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3: Choose Your Own Adventure
You are a novice learning the ropes in analyzing and modelling complex data.
This morning you have just added clustering techniques into your arsenal of
weapons to dissect and analyze data.

This afternoon you would like to master them well by implementing and
applying them to simple and real world datasets.

Code and data package [I4].

The Components of your adventures:
I Implement the clustering algorithms [I5];
I Prepare your datasets [I5];
I Example Adventures applying clustering algorithms to your datasets [I6].

You do not need to do these in linear order, and you are not expected to do
everything due to time constraints. You are encouraged to band together in
your endeavours to help each other. Lloyd (a tutor) and I will be on hand to
answer any questions. Good luck!
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4: Code and Data Package

The code and data package can be obtained from my teaching webpage:

Ihttp://www.gatsby.ucl.ac.uk/∼ywteh/teaching/teaching.html

Run initpath in the main directory in MATLAB. It will add the subdirectories
utilities and datasets into your MATLAB path.
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5: Components of Adventures

Your weapons of mass analysis:
I K-means [I16];
I Spectral clustering [I24];
I Linkage algorithms [I28];
I Mixture models [I40].

Your targets of analysis:
I Create your own 2D dataset [I7];
I Cancer of Golub [I9];
I You are encouraged to try tackling your own dataset!
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6: Example Adventures

I Seeing K-means getting stuck in local optima [I31];
I Varying the number of clusters in K-means [I32];
I Applying K-means to Cancer of Golub [I33];
I Exploring different linkage algorithms [I37];
I Try out spectral clustering on small datasets [I39];
I Explore overfitting with mixtures of Gaussians [I40].
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7: Practice Datasets

Rather than starting with large and com-
plicated datasets, it is better to start with
small and simple datasets for which you
know the true answer and can debug
your code easily.

You can create such a dataset using the
getpoints command. Try:

X = getpoints;
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Left click to add points; right click to exit

Returned X stores a 2D point in each row.

Some examples [I8] of practice datasets.
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8: Example Practice Datasets
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9: Cancer of Golub

The Cancer of Golub is an old microarray dataset of gene expression levels
among 72 leukemia patients. The paper, which was published in Science
Magazine on 15 Oct 1999, proposed a number of data analysis techniques to
discover and predict cancer subtypes using the expression levels of many
genes. Alas times change, and the proposed data analysis tools are a little
naïve by today’s standards.

Your goal is to use clustering techniques to discover cancer subtypes, and to
use logistic regression and classification techniques to predict cancer
subtypes.

I The Golub et al site
[Ihttp://www.broad.mit.edu/cgi-bin/cancer/publications
/pub_paper.cgi?mode=view&paper_id=43];

I The Golub data [I10];
I Preparing [I11] the data;
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10: Cancer of Golub: Data

In the software package, under datasets directory you’ll find the
golub.mat file contain the data. The variables in the file are:

numgenes Number of genes (7129)
numtrain Number of patients in training set (38)
numtest Number of patients in test set (34)
traindata Gene expression levels in training set (38x7129)
testdata Gene expression levels in test set (34x7129)
genedesciption Descriptions of genes (7129 cell)
geneid Unique ID for genes (7129 cell)

You need to preprocess [I11] the data first.
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11: Cancer of Golub: Data Preparation

Microarray datasets are well-known to require quite a bit of normalization
before they can be used due to the technology involved. Normalization cleans
up noise specific to microarray data, conditions data so that analyses are not
dominated by a few (outlying) data points, and sometimes extracts parts of the
data that is informative to the task at hand.

We will perform some simple normalizations:
1. Subtract the median expression level for each patient; details [I12]
2. Normalize for differential binds of probes for each gene; details [I13]
3. Take the logarithm of expression levels; details [I13]
4. Normalize again so that we have mean 0 and variance 1. details [I14]

Want to skip this step? Normalization code [I15]
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12: Cancer of Golub: Data Preparation 1
Microarray uses an imaging technology to determine expression levels of
genes. Roughly speaking, a microchip is tiled with a large number of probes,
each probe attracts a small chunk of cDNA or cRNA corresponding to a gene,
these chunks have a fluorescent dye attached, and an imaging technology is
used to determine the intensity of the dye at each location (pixel) of the
microarray. The more highly expressed a gene is, the more cDNA or cRNA
chunks are available to attach to probes, and the brighter the corresponding
pixel.

