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Adaptive Modelling of Complex Data

We cover:
Supervised learning Unsupervised learning
Discrete Classification Clustering
output/latents
Continuous Regression Dimensionality reduction
output/latents

and: Time-Series models
We will not cover:

» Other learning paradigms: » Other data domains:

» Reinforcement learning » Relations

» Semi-supervised learning » Strings

L » Graphs
>
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What is Clustering?

It is what you think it is.

» We naturally put things into categories, or clusters.
» People, movies, organisms...
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What is Clustering?

An Impossibility Theorem for Clustering

Jon Kleinberg
Department of Computer Science
Cornell University
Ithaca NY 14853

Abstract

Although the study of clustering is centered around an intuitively
compelling goal, it has been very difficult to develop a unified
framework for reasoning about it at a technical level, and pro-
foundly diverse approaches to clustering abound in the research
community. Here we suggest a formal perspective on the difficulty
in finding such a unification, in the form of an impossibility theo-
rem: for a set of three simple properties, we show that there is no
clustering function satisfying all three. Relaxations of these prop-
erties expose some of the interesting (and unavoidable) trade-offs
at work in well-studied clustering techniques such as single-linkage,
sum-of-pairs, k-means, and k-median.
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What is Clustering?
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What is Clustering?
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Formalizing Clustering

» Given data vectors xi, ..., x,,, a K-clustering is an assignment
¢; € {1,...,K} of each data vector x; to a cluster c;.
We can also represent this using a 1-of-K coding:

v

- J 1 ifx;is assigned to cluster c,
“ 10 otherwise.

Note ri, > 0and ) ri. = 1.
Each cluster ¢ may be described using a set of parameters 6..
We use an objective function to measure quality of clustering:

J(O,R)

v

v

v

Clustering is the process of optimizing the objective function:

argminJ (0, R)
O,R
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Notation

Number of data vectors.

Number of dimensions of data vectors.
Number of clusters.

Data vectors.

Cluster index of data vector x;.
Does x; belong to cluster ¢?

Prototype vectors.
Variability of data vectors around prototype.
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K-means

v

K-means is a prototype based clustering algorithm.
The prototype for the c’'th cluster is ..
Each data vectors will belong to exactly one cluster, say:

v

v

Tie =

1 if x; belongs to cluster c,
0 otherwise.

v

How do we find good prototypes, and good assignments of data
vectors to prototypes?
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K-means

Assigning Data Vectors to Clusters

v

Suppose: we have good prototypes.

How do we assign data vectors to clusters?

Easy: assign data vectors to closest prototype!

For data vectors i = 1, ..., m, for prototypes c = 1, ..., K:

v

v

v

dic = |1xi — peel?
¢; = argmin dj.
C

1 if Ci = C,
Fie = \
0 otherwise.
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K-means
Finding Good Prototypes

» Suppose: we have good assignments of data vectors to
cluster.

» How do we find good prototypes?
» Easy: let the prototypes be the means of each cluster!

e = iy TicXi
¢ Z:n:] Tic
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K-means
Finding Good Prototypes and Assignments

» We are faced with a chicken-and-egg problem, since we do not
have good prototypes nor assignments to begin with.
Solution: iterate until prototypes and assignments stabilize.
Objective function:

v

v

m K
TR ) = riellxi — pel®

i=1 c=1

v

lterations:
R < argminJ(R, p)
R

p < argminJ (R, p)
n

Demonstration.

v
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K-means
Applications
» Summarization: replace data vector with cluster label.
» Lossy compression: store prototypes and cluster labels (vector
quantization).
» Image segmentation: e.g. cluster pixel colours in images.

Small patches, visually relevant features, and spectral clustering
improve results.
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K-means

Extensions

» Other distance measures.
E.g. cityblock, cosine, correlation, Hamming, kernels.

» K-mediods.
Use a data vector as the cluster prototype: makes sense when
means are either expensive or not well-defined.

» Mixture models, spectral clustering, hierarchical clustering.
Rest of course.
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K-means

Issues

» Local minima.
Different initializations of K-means can lead to different solutions.
Solution: Run multiple times and use best run.

» Empty clusters.
Solution: either drop empty clusters, or re-use them elsewhere.
» Finding an appropriate K.
Objective function is of no help: increasing K always decreases J.

m K

J(R, p) = Z Z Fiel|xi — pee|®

i=1 c=1

Solutions?

