Clustering

Yee Whye Teh
Gatsby Computational Neuroscience Unit
UCL

Adaptive Modelling of Complex Data UCL

Outline

What is Clustering?

K-means

Spectral Clustering

Mixture Models

Hierarchical Clustering

Discussion

Adaptive Modelling of Complex Data

We cover:

	Supervised learning	Unsupervised learning
Discrete output/latents	Classification	Clustering
Continuous output/latents	Regression	Dimensionality reduction

and: Time-Series models

We will not cover:

- Other learning paradigms:
 - Reinforcement learning
 - Semi-supervised learning

- Other data domains:
 - Relations
 - Strings
 - Graphs
 - **•** ...

Outline

What is Clustering?

K-means

Spectral Clustering

Mixture Models

Hierarchical Clustering

Discussion

It is what you think it is.

- ▶ We naturally put things into categories, or clusters.
- ► People, movies, organisms...

An Impossibility Theorem for Clustering

Jon Kleinberg

Department of Computer Science Cornell University Ithaca NY 14853

Abstract

Although the study of clustering is centered around an intuitively compelling goal, it has been very difficult to develop a unified framework for reasoning about it at a technical level, and profoundly diverse approaches to clustering abound in the research community. Here we suggest a formal perspective on the difficulty in finding such a unification, in the form of an impossibility theorem: for a set of three simple properties, we show that there is no clustering function satisfying all three. Relaxations of these properties expose some of the interesting (and unavoidable) trade-offs at work in well-studied clustering techniques such as single-linkage, sum-of-pairs, k-means, and k-median.

Partitioning or grouping data into "similar" subsets.

Partitioning or grouping data into "similar" subsets.

Formalizing Clustering

- ▶ Given data vectors $\mathbf{x}_1, \dots, \mathbf{x}_m$, a K-clustering is an assignment $c_i \in \{1, \dots, K\}$ of each data vector \mathbf{x}_i to a cluster c_i .
- We can also represent this using a 1-of-K coding:

$$r_{ic} = egin{cases} 1 & ext{if } \mathbf{x}_i ext{ is assigned to cluster } c, \ 0 & ext{otherwise}. \end{cases}$$

Note $r_{ic} \geq 0$ and $\sum_{c} r_{ic} = 1$.

- ▶ Each cluster c may be described using a set of parameters θ_c .
- We use an objective function to measure quality of clustering:

$$J(\boldsymbol{\theta}, R)$$

Clustering is the process of optimizing the objective function:

$$\operatorname*{argmin}_{\boldsymbol{\theta},R} J(\boldsymbol{\theta},R)$$

Notation

Number of data vectors. m Number of dimensions of data vectors. n K Number of clusters. Data vectors. $\mathbf{X}_1,\ldots,\mathbf{X}_m$ Cluster index of data vector \mathbf{x}_i . c_i Does \mathbf{x}_i belong to cluster c? r_{ic} Prototype vectors. μ_c Ψ_c Variability of data vectors around prototype.

Outline

What is Clustering?

K-means

Spectral Clustering

Mixture Models

Hierarchical Clustering

Discussion

- K-means is a prototype based clustering algorithm.
- ▶ The prototype for the c'th cluster is μ_c .
- Each data vectors will belong to exactly one cluster, say:

$$r_{ic} = \begin{cases} 1 & \text{if } \mathbf{x}_i \text{ belongs to cluster } c, \\ 0 & \text{otherwise.} \end{cases}$$

How do we find good prototypes, and good assignments of data vectors to prototypes?

Assigning Data Vectors to Clusters

- Suppose: we have good prototypes.
- How do we assign data vectors to clusters?
- Easy: assign data vectors to closest prototype!
- ▶ For data vectors i = 1, ..., m, for prototypes c = 1, ..., K:

$$d_{ic} = \|\mathbf{x}_i - \mu_c\|^2$$
 $c_i = \operatorname*{argmin}_c d_{ic}$
 $r_{ic} = egin{cases} 1 & \text{if } c_i = c, \\ 0 & \text{otherwise.} \end{cases}$

Finding Good Prototypes

- Suppose: we have good assignments of data vectors to cluster.
- How do we find good prototypes?
- Easy: let the prototypes be the means of each cluster!

