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Supervised Learning: Nonparametric Methods
Nearest Neighbours and Prototype Methods



kK-Nearest Neighbours

» Nearest neighbours are simple and essentially model-free methods for
classification.

» These methods are not very useful for understanding relationships
between attributes and class predictions.

» Makes weaker modelling assumptions than e.g. LDA, Naive Bayes and
logistic regression.

» As black box classification methods however, they are often reasonable
performers on real life problems (at least in lower-dimensional data) and
provide a good benchmark as they are trivial to set up.



Example: Spam dataset in 2 dimensions. Using first 2 principal components
of the predictor variables X for illustration. Plotted are 50 emails (red: spam,
black: no spam).

Task: predict category spam/no-spam for 3 new emails at the green crosses.
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True categories.
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Suppose again that the training data are (X;,Y;) fori =1,...,n, where as
usual X; e RPand ¥; € {1,...,K}.

Assuming X € R?, Euclidean distance is often used to measure distance
d(X,X') = ||X — X'||. The nearest neighbours of a point X is the set
ney(X) C {1,...,n} such that

max d(X,X;) < min d(X,X;).
JjEner(X) i€{l1,...,n}\ner(X)

Given a new X, we find the k observations in the training data ‘closest’ to X
and then classify using a majority vote amongst the £ neighbours (ties are
broken at random — choose k odd preferably).

Y(X) = argmax, |{j € nei(X):Y; = 1}|.



Application to Handwritten Character Recognition

Objective: recognizing isolated (i.e., non-overlapping) digits, as in ZIP or
postal codes.

trueclass =7 trugclass =2 trueclass =1

trueclass =0 trueclass =4 true class =1

Een

true class = 4 trugclass =9 trueclazs =5

Training and Test Data: The MNIST15 dataset contains 60,000 training

images and 10,000 test images of the digits 0 to 9, as written by various
people.

Details: Images are 28 x28 and have grayscale values in the range 0:255.




Application to Handwritten Character Recognition

Results: 1-NN obtains a misclassification rate of only 3.09% on the test data

using the Hamming distance!

This problem might look easy to you but remember that we do not use any
spatial information. The K-NN classifier would obtain exactly the same results
if the training and test data were permuted as it is invariant to the order of the

features.
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Asymptotic Performance of 1 NN

Let (X;, Y:)._, be some training data where X; ¢ R” and ¥; € {1,2,...,K}.
We define
YBayes (X) = argmax mf; (x)

1e{1,....K}
and
yinN (x) = y (nearest neigbour of x) .
Define
RBayes = KE L(y # ?Bayes (x))];
Rinn = E[I(y#yinn(x))],

then, as n — oo, we have the following powerful result

2
RBayes < RiNN < 2RBayes — HRBayes-



Despite its simplicity, k-NN is often a very good classifiers to use in a
wide range of classification problems. At the very least, it is a good
‘baseline’ against which classifiers can be compared.

This method allows for extremely flexible (nonparametric) decision
boundaries.

Due to the importance of distance to k-NN, it is important to standardise
the data before use and find a suitable metric.

It is also important to determine an appropriate «.



Influence of k on Decision Boundaries

» k determines the complexity of the decision boundary.
» For k = 1, we have no training error but are exposed to overfitting.

» Increasing k yields smoother predictions, since we average over more
data.

» For k = n, we predict the same output whatever being X.

Figure: Training data (left), 1-NN (center) and 5-NN (right)



Using the SPAM dataset properly (without PC). Writing the code from scratch.

X <— scale (X)
knn <- 3

predicted <— numeric (length (test))
for (k 1n 1l:length(test)) {
DIFF <- XJ[train,] -
outer (rep(1l, length(train)),X[test[k],],FUN="%")
distance <- apply (DIFF"2,1,mean)
nearestneighbors <- order (distance) [1l:knn]
predicted[k] <— mean(Y[train[nearestneighbors]])



Predict on the test set.

predicted_knn <- as.numeric (predicted > 0.5)
> table (predicted_knn, Y[test])

actual O 1
predicted 0 1343 131
1 110 818

Using k = 9 nearest neighbours.

predicted_knn <- as.numeric (predicted > 0.5)
> table (predicted_knn, Y[test])

actual O 1
predicted 0 1349 156
1 104 793

Misclassification rate is thus about 10.8% for k = 9.



Compute misclassification rate as a function of k.
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K-means clustering

» A disadvantage of k-nn is the high memory requirement as each new
observations has to be matched against all observations to find the
nearest neighbour(s).

» As discussed before, K-means is a method for finding clusters and cluster
centres in a set of unlabeled data. Considering each class in isolation, we
can apply the K-means algorithm (each with R clusters) to characterise
observations from each class.

» These K x R labeled prototypes can be used to summarise the
distribution of class data over X'. For a new observations X, we predict to
the class with the nearest prototype. An advantage over k-NN is thus that
much fewer observations/prototypes have to be kept in memory.



Plot Spam data in the space of the first 4 Principal Components.

library (kernlab)
data (spam)

n <— nrow(spam)

p <- ncol (spam) -1

Y <- as.numeric (spam[, p+1l])-1
X <- predict (princomp (spam[,—-(p+1l)] ,cor=TRUE)) [,1:4]

pairs (X, col=Y+1,cex=1.5,pch=20)



Red: spam

Black: not spam.
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Now replace each class by 30 cluster centers.

nk <— 30
KMX <- kmeans (X[Y==0, ], nk)
KMY <- kmeans (X[Y==1, ], nk)

pairs ( rbind (KMXS$Scenters, KMYScenters),
col= rep(l:2,each=nk), cex=1.5,

pch=20)



And then use these as prototypes for k-NN classification.
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