:

$$r_{ic} = egin{cases} 1 & ext{if } \mathbf{x}_i ext{ is assigned to cluster } c, \ 0 & ext{otherwise}. \end{cases}$$

Note  $r_{ic} \geq 0$  and  $\sum_{c} r_{ic} = 1$ .

- ▶ Each cluster c may be described using a set of parameters  $\theta_c$ .
- We use an objective function to measure quality of clustering:

$$J(\boldsymbol{\theta}, R)$$

Clustering is the process of optimizing the objective function:

$$\operatorname*{argmin}_{\boldsymbol{\theta},R} J(\boldsymbol{\theta},R)$$

### **Notation**

Number of data vectors. m Number of dimensions of data vectors. n K Number of clusters. Data vectors.  $\mathbf{X}_1,\ldots,\mathbf{X}_m$ Cluster index of data vector  $\mathbf{x}_i$ .  $c_i$ Does  $\mathbf{x}_i$  belong to cluster c?  $r_{ic}$ Prototype vectors.  $\mu_c$  $\Psi_c$ Variability of data vectors around prototype.

### **Outline**

What is Clustering?

K-means

Spectral Clustering

Mixture Models

Hierarchical Clustering

Discussion

- K-means is a prototype based clustering algorithm.
- ▶ The prototype for the c'th cluster is  $\mu_c$ .
- Each data vectors will belong to exactly one cluster, say:

$$r_{ic} = \begin{cases} 1 & \text{if } \mathbf{x}_i \text{ belongs to cluster } c, \\ 0 & \text{otherwise.} \end{cases}$$

How do we find good prototypes, and good assignments of data vectors to prototypes?

#### Assigning Data Vectors to Clusters

- Suppose: we have good prototypes.
- How do we assign data vectors to clusters?
- Easy: assign data vectors to closest prototype!
- ▶ For data vectors i = 1, ..., m, for prototypes c = 1, ..., K:

$$d_{ic} = \|\mathbf{x}_i - \mu_c\|^2$$
 $c_i = \operatorname*{argmin}_c d_{ic}$ 
 $r_{ic} = egin{cases} 1 & \text{if } c_i = c, \\ 0 & \text{otherwise.} \end{cases}$ 

#### Finding Good Prototypes

- Suppose: we have good assignments of data vectors to cluster.
- How do we find good prototypes?
- Easy: let the prototypes be the means of each cluster!

$$\mu_c = \frac{\sum_{i=1}^m r_{ic} \mathbf{x}_i}{\sum_{i=1}^m r_{ic}}$$

#### Finding Good Prototypes and Assignments

- We are faced with a chicken-and-egg problem, since we do not have good prototypes nor assignments to begin with.
- Solution: iterate until prototypes and assignments stabilize.
- Objective function:

$$J(R, \mu) = \sum_{i=1}^{m} \sum_{c=1}^{K} r_{ic} ||\mathbf{x}_{i} - \mu_{c}||^{2}$$

Iterations:

$$\begin{aligned} R &\Leftarrow \underset{R}{\operatorname{argmin}} J(R, \mu) \\ \mu &\Leftarrow \underset{\mu}{\operatorname{argmin}} J(R, \mu) \end{aligned}$$

Demonstration

#### **Applications**

- Summarization: replace data vector with cluster label.
- Lossy compression: store prototypes and cluster labels (vector quantization).
- ► Image segmentation: e.g. cluster pixel colours in images.





Small patches, visually relevant features, and *spectral clustering* improve results.

# K-means Extensions

- Other distance measures.
   E.g. cityblock, cosine, correlation, Hamming, kernels.
- K-mediods. Use a data vector as the cluster prototype: makes sense when means are either expensive or not well-defined.
- Mixture models, spectral clustering, hierarchical clustering. Rest of course.

#### Issues

- Local minima. Different initializations of K-means can lead to different solutions. Solution: Run multiple times and use best run.
- Empty clusters.
  Solution: either drop empty clusters, or re-use them elsewhere.
- Finding an appropriate K.
   Objective function is of no help: increasing K always decreases J.

$$J(R, \boldsymbol{\mu}) = \sum_{i=1}^{m} \sum_{c=1}^{K} r_{ic} \|\mathbf{x}_i - \mu_c\|^2$$

#### Solutions?

- Correlate clusterings with external data, e.g. additional labels.
- Minimum description length.
- Bayesian probabilistic approaches.