» Correlate clusterings with external data, e.g. additional labels.
» Minimum description length.
» Bayesian probabilistic approaches.
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Spectral Clustering

Stranger Clusters
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Spectral Clustering

Stranger Clusters

» For these clusters, the shape of the clusters is unimportant.
This rules out K-means or any prototype based model.

» What is important is similarity of data vectors to other data vectors
in the same cluster.
Similarities are propagated transitively.

X]NXzandXzNX3:>X1NX3

» This implies using a matrix of similarities between data vectors,
and algorithms operating on such similarity matrices.
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Spectral Clustering
Graph Partitioning Approaches

» We can formalize similarities between data points using graphs.

» Data items are vertices of the graph, and edges connect similar
data items.

» If similarities are graded, we can attach a weight W;; (similarity
score) to each edge ij instead.

» Clusters are highly connected components of the graph.
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Spectral Clustering

Normalized Cuts
» Let C and D be a partition of the vertices into two clusters.
» An obvious approach is to find C and D minimizing the cut:

cut(C,D) = Z Z Wi
ieC jeD
the total weight of edges between C and D (cut by the partition).

» This does not work well because it often finds single vertices for
one of the clusters.

[Shi and Malik 2000]
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Spectral Clustering
Normalized Cuts

» We can prevent singleton clusters by normalizing for the sizes of

the clusters in some way.
» The normalized cut is defined to be:
cut(C, D) cut(C, D)
assoc(C,V)  assoc(D,V)
where assoc(A, B) = Z Z Wi
i€A jeB

each fraction is the ratio of total weight to the other cluster versus
total weight of all edges originating from the cluster.

ncut(C, D) =
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Spectral Clustering

Normalized Cuts

» Finding the partition minimizing the normalized cut can be
expressed as a discrete optimization problem:

y y'Dy
where y is a vector with each entry corresponding to a vertex,
constrained to take on only the values {1, —b} for some » > 0, and
D is a diagnonal matrix

Di=) W
jev

» If we forget that entries of y can only take on values {1, —b}, and
allow y to be an arbitrary vector, the above is exactly the same
objective function for Laplacian Eigenmaps.
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Spectral Clustering

Normalized Cuts

» Laplacian Eigenmap:

y'(D—W)y

argmin
y'Dy

» A d dimensional embedding is obtained from the smallest d + 1
generalized eigenvectors of the system

(D — W)y = ADy

» The intuition is that these generalized eigenvectors are the modes
of vibrations of the system described by the graph (e.g. edges are
springs with varying stiffness and vertices are balls).

» If the data were clustered, the graph has densely connected
components, and the modes of vibration will be precisely the
clusters.
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Spectral Clustering

Normalized Cuts

v

Compute similarities and construct the W matrix of similarities.
Compute the diagonal matrix D.
Find the 2nd smallest generalized eigenvector of the system:

v

v

(D — W)y = \Dy

v

Find a value ¢ so that vertices i with y; > ¢ form a good cluster,
and likewise those with y; < c.
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Spectral Clustering

Normalized Cuts
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Spectral Clustering

Normalized Cuts
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Spectral Clustering

Normalized Cuts
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Spectral Clustering

A Second Algorithm

» Compute the W and D matrices.

» Find the eigenvectors corresponding to the K largest eigenvalues
of D-2WD~>. Form matrix ¥ whose columns are the eigenvectors.

> Normalize the rows: ¥; = Y;/(3; Y2)?.

» Perform K-means on the rows of Y.

» Assign x; to cluster c if the /'th row of Y is assigned to cluster c.

The eigensystem here is just a negated and rotated form of the

previous eigensystem (which is why we find the K largest eigenvectors
instead of smallest).

Vibration story: if clusters are well separated, then the smallest
eigenvalues are all 0, one for each cluster. Eigenvectors will be
rotationally invariant so clustering using all K eigenvectors better.

[Ng, Jordan and Weiss 2001]
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Mixture Models

Issues with K-means
» Overconfidence in assignment of data vectors to clusters.

1 -
05 o 05 1 15 2 4 05 o 05 1 15 2

» Did not take into account variability of clusters.

33/58



Mixture Models

Modelling Variability with Gaussians

» Gaussians are the most commonly encountered distributions in
probability and statistics.