The gene expression levels of different patients are imaged on different
microarrays. The overall intensity of each microarray varies due to different
experimental conditions and different optical exposure lengths.

The first step is to normalize intensity levels across patients. We subtract
median as this is more stably estimated than the mean.

data = [traindata;testdata];
mm = median(data,2);
data = data-mm(:,ones(1,numgenes));
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13: Cancer of Golub: Data Preparation 2
Different probes have widely varying binding affinities. The second step is to
normalize for this. First we subtract the minimum values of intensities (to
make the intensities positive again):

nn = numtrain+numtest;
mm = min(data,[],1);
data = data-mm(ones(1,nn),:);

Then we add in a little fudge factor to get rid of zeroes, and take logs:

ss = sort(data);
pp = ss(4,:);
data = pp(ones(1,nn),:)+data;
data = log(data);
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14: Cancer of Golub: Data Preparation 3
Finally we have to normalize each gene to have zero mean and variance 1
across patients:

mm = mean(data,1);
ss = std(data,[],1);
data = (data - mm(ones(1,nn),:))./ss(ones(1,nn),:);

The normalized training and test sets are:

trainnormd = data(1:numtrain,:);
testnormd = data(numtrain+(1:numtest),:);

Figures are shown with command
imagesc(data(:,1000:1010));colorbar;
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15: Cancer of Golub: Normalization Code

% normalize data
data = [traindata;testdata]; % full dataset
nn = numtrain+numtest;
mm = median(data,2); % subtract patient median
data = data-mm(:,ones(1,numgenes));
mm = min(data,[],1); % subtract gene minimum
data = data-mm(ones(1,nn),:);
ss = sort(data);
pp = ss(4,:); % use gene specific scale
data = pp(ones(1,nn),:)+data;
data = log(data); % log expression levels
mm = mean(data,1); % mean 0 variance 1
ss = std(data,[],1);
data = (data - mm(ones(1,nn),:))./ss(ones(1,nn),:);
trainnormd = data(1:numtrain,:);
testnormd = data(numtrain+(1:numtest),:);

Back to Cancer of Golub main page [I9]
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16: K-means
K-means is an iterative algorithm to minimize the distortion function:

J(R,µ) =

m∑
i=1

K∑
c=1

ric‖xi − µc‖2

It iterates between updating R and updating µ:

R⇐ argmin
R

J(R,µ)

µ⇐ argmin
µ

J(R,µ)

Write a MATLAB function implementing K-means. Such a function will have to
contain 4 parts: Details [I17]

I Initialization for R and µ;
I Iterative updates for R and µ;
I Test for convergence of algorithm;
I Special clause for when a cluster becomes empty due to an update.
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17: K-means: Implementation Details
I Initialization for R and µ:

Easiest approach is to randomly assign each data item one of the K
clusters (thus getting R), and computing the mean of each cluster based
on this initial assignment. Details [I18]

I Iterative updates for R and µ:
Each iteration first runs through the data items, assigning it to the cluster
whose mean is closest, then runs through the clusters, computing a new
mean based on the data items assigned to it. Details [I19]

I Test for convergence of algorithm:
K-means converges once the assignment of data items to clusters in the
iteration above does not change the cluster assignments. Details [I20]

I Special clause for when a cluster becomes empty due to an update:
Once in a while a cluster becomes emptied because all the data items in
it are assigned to other clusters. Easiest approach to dealing with this is
to “steal” a data item at random and force it to be assigned to this cluster.
Details [I21]

Want to skip implementing K-means? K-means code [I22]
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18: K-means: Initialization

Easiest approach is to randomly assign each data item one of the K clusters
(thus getting R), and computing the mean of each cluster based on this initial
assignment.

mm = size(X,1); % number of data items
dd = size(X,2); % number of dimensions of data
cc = 1+rem(randperm(mm),K); % assign randomly to clusters
mu = zeros(K,dd); % initialize means of clusters
for kk = 1:K
mu(kk,:) = mean(X(cc==kk,:),1);

end

Why use 1+rem(randperm(mm),K)? [I23]
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19: K-means: Updates
Each iteration first runs through the data items, finding the cluster whose
mean is the closest and assigning to it, then runs through the clusters,
computing a new mean based on the data items assigned to it.

for ii = 1:mm % iterate over data items
dist = zeros(K,1);
for kk = 1:K

% squared distance
dist(kk) = sum((X(ii,:)-mu(kk,:)).^2);

end
% find minimum distance cluster and assign item to it
[dist kk] = min(dist);
cc(ii) = kk;

end
for kk = 1:K % iterate over clusters to update means
mu(kk,:) = mean(X(cc==kk,:),1);

end
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20: K-means: Convergence Test

K-means converges once the assignment of data items to clusters in the
iteration above does not change the cluster assignments.

