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Supervised Learning: Nonparametric Methods

Determining Model Size and Parameters



Model complexity

Which size of the tree is optimal?

Can grow tree until every leaf node contains only 1 original observation.
Clearly one should stop before. But where?

Example: Pima Indians Dataset.

The subjects were women who were at least 21 years old, of Pima Indian heritage and

living near Phoenix, Arizona. They were tested for diabetes according to World Health
Organisation criteria.

The variables measured were the number of pregnancies (npreg), the plasma glucose
concentration in an oral glucose tolerance test (glu), the diastolic blood pressure in
mmHg (bp), the triceps skin fold thickness in mm(skin), the body mass index(bbi), the
diabetes pedigree function (ped), and the age (age).
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library (rpart)
library (MASS)
data (Pima.tr)
str(Pima.tr)
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> rp <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-81])
> rp
n= 200

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 200 68 No (0.66000000 0.34000000)

2) glu< 123.5 109 15 No (0.86238532 0.13761468)
4) age< 28.5 74 4 No (0.94594595 0.05405405) ~«
5) age>=28.5 35 11 No (0.68571429 0.31428571)

10) glu< 90 9 0 No (1.00000000 0.00000000) =

11) glu>=90 26 11 No (0.57692308 0.42307692)
22) bp>=68 19 6 No (0.68421053 0.31578947)
23) bp< 68 7 2 Yes (0.28571429 0.71428571)

3) glu>=123.5 91 38 Yes (0.41758242 0.58241758)

6) ped< 0.3095 35 12 No (0.65714286 0.34285714)
12) glu< 1le6 27 6 No (0.77777778 0.22222222) %
13) glu>=le6 8 2 Yes (0.25000000 0.75000000) =

)
)

*

*

7) ped>=0.3095 56 15 Yes (0.26785714 0.73214286
14) bmi< 28.65 11 3 No (0.72727273 0.272727277
15) bmi>=28.65 45 7 Yes (0.15555556 0.84444444)

*



Two possible trees.

> rpl <- rpart(Pima.tr[,8] ~
> plot (rpl);text (rpl)

> rp2 <— rpart (Pima.tr[,8] ~

> plot (rp2);text (rp2)
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Model Complexity

What influence has the size of the tree on predictive performance?

» The larger the tree is (the more final leaf nodes), the better is the
prediction on the training samples.

» However, performance on new data / test data is deteriorating —in
general— after a certain complexity (size) of the tree is surpassed.

Want to find the optimal complexity / tree size, giving best predictive
performance for new (unseen) data.



Training and test error rate

Let L(Y,Y) be a loss function that measures the loss when observing ¥ under
a predition Y.

» For regression trees,

» For classification trees



There are two important error rates, when using observations
(X1, Y1), ..., (Xy, ¥,) and a predictor ¥ = Y(x). The fitted values at the n
observations are Y; := Y(X;).

» Training error rate R (or apparent error rate) is the loss for the training
sample,

Rtmin — n_l ZL(YH?J
i—=1

» True error is the expected error rate/risk for new data (X, 7Y)
Riesr = E(L(Ya ?))7

where the expectation is with respect to drawing new random pairs (X, Y)
and using the predictor Y = Y(X) at the newly observed X.



Cross-Validation

Suppose we had
» training data (X;,Y;),i=1,...,n
» and a separate set of test data (X, Y;),j = 1,..., n..
One possibility of estimating the true error rate is to
» fit the predictor ¥ (a tree here) on the training data and then

» evaluate the error rate on the test data (which have not been used for
fitting of the tree),

Ntest

Rtest — n;slt ZL(?p ?<)~(J))
j=1

Disadvantage: if we have n,; additional samples, we could have used test
data to get a larger training set and thus a better predictor.



Leave-one out cross-validation (LOO-CV)

Foralli=1,...,n:
» fit the tree T7(—9 by using all n observations except the i-th observation.
» compute prediction Y~ (X;) by running X; down this tree.

Compute the LOO-CV estimate of generalization error as

Rtest — n_l Z(?(_Z) (Xl) - Yi)2
i=1

for regression and mis-classification error or entropy criterion for classification.
LOO-CV is a nearly unbiased estimate of generalization error. It can be
expensive to compute as the tree (or other predictor) needs to be
re-computed n times.



Example: Boston Housing Data
Again try to predict median house prices by using for simplicity just a single
predictor variable, (logarithm of) crime rate.

RMS = 590.25
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Red line is fitted curve Y (x) for a tree of depth 1 (a stump). Blue vertical bar
corresponds to residual of i = 54th observation with a squared residual of
590. Observation i was used to fit Y here !



Do the same fit but leave-out observation i = 54.

RMS = 857.53
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Red line is fitted curve Y(—>%(x). Blue vertical bar corresponds to LOO-CV
residual of i = 54th observation with a squared residual of 590. Observation
i = 54 was now NOT used to fit Y(—3* herel!

Repeatforalli=1,...,n.