### **Outline**

What is Clustering?

K-means

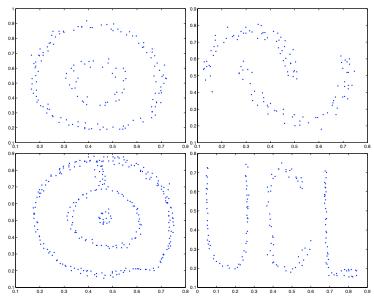
**Spectral Clustering** 

Mixture Models

Hierarchical Clustering

Discussion

### Stranger Clusters



#### Stranger Clusters

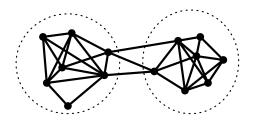
- ► For these clusters, the shape of the clusters is unimportant. This rules out K-means or any prototype based model.
- What is important is similarity of data vectors to other data vectors in the same cluster.
   Similarities are propagated transitively.

$$\mathbf{x}_1 \sim \mathbf{x}_2$$
 and  $\mathbf{x}_2 \sim \mathbf{x}_3 \Rightarrow \mathbf{x}_1 \sim \mathbf{x}_3$ 

► This implies using a matrix of *similarities* between data vectors, and algorithms operating on such similarity matrices.

#### **Graph Partitioning Approaches**

- We can formalize similarities between data points using graphs.
- Data items are vertices of the graph, and edges connect similar data items.
- ▶ If similarities are graded, we can attach a weight  $W_{ij}$  (similarity score) to each edge ij instead.
- Clusters are highly connected components of the graph.



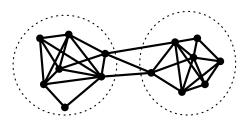
#### Normalized Cuts

- ▶ Let *C* and *D* be a partition of the vertices into two clusters.
- ▶ An obvious approach is to find *C* and *D* minimizing the **cut**:

$$\operatorname{cut}(C,D) = \sum_{i \in C} \sum_{j \in D} W_{ij}$$

the total weight of edges between C and D (cut by the partition).

This does not work well because it often finds single vertices for one of the clusters.



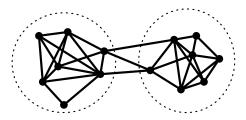
[Shi and Malik 2000]

#### **Normalized Cuts**

- We can prevent singleton clusters by normalizing for the sizes of the clusters in some way.
- ► The **normalized cut** is defined to be:

$$\mathrm{ncut}(C,D) = \frac{\mathrm{cut}(C,D)}{\mathrm{assoc}(C,V)} + \frac{\mathrm{cut}(C,D)}{\mathrm{assoc}(D,V)}$$
 where 
$$\mathrm{assoc}(A,B) = \sum_{i \in A} \sum_{j \in B} W_{ij}$$

each fraction is the ratio of total weight to the other cluster versus total weight of all edges originating from the cluster.



#### Normalized Cuts

Finding the partition minimizing the normalized cut can be expressed as a discrete optimization problem:

$$\underset{\mathbf{y}}{\operatorname{argmin}} \frac{\mathbf{y}^{\top} (D - W) \mathbf{y}}{\mathbf{y}^{\top} D \mathbf{y}}$$

where y is a vector with each entry corresponding to a vertex, constrained to take on only the values  $\{1, -b\}$  for some b > 0, and D is a diagnonal matrix

$$D_{ii} = \sum_{j \in V} W_{ij}$$

▶ If we forget that entries of y can only take on values  $\{1, -b\}$ , and allow y to be an arbitrary vector, the above is *exactly* the same objective function for **Laplacian Eigenmaps**.