$$\mu_c = \frac{\sum_{i=1}^m r_{ic} \mathbf{x}_i}{\sum_{i=1}^m r_{ic}}$$

Finding Good Prototypes and Assignments

- We are faced with a chicken-and-egg problem, since we do not have good prototypes nor assignments to begin with.
- Solution: iterate until prototypes and assignments stabilize.
- Objective function:

$$J(R, \mu) = \sum_{i=1}^{m} \sum_{c=1}^{K} r_{ic} ||\mathbf{x}_{i} - \mu_{c}||^{2}$$

Iterations:

$$\begin{aligned} R &\Leftarrow \underset{R}{\operatorname{argmin}} J(R, \mu) \\ \mu &\Leftarrow \underset{\mu}{\operatorname{argmin}} J(R, \mu) \end{aligned}$$

Demonstration

Applications

- Summarization: replace data vector with cluster label.
- Lossy compression: store prototypes and cluster labels (vector quantization).
- ► Image segmentation: e.g. cluster pixel colours in images.

Small patches, visually relevant features, and *spectral clustering* improve results.

K-means Extensions

- Other distance measures.
 E.g. cityblock, cosine, correlation, Hamming, kernels.
- K-mediods. Use a data vector as the cluster prototype: makes sense when means are either expensive or not well-defined.
- Mixture models, spectral clustering, hierarchical clustering. Rest of course.

Issues

- Local minima. Different initializations of K-means can lead to different solutions. Solution: Run multiple times and use best run.
- Empty clusters.
 Solution: either drop empty clusters, or re-use them elsewhere.
- Finding an appropriate K.
 Objective function is of no help: increasing K always decreases J.

$$J(R, \boldsymbol{\mu}) = \sum_{i=1}^{m} \sum_{c=1}^{K} r_{ic} \|\mathbf{x}_i - \mu_c\|^2$$

Solutions?

- Correlate clusterings with external data, e.g. additional labels.
- Minimum description length.
- Bayesian probabilistic approaches.

Outline

What is Clustering?

K-means

Spectral Clustering

Mixture Models

Hierarchical Clustering

Discussion

Stranger Clusters

Stranger Clusters

- ► For these clusters, the shape of the clusters is unimportant. This rules out K-means or any prototype based model.
- What is important is similarity of data vectors to other data vectors in the same cluster.
 Similarities are propagated transitively.

$$\mathbf{x}_1 \sim \mathbf{x}_2$$
 and $\mathbf{x}_2 \sim \mathbf{x}_3 \Rightarrow \mathbf{x}_1 \sim \mathbf{x}_3$

► This implies using a matrix of *similarities* between data vectors, and algorithms operating on such similarity matrices.

Graph Partitioning Approaches

- We can formalize similarities between data points using graphs.
- Data items are vertices of the graph, and edges connect similar data items.
- ▶ If similarities are graded, we can attach a weight W_{ij} (similarity score) to each edge ij instead.
- Clusters are highly connected components of the graph.

Normalized Cuts

- ▶ Let *C* and *D* be a partition of the vertices into two clusters.
- ▶ An obvious approach is to find *C* and *D* minimizing the **cut**:

$$\operatorname{cut}(C,D) = \sum_{i \in C} \sum_{j \in D} W_{ij}$$

the total weight of edges between C and D (cut by the partition).

This does not work well because it often finds single vertices for one of the clusters.

[Shi and Malik 2000]

Normalized Cuts

- We can prevent singleton clusters by normalizing for the sizes of the clusters in some way.
- ► The **normalized cut** is defined to be:

$$\mathrm{ncut}(C,D) = \frac{\mathrm{cut}(C,D)}{\mathrm{assoc}(C,V)} + \frac{\mathrm{cut}(C,D)}{\mathrm{assoc}(D,V)}$$
 where
$$\mathrm{assoc}(A,B) = \sum_{i \in A} \sum_{j \in B} W_{ij}$$

each fraction is the ratio of total weight to the other cluster versus total weight of all edges originating from the cluster.

Normalized Cuts

Finding the partition minimizing the normalized cut can be expressed as a discrete optimization problem:

$$\underset{\mathbf{y}}{\operatorname{argmin}} \frac{\mathbf{y}^{\top} (D - W) \mathbf{y}}{\mathbf{y}^{\top} D \mathbf{y}}$$

where y is a vector with each entry corresponding to a vertex, constrained to take on only the values $\{1, -b\}$ for some b > 0, and D is a diagnonal matrix

$$D_{ii} = \sum_{j \in V} W_{ij}$$

▶ If we forget that entries of y can only take on values $\{1, -b\}$, and allow y to be an arbitrary vector, the above is *exactly* the same objective function for **Laplacian Eigenmaps**.