V-fold cross-validation

|s computationally cheaper than LOO-CV and yields comparable resulis.
V-fold cross-validation works by splitting the dataset randomly into V sets of
equal size Sy, ..., Sy, sothat S, NS, = 0 forall k # k" and U,S, = {1,...,n}.
Foreachv=1,...,V

» compute the predictor (tree) using samples {1,...,n} \ S,.

» predict the response for samples in set S, with the found predictor

» record the test error for the set S,.

Average the test error over all V sets.
Typical choices are V =5 or V = 10.



Example: Boston Housing Data
Assess now a whole block S, of about /10 of all » observations (V=10 fold
CV).

RMS = 76.31
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Red line is fitted curve Y (x) for a tree of depth 1 (a stump). Blue vertical bar
corresponds to residuals of ith observation, where i is in the to be assessed
block v.



Do the same fit but leave-out observation the whole block of observations S,.

RMS = 116.44
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Red line is fitted curve without using observations in block v. Blue vertical bar
corresponds to LOO-CV residuals.

Repeat for all V = 10 blocks of all observations, each containing about n/10 of
all samples.



Choosing the optimal tree

We would like to choose the tree that minimizes the true error rate. We dont
have the test error, but can use CV-approximation R,.,; instead and choose the
optimal tree T* as

T* = argmin, R,.(T).

This would require searching across all possible trees T and is clearly
infeasible.

With CV, we can however search for the optimal value of one-dimensional
so-called ‘tuning’ parameter. Here, we use tuning parameter « for tree pruning
and find o by CV.



Pruning

Let R,..(T) be the training error as a function of tree T (squared error on the
training set for regression, mis-classification or entropy for classification).
Minimizing R;..,(T) leads to a tree with maximal size. Minimize instead

(*) Rtmin(T> + « - SiZG(T),

where the size of a tree T is measured by the number of leaf nodes.

» Either grow the tree from scratch and stop once the criterion (x) starts to
increase.

» Or first grow the full tree and start to delete nodes (starting at the leaf
nodes), until the criterion (x) starts to increase.

Second option is preferred as the choice of tree is less sensitive to “wrong”
choices of splitpoints and variables to split on in the first stages of tree fitting.



Choice of a

Which value of o should be chosen ? Let 7, for o« € R™ be the tree that is the
minimizer of

T, = argmin, {R,.in(T) + « - size(T)}.
Want to pick a* such that the resulting tree has minimal test error:
Tor = argming . cp+ Riew(Ta).

where we compute R, using CV.
Its best to visualize R, (T, ) as a function of a.



Can plot the generalization error R, of the optimal tree under criterion
Riain(T) + v - size(T)

as a function of « and pick the value of a which yields the smallest estimate of
the generalization error.
For Pima Indians example:
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Bias-Variance Tradeoff

Suppose
y =f"(x) + N(0,0?)

Given a dataset (X, Y), train a model f(x; X, Y). How did we do, averaging over
datasets?

Exy[(y —f(x;X,Y))?]

= (f(x) —f"(x))* bias®
+ Ex y[(f(x) — f(x; X, Y))?] variance
F £ W) noise

where f(x) = Ex y|[f(x; X, Y)] is average prediction (averaged over datasets).



Choosing Model Complexity
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The training error will always decrease if the model is made more complex
(the tree grown larger). The test error will have reach a minimum at a certain
model complexity (tree size) and grow if the tree is made either larger or
smaller.



Pitfalls of using the training error rate

How deceptive can the training error be ?
» Assume we have n data samples (X;,7Y;),...,(X,,Y,) and

YlNN(O,l)

so there is no information about Y in the predictor variables X.

» Assume we take a tree with size d (the size is the number of leaf nodes),
which is chosen independently of Y, so that each leaf node contains the
same number of samples.

What is the expected training (apparent) error rate, as a function of tree size
d?



Assume
» In total d leaf nodes.
> In each final leaf node, there are n/d samples ji, ..., j,/a-
The value of 3, in each leaf node k is simply the mean Y, over all observations

In node k.
The test error rate in each leaf node k is

Riess = E((Y = V1)?) = E((Y — E(Y))?) + E((Vx — E(Y))*) = 1 + 7.

Averaged over independent realizations of the new test data, the expected
test error rate is .
E(Rtest) =1+ E(Yk)



The training error in each node is

d jn/d d jn/d )
_ Vv — (= L 2\ _ Vv
Rtrain — Z Z(Yl Yk) — (n Z(Yl E(Y>) ) Yk‘
J1 J1

The expected value of the training error rate is

E(Ryain) = 1 — E(T3).



The mean Y, has a distribution ~ N (0,d/n). Then 317,% ~ x7 and E(Y,%) =d/n.
The expected value of the test error rate is thus

E(Rtest) — 1 —l— d/n
The expected value of the training error rate is

E<Rtmin) =1- d/l’l

In this extreme example, choosing the number of leaf nodes according to the
» training error rate leads you to choose maximal tree size d = n,
» test error rate leads you choose minimal tree size d = 0.