#### Normalized Cuts

Laplacian Eigenmap:

$$\operatorname*{argmin}_{\mathbf{y}} \frac{\mathbf{y}^{\top} (D-W) \mathbf{y}}{\mathbf{y}^{\top} D \mathbf{y}}$$

▶ A d dimensional embedding is obtained from the smallest d + 1 generalized eigenvectors of the system

$$(D - W)\mathbf{y} = \lambda D\mathbf{y}$$

- ► The intuition is that these generalized eigenvectors are the modes of vibrations of the system described by the graph (e.g. edges are springs with varying stiffness and vertices are balls).
- If the data were clustered, the graph has densely connected components, and the modes of vibration will be precisely the clusters.

**Normalized Cuts** 

- Compute similarities and construct the W matrix of similarities.
- Compute the diagonal matrix D.
- ► Find the 2nd smallest generalized eigenvector of the system:

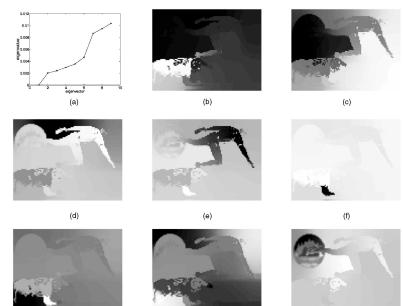
$$(D - W)\mathbf{y} = \lambda D\mathbf{y}$$

Find a value c so that vertices i with  $y_i > c$  form a good cluster, and likewise those with  $y_i < c$ .

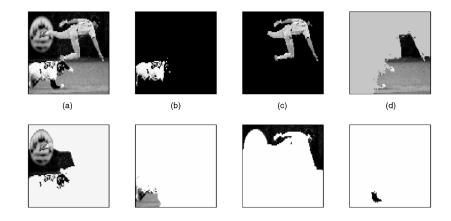
**Normalized Cuts** 



### **Normalized Cuts**



**Normalized Cuts** 



### A Second Algorithm

- Compute the W and D matrices.
- Find the eigenvectors corresponding to the K largest eigenvalues of  $D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$ . Form matrix Y whose columns are the eigenvectors.
- ▶ Normalize the rows:  $\tilde{Y}_{ij} = Y_{ij}/(\sum_j Y_{ij}^2)^{\frac{1}{2}}$ .
- Perform K-means on the rows of \( \tilde{Y} \).
- ▶ Assign  $\mathbf{x}_i$  to cluster c if the i'th row of  $\tilde{Y}$  is assigned to cluster c.

The eigensystem here is just a negated and rotated form of the previous eigensystem (which is why we find the K largest eigenvectors instead of smallest).

Vibration story: if clusters are well separated, then the smallest eigenvalues are all 0, one for each cluster. Eigenvectors will be rotationally invariant so clustering using all K eigenvectors better.

[Ng, Jordan and Weiss 2001]

### **Outline**

What is Clustering?

K-means

Spectral Clustering

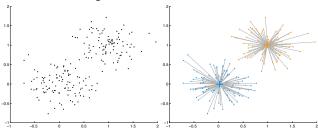
Mixture Models

Hierarchical Clustering

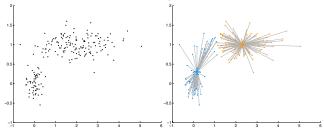
Discussion

#### Issues with K-means

Overconfidence in assignment of data vectors to clusters.



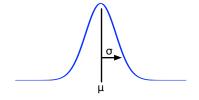
▶ Did not take into account variability of clusters.



### Modelling Variability with Gaussians

Gaussians are the most commonly encountered distributions in probability and statistics.

$$\mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$



Multidimensional Gaussians

$$\mathcal{N}(\mathbf{x}; \mu, \Psi) = |2\pi\Psi|^{-\frac{1}{2}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^{\top} \Psi^{-1}(\mathbf{x} - \mu)}$$

- $\mu$  Mean (centre) of the Gaussian.
- $\Psi$  Width (variability) of the Gaussian in different directions.