At the start of each iteration, store a copy of the previous assignment of data
items to clusters:

oldcc = cc;

At the end of each iteration compare the old copy to the new assignments:

if all(oldcc==cc)
converged = 1;

end
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21: K-means: Handling Empty Clusters

Once in a while a cluster becomes emptied because all the data items in it are
assigned to other clusters. Easiest approach to dealing with this is to “steal” a
data item at random and force it to be assigned to this cluster.

% make sure each cluster gets at least one data item
% using randperm guarantees at least one item per cluster
ii = randperm(mm);
for kk = 1:K
if all(cc~=kk) % is empty

cc(ii(kk)) = kk; % assign random item to cluster
end

end
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22: K-means: Code

function [cc,mu] = kmeans(X,K)

Initialization code [I18]

converged = 0;
while (~converged)
oldcc = cc; % copy of assignments

Update R code [I19]

Handle Empty Clusters code [I21]

Update µ code [I19]

if all(oldcc==cc)
converged = 1;

end
end
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23: K-means: Why use randperm?

cc = 1+rem(randperm(mm),K)

randperm(m) returns a random ordering of the numbers 1, . . . ,m.
1+rem(...,K) then goes through the data items in the random ordering,
assigning each to cluster 1, 2, . . . ,K − 1,K, 1, 2, . . . and so on. This process is
often seen in classrooms when tutors want to break the class into equally
sized but random groups: each student has to shout out 1, 2, . . . in turn and is
assigned to the group s/he shouted out.

We used this, rather than say randomly assigning each data item to one of the
K clusters at random, because we with this each cluster will get an (almost)
equal number of clusters, and we are guaranteed (so long as K ≤ m) that
none of the clusters are empty.
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24: Spectral Clustering

You will need to have implemented K-means [I16].

I We will implement the Ng et al spectral clustering method, and try it on a
number of self-created datasets [I7].

I From the lecture, the steps are:
I Compute the W and D matrices [I25];
I Find the eigenvectors corresponding to the K largest eigenvalues of

D− 1
2 WD− 1

2 [I26];
I Form matrix Y whose columns are the eigenvectors [I26].
I Normalize the rows: Ỹij = Yij/(

∑
j Y2

ij)
1
2 [I26].

I Perform K-means on the rows of Ỹ [I26].
I Assign xi to cluster c if the i’th row of Ỹ is assigned to cluster c.

I Write a function implementing the above, with inputs and outputs:
function [cc,mu,Y,W] = speclust(X,K,sigma);
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25: Spectral Clustering: Step 1

I For simplicity we will use the RBF kernel as a similarity measure:
[mm dd] = size(X);
% compute distances
nx = sum(X.^2,2);
D = nx(:,ones(1,mm)) + nx(:,ones(1,mm))’ - 2*X*X’;
% similarity (kernel) matrix
W = exp(-D/(2*sigma.^2));
W = W - diag(diag(W)); % ignore self-similarity

How did we compute the distances? [I27]
I Compute D and normalize W by it:
D = diag(sum(W,2).^-.5);
N = D*W*D;
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26: Spectral Clustering: Steps 2,3,4

I Solve the eigensystem and find K largest eigenvectors:
[Y Lambda] = eig(N);
[Lambda ii] = sort(diag(Lambda),1,’descend’);
Y = Y(:,ii(1:K));

I Form the matrix of eigenvectors and normalize again:
ss = sum(Y.^2,2).^-.5;
Y = Y.*ss(:,ones(1,K));

I Finally perform K-means:
[cc mu] = kmeans(Y,K);
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27: Spectral Clustering: Computing Distances

nx = sum(X.^2,2);
D = nx(:,ones(1,mm)) + nx(:,ones(1,mm))’ - 2*X*X’;

I The squared distance between xi and xj can be written as:

‖xi − xj‖2 = ‖xi‖2 + ‖xj‖2 − 2x>i xj

nx computes the squared lengths ‖xi‖2 and gives us the first two terms
(notice the transpose on the second term). The third term is computed in
the i, j entry of 2*X*X’.