Normalized Cuts

Laplacian Eigenmap:

$$\operatorname*{argmin}_{\mathbf{y}} \frac{\mathbf{y}^{\top} (D-W) \mathbf{y}}{\mathbf{y}^{\top} D \mathbf{y}}$$

▶ A d dimensional embedding is obtained from the smallest d + 1 generalized eigenvectors of the system

$$(D - W)\mathbf{y} = \lambda D\mathbf{y}$$

- ► The intuition is that these generalized eigenvectors are the modes of vibrations of the system described by the graph (e.g. edges are springs with varying stiffness and vertices are balls).
- If the data were clustered, the graph has densely connected components, and the modes of vibration will be precisely the clusters.

Normalized Cuts

- Compute similarities and construct the W matrix of similarities.
- Compute the diagonal matrix D.
- ► Find the 2nd smallest generalized eigenvector of the system:

$$(D - W)\mathbf{y} = \lambda D\mathbf{y}$$

Find a value c so that vertices i with $y_i > c$ form a good cluster, and likewise those with $y_i < c$.

Normalized Cuts

Normalized Cuts

Normalized Cuts

A Second Algorithm

- Compute the W and D matrices.
- Find the eigenvectors corresponding to the K largest eigenvalues of $D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$. Form matrix Y whose columns are the eigenvectors.
- ▶ Normalize the rows: $\tilde{Y}_{ij} = Y_{ij}/(\sum_j Y_{ij}^2)^{\frac{1}{2}}$.
- Perform K-means on the rows of \(\tilde{Y} \).
- ▶ Assign \mathbf{x}_i to cluster c if the i'th row of \tilde{Y} is assigned to cluster c.

The eigensystem here is just a negated and rotated form of the previous eigensystem (which is why we find the K largest eigenvectors instead of smallest).

Vibration story: if clusters are well separated, then the smallest eigenvalues are all 0, one for each cluster. Eigenvectors will be rotationally invariant so clustering using all K eigenvectors better.

[Ng, Jordan and Weiss 2001]

Outline

What is Clustering?

K-means

Spectral Clustering

Mixture Models

Hierarchical Clustering

Discussion

Issues with K-means

Overconfidence in assignment of data vectors to clusters.

▶ Did not take into account variability of clusters.

Modelling Variability with Gaussians

Gaussians are the most commonly encountered distributions in probability and statistics.

$$\mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Multidimensional Gaussians

$$\mathcal{N}(\mathbf{x}; \mu, \Psi) = |2\pi\Psi|^{-\frac{1}{2}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^{\top} \Psi^{-1}(\mathbf{x} - \mu)}$$

- μ Mean (centre) of the Gaussian.
- Ψ Width (variability) of the Gaussian in different directions.

Modelling Variability with Gaussians

- Instead of representing each cluster by only its prototype (mean), we also represent variability in the cluster using multidimensional Gaussians.
- What are good means and covariances of Gaussians, given assignments of data vectors to clusters?

$$\mu_{c} = \frac{\sum_{i=1}^{m} r_{ic} \mathbf{x}_{i}}{\sum_{i=1}^{m} r_{ic}}$$

$$\Psi_{c} = \frac{\sum_{i=1}^{m} r_{ic} (\mathbf{x}_{i} - \mu_{c}) (\mathbf{x}_{i} - \mu_{c})^{\top}}{\sum_{i=1}^{m} r_{ic}}$$

These optimal parameters are known as maximum likelihood parameters.

Modelling Uncertainty in Cluster Assignments

▶ The probability of a data vector under a Gaussian:

$$\mathcal{N}(\mathbf{x}_i; \mu_c, \Psi_c) = \frac{1}{\sqrt{|2\pi\Psi_c|}} e^{-\frac{1}{2}(\mathbf{x}_i - \mu_c)^\top \Psi_c^{-1}(\mathbf{x}_i - \mu_c)}$$

Gives a measure of how likely is it that the data vector belongs to the cluster.

We can use this to give confidence weighted estimates of cluster assignments:

$$r_{ic} = \frac{\mathcal{N}(\mathbf{x}_i; \mu_c, \Psi_c)}{\sum_{k=1}^{K} \mathcal{N}(\mathbf{x}_i; \mu_k, \Psi_k)}$$

 r_{ic} = Probability that data vector i belongs to cluster c.