#### Modelling Variability with Gaussians

- Instead of representing each cluster by only its prototype (mean), we also represent variability in the cluster using multidimensional Gaussians.
- What are good means and covariances of Gaussians, given assignments of data vectors to clusters?

$$\mu_{c} = \frac{\sum_{i=1}^{m} r_{ic} \mathbf{x}_{i}}{\sum_{i=1}^{m} r_{ic}}$$

$$\Psi_{c} = \frac{\sum_{i=1}^{m} r_{ic} (\mathbf{x}_{i} - \mu_{c}) (\mathbf{x}_{i} - \mu_{c})^{\top}}{\sum_{i=1}^{m} r_{ic}}$$

These optimal parameters are known as maximum likelihood parameters.

### Modelling Uncertainty in Cluster Assignments

▶ The probability of a data vector under a Gaussian:

$$\mathcal{N}(\mathbf{x}_i; \mu_c, \Psi_c) = \frac{1}{\sqrt{|2\pi\Psi_c|}} e^{-\frac{1}{2}(\mathbf{x}_i - \mu_c)^\top \Psi_c^{-1}(\mathbf{x}_i - \mu_c)}$$

Gives a measure of how likely is it that the data vector belongs to the cluster.

We can use this to give confidence weighted estimates of cluster assignments:

$$r_{ic} = \frac{\mathcal{N}(\mathbf{x}_i; \mu_c, \Psi_c)}{\sum_{k=1}^{K} \mathcal{N}(\mathbf{x}_i; \mu_k, \Psi_k)}$$

 $r_{ic}$  = Probability that data vector i belongs to cluster c.

#### Iterative Algorithm

Compute responsibility of clusters over data vectors:

$$r_{ic} = \frac{\rho_c \mathcal{N}(\mathbf{x}_i; \mu_c, \Psi_c)}{\sum_{k=1}^K \rho_k \mathcal{N}(\mathbf{x}_i; \mu_k, \Psi_k)}$$

Update parameters of Gaussians given responsibilities:

$$\mu_c = \frac{\sum_{i=1}^m r_{ic} \mathbf{x}_i}{\sum_{i=1}^m r_{ic}}$$

$$\Psi_c = \frac{\sum_{i=1}^m r_{ic} (\mathbf{x}_i - \mu_c) (\mathbf{x}_i - \mu_c)^\top}{\sum_{i=1}^m r_{ic}}$$

Update relative cluster sizes (mixing proportions):

$$\rho_c = \frac{\sum_{i=1}^m r_{ic}}{m}$$

#### Probabilistic View of Mixture Models

- A mixture model is a probabilistic model. It defines a distribution over data vectors and cluster assignments.
- ▶ Probability of assigning **x**<sub>i</sub> to cluster *c*:

$$p(y_i = c|\boldsymbol{\rho}) = \rho_c$$

Probability of x<sub>i</sub> given it is in cluster c:

$$p(\mathbf{x}_i|y_i=c,\mu_c,\Psi_c)=\mathcal{N}(\mathbf{x}_i;\mu_c,\Psi_c)$$

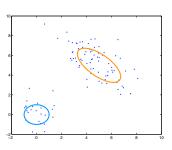
Joint probability over everything:

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_m,y_1,\ldots,y_m|\boldsymbol{\rho},\boldsymbol{\mu},\boldsymbol{\Psi}) = \prod_{i=1}^m \prod_{c=1}^K (\rho_c \mathcal{N}(\mathbf{x}_i;\mu_c,\Psi_c))^{\mathbb{I}(y_i=c)}$$

#### Mixture Models as Generative Models

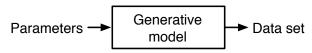
Such a probabilistic model is generative—it describes a process of generating data sets. Example:

$$\begin{bmatrix} \rho_1 \\ \rho_2 \end{bmatrix} = \begin{bmatrix} .3 \\ .7 \end{bmatrix} \qquad \mu_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \Psi_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\mu_2 = \begin{bmatrix} 5 \\ 5 \end{bmatrix} \qquad \Psi_2 = \begin{bmatrix} 3 & -2 \\ -2 & 3 \end{bmatrix}$$

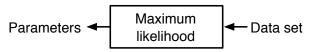


#### Maximum Likelihood and the EM algorithm

▶ A *generative model* describes a process of *generating* data from a parametrized probabilistic model.