27 / 40



28: Linkage Algorithms

Linkage algorithms are hierarchical clustering algorithms that construct a
hierarchy of clusters in a bottom-up fashion.

They start with each data item in its own cluster, and iteratively picks two
(most similar) clusters to merge. The algorithm has a few important
components:

I Compute distances between pairs of data items;
I Initialize all data items in their own clusters;
I Iteratively: find the most similar pair of clusters, and;
I Merge them.

The linkage algorithms are more involved to implement. If you feel up to the
challenge, more details [I29] and pseudocode [I30] are provided to help
you. If not, avglink.m in the provided software package implements average
linkage. You can explore using different distance metrics or different distance
combination techniques instead, or applying average linkage to datasets.
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29: Linkage Algorithms: Details
The main idea in writing efficient code for linkage algorithms is to maintain a
list of the current clusters, and a priority queue of pairs of clusters prioritized
by similarity.

For efficiency, the distances between pairs of data items can be computed in
an initial phase and stored in a matrix to be accessed later.

Since each iteration merges two clusters, and we start with m data items, there
will be a total of 2m− 1 clusters throughout the computation history (there are
m− 1 total iterations, each iteration creates a new cluster by merging two).
We can label the list of clusters as 1, . . . ,m, . . . , 2m− 1, with 1, . . . ,m
corresponding to the m data items and m + 1, . . . , 2m− 1 in order of creation.

Useful outputs of the algorithm are:
I For each cluster i = 1, . . . , 2m− 2 except the root the index pi of its parent;
I For each cluster i = m + 1, . . . , 2m− 1, the indices {ci1, ci2} of its children;
I For each cluster i = m + 1, . . . , 2m− 1, the similarity si between its

children.
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30: Linkage Algorithms: Pseudocode

I Initialize list C of clusters with each data item in its own;
I Initialize queue Q with all m(m− 1)/2 pairs of clusters, prioritized by

similarity;
I While Q not empty:

I Pick most similar pair of clusters off Q;
I If both clusters are in C this pair will be merged:

I Remove this pair from Q;
I Remove both clusters from C, and add the newly merged cluster to C;
I Add to Q pairs of clusters consisting of this merged cluster and another cluster

from C;
I Otherwise at least one cluster in pair is not in C:

I Remove this pair from Q;
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31: Local Optimal in K-means

You will need to have implemented K-means [I16].

I Once you have K-means working, try it multiple times on the same simple
dataset.

I Does it get to the same solution every time?
I Try increasing K to be more than the number of clusters you think it

should use. Does it get to the same solution every time? Does it “break”
some of the clusters into smaller clusters differently each time?

I You can also try getting local optima behaviour by creating a harder
dataset, e.g. the strange stringy ones used for spectral clustering.
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32: Varying K in K-means

You will need to have implemented K-means [I16].

I Implement a function that computes the objective function J in K-means.
I Try K-means on the same dataset with varying numbers of clusters K.
I Plot the J values obtained at convergence as a function of K.
I Does it go down towards 0 as K becomes larger?
I Does it wriggle up and down a little? This is due to local optima in

K-means. Try running K-means multiple times for each K, and using the
best run (in terms of the lowest J value). Does it wriggle now? It should
wriggle less.
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33: K-means on Cancer of Golub
You will need to have prepared the Cancer of Golub data [I9] and
implemented K-means [I16].

I The major subtypes of leukemia in the dataset are ALL and AML. We will
first try to use K-means to discover this distinction. We extract this
distinction from classes in golub.mat:
cc = cellfun(@(s)strcmp(’ALL’,s(1:3)),classes(:,2));
traincc = cc(1:numtrain);
testcc = cc(1:numtest);

I Let us first try K-means with K = 2:
cc = kmeans(trainnormd,2);

I Compare the output cc to the desired outcome traincc. Do they look
similar?

I Try K-means a few more times. The initialization is random so it should
produce different (but undesired) answers each time.

I Perhaps K = 2 is too severe, try K = 3, 4, 5 and see if you can get
combinations of clusters to correspond to the ALL/AML distinction.

I What is going wrong? [I34]
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34: K-means on Cancer of Golub

I What is going wrong? Recall that we have 7129 genes. Most of these
genes are housekeeping genes that are functioning normally even in the
leukemia samples. Only a relatively small number of genes will be
affected by leukemia. The issue: the distances between patient samples
are getting screwed up by the many irrelevant genes.