Iterative Algorithm

Compute responsibility of clusters over data vectors:

$$r_{ic} = \frac{\rho_c \mathcal{N}(\mathbf{x}_i; \mu_c, \Psi_c)}{\sum_{k=1}^K \rho_k \mathcal{N}(\mathbf{x}_i; \mu_k, \Psi_k)}$$

Update parameters of Gaussians given responsibilities:

$$\mu_c = \frac{\sum_{i=1}^m r_{ic} \mathbf{x}_i}{\sum_{i=1}^m r_{ic}}$$

$$\Psi_c = \frac{\sum_{i=1}^m r_{ic} (\mathbf{x}_i - \mu_c) (\mathbf{x}_i - \mu_c)^\top}{\sum_{i=1}^m r_{ic}}$$

Update relative cluster sizes (mixing proportions):

$$\rho_c = \frac{\sum_{i=1}^m r_{ic}}{m}$$

Probabilistic View of Mixture Models

- A mixture model is a probabilistic model. It defines a distribution over data vectors and cluster assignments.
- ▶ Probability of assigning **x**_i to cluster *c*:

$$p(y_i = c|\boldsymbol{\rho}) = \rho_c$$

Probability of x_i given it is in cluster c:

$$p(\mathbf{x}_i|y_i=c,\mu_c,\Psi_c)=\mathcal{N}(\mathbf{x}_i;\mu_c,\Psi_c)$$

Joint probability over everything:

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_m,y_1,\ldots,y_m|\boldsymbol{\rho},\boldsymbol{\mu},\boldsymbol{\Psi}) = \prod_{i=1}^m \prod_{c=1}^K (\rho_c \mathcal{N}(\mathbf{x}_i;\mu_c,\Psi_c))^{\mathbb{I}(y_i=c)}$$

Mixture Models as Generative Models

Such a probabilistic model is generative—it describes a process of generating data sets. Example:

$$\begin{bmatrix} \rho_1 \\ \rho_2 \end{bmatrix} = \begin{bmatrix} .3 \\ .7 \end{bmatrix} \qquad \mu_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \Psi_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\mu_2 = \begin{bmatrix} 5 \\ 5 \end{bmatrix} \qquad \Psi_2 = \begin{bmatrix} 3 & -2 \\ -2 & 3 \end{bmatrix}$$

Maximum Likelihood and the EM algorithm

▶ A *generative model* describes a process of *generating* data from a parametrized probabilistic model.

Maximum likelihood is an approach to recovering parameters given data.

- Straightforward (in principle): find parameters such that the probability of generating the given data set is maximized.
- ► The Expectation-Maximization algorithm finds parameters that locally maximizes the likelihood.

Applications, Issues, Extensions

- Mixture models can be applied wherever K-means is applied.
- Mixture models are also used in density estimation tasks.
- Mixture models are strictly more powerful than K-means.
 - They can model a larger class of data sets.
 - The search space is larger and can slow down convergence of algorithm.
- Mixture models can be significantly extended within the framework of probabilistic models.
 - Extensions to the model: robust, nonparametric, non-Gaussian, mixture of probabilistic PCAs.
 - Improvements to the EM algorithm: MAP, variational Bayes, MCMC.
- Does not mean that K-means is to be replaced: K-means is computationally simpler and faster.

Outline

What is Clustering?

K-means

Spectral Clustering

Mixture Models

Hierarchical Clustering

Discussion

Different approaches

- Top-down decimative approach.
 - Start with one big cluster.
 - Recursively split each cluster (if advantageous).
- Bottom-up agglomerative approach.
 - Start with one cluster per data point.
 - Iteratively find two clusters to merge (if advantageous).
 - Clusters found by finding pairs with maximum similarity.
- Probabilistic approaches:
 - Define a probabilistic model with a latent tree and learn the tree structure by maximum-likelihood or other techniques.
- ► The dominant approach is bottom-up: better search landscape, more flexible algorithms.

Linkage Algorithms

- ► Input: data $\mathbf{x}_1, \dots, \mathbf{x}_m$.
- ▶ Input: distance measure d(x, y).
- Input: distance combination:

$$d(C,D) = f(d(x,y) : x \in C, y \in D)$$

Initialize each data point in separate cluster:

$$C_i = \{x_i\} \text{ for } i = 1, \dots, m$$

- ▶ For t = 1, ..., m 1:
 - Find cluster pair:

$$C, D \leftarrow \operatorname*{argmin}_{C \neq D} d(C, D)$$

▶ Merge C and D: Remove C and D, add $C \cup D$.