Maximum likelihood is an approach to recovering parameters given data.



- Straightforward (in principle): find parameters such that the probability of generating the given data set is maximized.
- ► The Expectation-Maximization algorithm finds parameters that locally maximizes the likelihood.

#### Applications, Issues, Extensions

- Mixture models can be applied wherever K-means is applied.
- Mixture models are also used in density estimation tasks.
- Mixture models are strictly more powerful than K-means.
  - They can model a larger class of data sets.
  - The search space is larger and can slow down convergence of algorithm.
- Mixture models can be significantly extended within the framework of probabilistic models.
  - Extensions to the model: robust, nonparametric, non-Gaussian, mixture of probabilistic PCAs.
  - Improvements to the EM algorithm: MAP, variational Bayes, MCMC.
- Does not mean that K-means is to be replaced: K-means is computationally simpler and faster.

### **Outline**

What is Clustering?

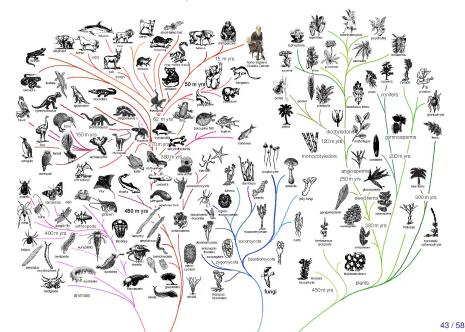
K-means

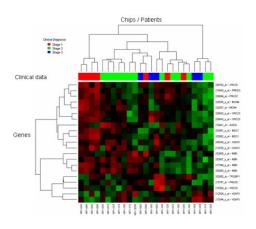
Spectral Clustering

Mixture Models

Hierarchical Clustering

Discussion





#### Different approaches

- Top-down decimative approach.
  - Start with one big cluster.
  - Recursively split each cluster (if advantageous).
- Bottom-up agglomerative approach.
  - Start with one cluster per data point.
  - Iteratively find two clusters to merge (if advantageous).
  - Clusters found by finding pairs with maximum similarity.
- Probabilistic approaches:
  - Define a probabilistic model with a latent tree and learn the tree structure by maximum-likelihood or other techniques.
- ► The dominant approach is bottom-up: better search landscape, more flexible algorithms.

#### Linkage Algorithms

- ► Input: data  $\mathbf{x}_1, \dots, \mathbf{x}_m$ .
- ▶ Input: distance measure d(x, y).
- Input: distance combination:

$$d(C,D) = f(d(x,y) : x \in C, y \in D)$$

Initialize each data point in separate cluster:

$$C_i = \{x_i\} \text{ for } i = 1, \dots, m$$

- ▶ For t = 1, ..., m 1:
  - Find cluster pair:

$$C, D \leftarrow \operatorname*{argmin}_{C \neq D} d(C, D)$$

▶ Merge C and D: Remove C and D, add  $C \cup D$ .

[Duda & Hart 1973]

Distance Combinations in Linkage Algorithms

Single (or minimum) linkage:

$$d(C,D) = \min_{x \in C, y \in D} d(x, y)$$

Complete (or maximum) linkage:

$$d(C,D) = \max_{x \in C, y \in D} d(x, y)$$

Average linkage:

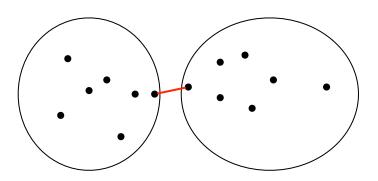
$$d(C,D) = \frac{1}{|C||D|} \sum_{x \in C, y \in D} d(x,y)$$

Others: mean, centroid, ward, weighted versions...

