
Outline

Supervised Learning: Parametric Methods
Decision Theory
Linear Discriminant Analysis
Quadratic Discriminant Analysis
Naíve Bayes
Logistic Regression
Evaluating Learning Methods

Training and Test error
Important distinction:

� Training error is the empirical risk

n−1
n�

i=1

L(yi, ŷi)

For 0-1 loss in classification, this is the misclassification error on the
training data, which were used in fitting ŷ.

� Test error is the empirical risk on new, previously unseen, observations

m−1
m�

i=1

L(yi, ŷi)

which were NOT used in fitting.
The test error is in general larger than the training error (as we are fitting
partially noise – depending on the complexity of the classifier). It is a much
better gauge of how well the method will do on future data.

Success rate is calculated on the same data that the GLM is trained on!
Separate in training and test set.

n <- length(Y)
intrain <- sample(rep(c(TRUE,FALSE),each=n/2) ,

round(n/2) ,replace=TRUE)
train <- (1:n)[intrain]
test <- (1:n)[!intrain]

Fit only on training set and predict on both training and test set.

gl <- glm(Y[train] ~ ., data=X[train,],family=binomial)

proba_train <- predict(gl,newdata=X[train,],type="response")
proba_test <- predict(gl,newdata=X[test,],type="response")

predicted_spam_train <- as.numeric(proba_train > 0.95)
predicted_spam_test <- as.numeric(proba_test > 0.95)

Results for training and test set:

> table(predicted_spam_train, Y[train])
predicted_spam_train 0 1

0 1403 354
1 11 567

> table(predicted_spam_test, Y[test])
predicted_spam_test 0 1

0 1346 351
1 28 541

Its no coincidence that the success rate is worse on the test data.

Compare with LDA.

library(MASS)
ldares <- lda(x=X[train,],grouping=Y[train])

With following result

> Call:
lda(X, grouping = Y)

Prior probabilities of groups:
0 1

0.6059552 0.3940448

...

...

Coefficients of linear discriminants:
LD1

make -0.2053433845
address -0.0496520077
all 0.1618979041
num3d 0.0491205095
our 0.3470862316
over 0.4898352934
remove 0.8776953914
internet 0.3874021379
order 0.2987224576
mail 0.0621045827
receive 0.2343512301
will -0.1148308781
people 0.0490659059
....
charHash 0.1141464080
capitalAve 0.0009590191
capitalLong 0.0002751450
capitalTotal 0.0003291749

Compare prediction on test set.

library(MASS)
lda_res <- lda(x=X[train,],grouping=Y[train])

proba_lda <- predict(lda_res,newdata=X[test,])$posterior[,2]
predicted_spam_lda <- as.numeric(proba_lda > 0.95)

> table(predicted_spam_test, Y[test])
predicted_spam_test 0 1

0 1346 351
1 28 541

> table(predicted_spam_lda, Y[test])
predicted_spam_lda 0 1

0 1364 533
1 10 359

It seems as if LDA beats Linear Regression here, but would need to adjust
cutpoint to get proper comparison. Use ROC curves.

ROC curves

We can change the cutpoint c

predicted_spam_lda <- as.numeric(proba_lda > c)

to get different tradeoffs between
� Sensitivity: probability of predicting spam given true state is spam
� Specificity: probability of predicting non-spam given true state is

non-spam

TRUE STATE 0 1 0 1
PREDICTION 0 1364 533 normalize 0 0.9972 0.5975

1 10 359 ----> 1 0.0072 0.4024
TOTAL 1374 892 1 1

ROC curve is sensitivity versus specificity

cvec <- seq(0.001,0.999,length=1000)
specif <- numeric(length(cvec))
sensit <- numeric(length(cvec))

for (cc in 1:length(cvec)){
sensit[cc] <- sum(proba_lda> cvec[cc] & Y[test]==1)/sum(Y[test]==1)
specif[cc] <- sum(proba_lda<=cvec[cc] & Y[test]==0)/sum(Y[test]==0)

}
plot(specif,sensit,

xlab="SPECIFICITY",ylab="SENSITIVITY",type="l",lwd=2)

ROC curve for LDA and Logistic Regression classification of spam dataset.
LDA = unbroken black line; LR = broken red line.

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

SPECIFICITY

SE
N
SI
TI
VI
TY

Obvious now that LR is better for this dataset than LDA, contrary to the first
impression.