N, 0 1 -
: = 20
(xv H, o ) \/ﬁe o

» Multidimensional Gaussians
N (x; 1, W) = [2m0| 220 T8 000

i Mean (centre) of the Gaussian.
¥ Width (variability) of the Gaussian in different directions.
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Mixture Models

Modelling Variability with Gaussians

» Instead of representing each cluster by only its prototype (mean),
we also represent variability in the cluster using multidimensional
Gaussians.

» What are good means and covariances of Gaussians, given
assignments of data vectors to clusters?

iy TieXi
fe = > i Tie
o, il )~ )"
ZZ"ZI Tic

» These optimal parameters are known as maximum likelihood
parameters.
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Mixture Models

Modelling Uncertainty in Cluster Assignments

» The probability of a data vector under a Gaussian:

1
V2T, |

Gives a measure of how likely is it that the data vector belongs to
the cluster.

» We can use this to give confidence weighted estimates of cluster
assignments:

o N(Xi; Hey \I’c)
S N (i ke, )

ri. = Probability that data vector i belongs to cluster c.

o3 (Ki—pe) T (xi—pae)

N(Xi; Hey \I/L) -

Tic
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Mixture Models

Iterative Algorithm

» Compute responsibility of clusters over data vectors:
_ PN (xis e, Vo)

Soh N (x5 ke, )

Tic

» Update parameters of Gaussians given responsibilities:

e = D ist FieXi
> it Tic
U, = D i Tie(Xi _mNC)(Xi - NC)T
> it Tie

» Update relative cluster sizes (mixing proportions):

er'nzl Tic

m

Pc =
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Mixture Models

Probabilistic View of Mixture Models

» A mixture model is a probabilistic model.

It defines a distribution over data vectors and cluster assignments.

» Probability of assigning x; to cluster c:

p(yi = c|p) = pe

» Probability of x; given it is in cluster c:

p(Xilyi = ¢, pe; Vo) = N (X35 pie, Ue)
» Joint probability over everything:

p(Xla”'7Xmay17"'7ym‘pvuv HH pC XHMC)
i=1c=1

C))H(yz:C)
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Mixture Models

Mixture Models as Generative Models

» Such a probabilistic model is generative—it describes a process
of generating data sets. Example:

R I R

el e h ]
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Mixture Models

Maximum Likelihood and the EM algorithm

» A generative model describes a process of generating data from a
parametrized probabilistic model.

Parameters —»

Generative
model

—» Data set

» Maximum likelihood is an approach to recovering parameters

given data.

Parameters <

Maximum
likelihood

<¢— Data set

» Straightforward (in principle): find parameters such that the
probability of generating the given data set is maximized.

» The Expectation-Maximization algorithm finds parameters that
locally maximizes the likelihood.
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Mixture Models

Applications, Issues, Extensions

» Mixture models can be applied wherever K-means is applied.

» Mixture models are also used in density estimation tasks.
» Mixture models are strictly more powerful than K-means.

» They can model a larger class of data sets.
» The search space is larger and can slow down convergence of
algorithm.

» Mixture models can be significantly extended within the framework
of probabilistic models.

» Extensions to the model: robust, nonparametric, non-Gaussian,
mixture of probabilistic PCAs.
» Improvements to the EM algorithm: MAP, variational Bayes, MCMC.

» Does not mean that K-means is to be replaced: K-means is
computationally simpler and faster.
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Hierarchical Clustering
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Hierarchical Clustering
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Hierarchical Clustering

Chips / Patients

Clinical data
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Hierarchical Clustering

Different approaches

v

Top-down decimative approach.

» Start with one big cluster.

» Recursively split each cluster (if advantageous).
Bottom-up agglomerative approach.

» Start with one cluster per data point.

» lteratively find two clusters to merge (if advantageous).

» Clusters found by finding pairs with maximum similarity.
Probabilistic approaches:

» Define a probabilistic model with a latent tree and learn the tree

structure by maximume-likelihood or other techniques.