Distance Combinations in Linkage Algorithms

Single (or minimum) linkage:

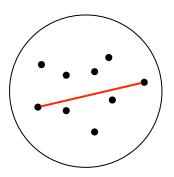
$$d(C,D) = \min_{x \in C, y \in D} d(x, y)$$



Distance Combinations in Linkage Algorithms

Complete (or maximum) linkage:

$$d(C,D) = \max_{x \in C, y \in D} d(x,y)$$



Prescriptive Search Strategy

- ► Even given an objective function, clustering is often difficult due to its combinatorial nature—there are too many ways to cluster data.
- ► The problem gets even harder if we need to determine the number *K* of clusters in addition to the clustering.
- One way of thinking about hierarchical clustering is that it produces a *pretty good* path, from *m* clusters to 1 cluster, along which to search for a good *K*.
- ▶ This is prescriptive in that for a given *K* the hierarchical clustering algorithm tells you the clustering to use.

### Probabilistic Hierarchical Clustering

- Same framework as normal linkage algorithms.
- Use probabilistic models to define cluster distance:

$$d(C,D) = -\log \frac{p(C \cup D)}{p(C)p(D)}$$

A common model: Gaussian

$$p(C) = \prod_{\mathbf{x} \in C} |2\pi\Psi|^{-\frac{1}{2}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^{\top} \Psi^{-1}(\mathbf{x} - \mu)}$$

- ► The Gaussian imposes a strong constraint on how it thinks clusters should shape like.
- Clusters are merged if the merger produces a more Gaussian looking cluster.

[Friedman 2003, Heller & Ghahramani 2005]

#### Probabilistic Hierarchical Clustering

- Different interpretation: mixture model.
- Model data set with a (standard) mixture model.
- ▶ Start with each data item  $x_i$  in its own cluster  $C_i = \{x_i\}$ .
- ▶ For t = 1, ..., m 1:
  - Find pair of clusters such that the likelihood of the data is maximum after merger. Equivalent to finding

$$C, D \leftarrow \operatorname*{argmax} \log \frac{p(C \cup D)}{p(C)p(D)}$$

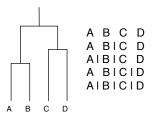
▶ If  $\log \frac{p(C \cup D)}{p(C)p(D)} > 0$  merge C and D, else stop.

#### Probabilistic Hierarchical Clustering

[Friedman 2003] assumes that a partially constructed tree corresponds to a mixture model with each subtree being a mixture component.



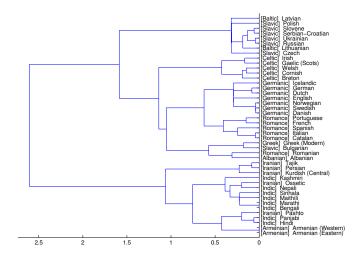
[Heller & Ghahramani 2005] assumes that each subtree itself corresponds to a mixture model.



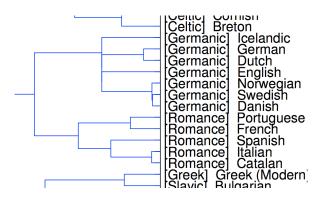
Issues, Applications

- Summarization and compression.
- Hierarchical clustering is very popular in bioinformatics.
- Prescribes a particular search strategy for mixture models: good but need not be best.
  - Can be used to initialize mixture models.
  - ▶ But computational cost is  $O(m^2)$  as compared to O(KmI) for mixture models, I is number of iterations.
- Hierarchical clustering is also used to discover and visualize hierarchical (tree) structure in data.
- But the algorithms we described do not optimize any objective function for quality of tree.
  - Alternatives exist: coalescents, Dirichlet diffusion trees.

## **Phylolinguistics**



## **Phylolinguistics**



### **Outline**

What is Clustering?

K-means

Spectral Clustering

Mixture Models

Hierarchical Clustering

Discussion

### Discussion

- A quick overview of some popular approaches to clustering.
- Applications:
  - Structure discovery, segmentation;
  - Summarization, compression;
  - Density estimation, probabilistic models.
- Dealing with high dimensions:
  - Mixtures of probabilistic PCAs, and factor analyzers.
  - Perform dimensionality reduction prior to clustering.
- Dealing with large numbers of data vectors:
  - Construct efficient data structures, e.g. KD-trees.
  - Subsample; cluster; re-cluster.
- Measuring clustering quality: indices exist, but beware!
  - Clustering is subjective; there is no right answer.
  - Clustering should be evaluated based on how much it helped achieve your goal.