[Duda & Hart 1973]

Distance Combinations in Linkage Algorithms

Single (or minimum) linkage:

$$d(C,D) = \min_{x \in C, y \in D} d(x, y)$$

Complete (or maximum) linkage:

$$d(C,D) = \max_{x \in C, y \in D} d(x, y)$$

Average linkage:

$$d(C,D) = \frac{1}{|C||D|} \sum_{x \in C, y \in D} d(x,y)$$

Others: mean, centroid, ward, weighted versions...

Distance Combinations in Linkage Algorithms

Single (or minimum) linkage:

$$d(C,D) = \min_{x \in C, y \in D} d(x, y)$$

Distance Combinations in Linkage Algorithms

Complete (or maximum) linkage:

$$d(C,D) = \max_{x \in C, y \in D} d(x,y)$$

Prescriptive Search Strategy

- ► Even given an objective function, clustering is often difficult due to its combinatorial nature—there are too many ways to cluster data.
- ► The problem gets even harder if we need to determine the number *K* of clusters in addition to the clustering.
- One way of thinking about hierarchical clustering is that it produces a *pretty good* path, from *m* clusters to 1 cluster, along which to search for a good *K*.
- ▶ This is prescriptive in that for a given *K* the hierarchical clustering algorithm tells you the clustering to use.

Probabilistic Hierarchical Clustering

- Same framework as normal linkage algorithms.
- Use probabilistic models to define cluster distance:

$$d(C,D) = -\log \frac{p(C \cup D)}{p(C)p(D)}$$

A common model: Gaussian

$$p(C) = \prod_{\mathbf{x} \in C} |2\pi\Psi|^{-\frac{1}{2}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^{\top} \Psi^{-1}(\mathbf{x} - \mu)}$$

- ► The Gaussian imposes a strong constraint on how it thinks clusters should shape like.
- Clusters are merged if the merger produces a more Gaussian looking cluster.

[Friedman 2003, Heller & Ghahramani 2005]

Probabilistic Hierarchical Clustering

- Different interpretation: mixture model.
- Model data set with a (standard) mixture model.
- ▶ Start with each data item x_i in its own cluster $C_i = \{x_i\}$.
- ▶ For t = 1, ..., m 1:
 - Find pair of clusters such that the likelihood of the data is maximum after merger. Equivalent to finding

$$C, D \leftarrow \operatorname*{argmax} \log \frac{p(C \cup D)}{p(C)p(D)}$$

▶ If $\log \frac{p(C \cup D)}{p(C)p(D)} > 0$ merge C and D, else stop.

Probabilistic Hierarchical Clustering

[Friedman 2003] assumes that a partially constructed tree corresponds to a mixture model with each subtree being a mixture component.

[Heller & Ghahramani 2005] assumes that each subtree itself corresponds to a mixture model.

Issues, Applications

- Summarization and compression.
- Hierarchical clustering is very popular in bioinformatics.
- Prescribes a particular search strategy for mixture models: good but need not be best.
 - Can be used to initialize mixture models.
 - ▶ But computational cost is $O(m^2)$ as compared to O(KmI) for mixture models, I is number of iterations.
- Hierarchical clustering is also used to discover and visualize hierarchical (tree) structure in data.
- But the algorithms we described do not optimize any objective function for quality of tree.
 - Alternatives exist: coalescents, Dirichlet diffusion trees.

Phylolinguistics

Phylolinguistics

Outline

What is Clustering?

K-means

Spectral Clustering

Mixture Models

Hierarchical Clustering

Discussion

Discussion

- A quick overview of some popular approaches to clustering.
- Applications:
 - Structure discovery, segmentation;
 - Summarization, compression;
 - Density estimation, probabilistic models.
- Dealing with high dimensions:
 - Mixtures of probabilistic PCAs, and factor analyzers.
 - Perform dimensionality reduction prior to clustering.
- Dealing with large numbers of data vectors:
 - Construct efficient data structures, e.g. KD-trees.
 - Subsample; cluster; re-cluster.
- Measuring clustering quality: indices exist, but beware!
 - Clustering is subjective; there is no right answer.
 - Clustering should be evaluated based on how much it helped achieve your goal.