I One simple approach is to clean up the dataset by picking out the relevant
genes, and clustering just based on them. This is called feature selection.

I But it seems unlikely that we will be able to pick out just the right genes to
allow us to cluster properly, since there are many distinctions (further
subtypes, other associated diseases, different patient characteristics like
gender, weight, different laboratory conditions) that can potentially affect
gene expression level. What to do? [I35]
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35: K-means on Cancer of Golub

I Since our aim is to hone your data analysis skills, let us cheat a bit so that
we can proceed further with clustering. Included in golub.mat is a
variable inforder which orders the genes by informativeness to the
ALL/AML distinction.

I Are you interested in how to estimate informativeness? [I36]
I Try using the first 100 informative genes to cluster:
X = trainnormd(:,inforder(1:100));
cc = kmeans(X,2);

Does it work now? You can visualize the normalized gene expression
profiles with imagesc(X,[-3 3]).

I Try with varying numbers of genes up to the maximum (7129). When
does this break down?
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36: K-means on Cancer of Golub
I We can use logistic regression or some other classification techniques to

measure informativeness of individual genes to the ALL/AML distinction.
I We simply learn a classifier to predict the class distinctions from the

expression levels of just that individual gene.
I We do this for each gene, and measure the informativeness of a gene in

terms of the accuracy of the classifier. This gives the inforder ordering.
I A simpler and more naïve method is to measure informativeness in terms

of how “well separated” the expression levels of that gene are among
patients with ALL and patients with AML. If µ1, µ2 are the mean
expression levels of patients with ALL and AML subtypes, and σ1, σ2 are
similarly for standard deviations, a measure of informativeness is:

|µ1 − µ2|
σ1 + σ2

You can try this ordering instead of inforder.
I An interesting thing to try is to find genes that are most informative of

other distinctions (e.g. male vs female or the B-type vs T-type distinction
among ALL types), and to see if these produce nice clusters as well.
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37: Other Linkage Algorithms
I It is very simple to edit avglink.m to produce min

and max linkage. Copy avglink.m and rename the
copies minlink.m and maxlink.m, and make the
desired changes.

I Try the various linkage algorithms on various datasets
(some examples on right) created using
getpoints.m [I7].

I You can analyze the results of the linkage algorithms
using plotlinkage.m. The command
plotlinkage(X,C,K) shows the flat clusterings
obtained with 2, . . . ,K clusters if we cut the tree at
different levels. X is dataset, C is output of the linkage
algorithms, and K is maximum number of clusters.

I Do you see qualitative differences between the
different linkage algorithms?

More varieties of linkage algorithms [I38].

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

!1 0 1 2 3 4 5 6
!1

!0.5

0

0.5

1

1.5

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

37 / 40



38: Other Linkage Algorithms
Other avenues of extension to linkage algorithms are to
change the distance metrics on data items and on
clusters.

I Mahanalobis distance is Euclidean distance where
different directions are weighted differently:

d(x, y) = (x− y)>Σ−1(x− y)

where Σ is a positive definite matrix.
I Distances induced by Lp norms

d(x, y) =
(∑

j |xj − yj|p
)1/p

I Distances between clusters induced by probabilistic
models

d(C,D) = − log
P(C ∪ D)

P(C)P(D)
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39: Trying out Spectral Clustering
You will need to have implemented K-means [I16] and
spectral clustering [I24].

I Try out spectral clustering on a number of datasets you
create yourself. Some examples are shown on right.
X = getpoints;
[cc,mu,Y,W] = speclust(X,K,sigma);

I You can plot results of clustering using plotclusters:
plotcluster(X,cc)

K is the number of clusters, while σ is the length scale: it
describes at what scale are data items considered similar.

I Try various values of K and σ. Describe how the result of
the clustering algorithm depends on both.

I Unfortunately it would be way too hard to implement a
spectral clustering method that can work on even small
images in 3 hours! Check out
[Ihttp://www.cis.upenn.edu/∼jshi/software].
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40: Mixture of Gaussians Demo

I You can try out mixtures of Gaussians code I included as file mog.m.
I There is a demo demo_mog.m which lets you create a dataset then runs

a mixture of Gaussians on it.
I You can explore issues of overfitting in mixtures of Gaussians.
I Create a dataset, and run the demo with various values of K.
I Looks at the results of the clustering, and see if they look reasonable.
I As you increase K do you see if the log likelihood increases, even if the

clustering quality (subjectively) decreases?
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