The dominant approach is bottom-up: better search landscape,
more flexible algorithms.

v

A\

v
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Hierarchical Clustering
Linkage Algorithms
» |nput: data xy, ..., x,.
» Input: distance measure d(x, y).
» Input: distance combination:

d(C,D) =f(d(x,y) :x€ C,y € D)

» Initialize each data point in separate cluster:
Ci={xi}fori=1,...,m

» Forr=1,...,m—1:
» Find cluster pair:

C,D <+ argmind(C, D)
C#D

» Merge C and D: Remove C and D, add C U D.
[Duda & Hart 1973]
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Hierarchical Clustering

Distance Combinations in Linkage Algorithms
» Single (or minimum) linkage:
d(C,D)= min d(x,
(C,D) = min d(x,y)

» Complete (or maximum) linkage:

ACD) = gk, ()

» Average linkage:
1
d(C.D)=—— Y d(xy)

Pl ESep

» Others: mean, centroid, ward, weighted versions...
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Hierarchical Clustering

Distance Combinations in Linkage Algorithms
» Single (or minimum) linkage:

ACD) = Juiy d(x)
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Hierarchical Clustering

Distance Combinations in Linkage Algorithms
» Complete (or maximum) linkage:

d(C,D) = xerrclz;)éD d(x.)
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Hierarchical Clustering

Prescriptive Search Strategy

» Even given an objective function, clustering is often difficult due to
its combinatorial nature—there are too many ways to cluster data.

» The problem gets even harder if we need to determine the number
K of clusters in addition to the clustering.

» One way of thinking about hierarchical clustering is that it
produces a pretty good path, from m clusters to 1 cluster, along
which to search for a good K.

» This is prescriptive in that for a given K the hierarchical clustering
algorithm tells you the clustering to use.
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Hierarchical Clustering

Probabilistic Hierarchical Clustering
» Same framework as normal linkage algorithms.
» Use probabilistic models to define cluster distance:

p(CUD)

d(€.D) = ~log 15, D)

» A common model: Gaussian

p(C) = [ [2mw| 2o im0

xeC

» The Gaussian imposes a strong constraint on how it thinks
clusters should shape like.

» Clusters are merged if the merger produces a more Gaussian
looking cluster.

[Friedman 2003, Heller & Ghahramani 2005]
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Hierarchical Clustering

Probabilistic Hierarchical Clustering

v

Different interpretation: mixture model.

Model data set with a (standard) mixture model.

Start with each data item x; in its own cluster C; = {x;}.
Fort=1,...,m—1:

» Find pair of clusters such that the likelihood of the data is maximum
after merger. Equivalent to finding

v

v

v

cCubD
C,D < argmax log M
czp  p(C)p(D)

p(CUD)

> Itlog i,y

> 0 merge C and D, else stop.
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Hierarchical Clustering
Probabilistic Hierarchical Clustering

» [Friedman 2003] assumes that a partially constructed tree
corresponds to a mixture model with each subtree being a mixture

T A, L

» [Heller & Ghahramani 2005] assumes that each subtree itself
corresponds to a mixture model.

ABCD
A BIC D
AIBIC D
A BICID
AIBICID
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Hierarchical Clustering

Issues, Applications

» Summarization and compression.

» Hierarchical clustering is very popular in bioinformatics.

» Prescribes a particular search strategy for mixture models: good
but need not be best.

» Can be used to initialize mixture models.
» But computational cost is O(m?) as compared to O(Kml) for mixture
models, I is number of iterations.
» Hierarchical clustering is also used to discover and visualize
hierarchical (tree) structure in data.

» But the algorithms we described do not optimize any objective
function for quality of tree.

» Alternatives exist: coalescents, Dirichlet diffusion trees.
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Baltic] Latvian

Slavic] Polish

ic] Slovene 5

Slavic] Serbian-Croatian
Ukrainian

ranian F'ersl

ranian Kurdlsh (Central)
ndic] Kashmiri

ranian] Ossetic

dic] Nepali

ndic| Sinhala

ndic| Maithili

ndic| Marathi

ndic|] Bengal

B gali
ranian] Pashto
ndic] _anéabl
ndic] Hindi
—[Armenian] Armenian (Western)
Eastern)

[Armenian|

Armenian

25

0.5

55/58



Phylolinguistics

\UCTILIV] WUIILHDII
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Discussion

» A quick overview of some popular approaches to clustering.

v

Applications:
» Structure discovery, segmentation;
» Summarization, compression;
» Density estimation, probabilistic models.
Dealing with high dimensions:
» Mixtures of probabilistic PCAs, and factor analyzers.
» Perform dimensionality reduction prior to clustering.
Dealing with large numbers of data vectors:
» Construct efficient data structures, e.g. KD-trees.
» Subsample; cluster; re-cluster.
Measuring clustering quality: indices exist, but beware!

» Clustering is subjective; there is no right answer.
» Clustering should be evaluated based on how much it helped
achieve your goal.

v

v

v
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