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Abstract

We present a new way of extending independent components analysis (ICA) to overcomplete
representations. In contrast to the causal generative extensions of ICA which maintain marginal
independence of sources, we define features as deterministic (linear) functions of the inputs. This
assumption results in marginal dependencies among the features, but conditional independence of
the features given the inputs. By assigning energies to the features a probability distribution over
the input states is defined through the Boltzmann distribution. Free parameters of this model are
trained using the contrastive divergence objective (Hinton, 2002). When the number of features is
equal to the number of input dimensions this energy-based model reduces to noiseless ICA and we
show experimentally that the proposed learning algorithm is able to perform blind source separation
on speech data. In additional experiments we train overcomplete energy-based models to extract
features from various standard data-sets containing speech, natural images, hand-written digits and
faces.

Keywords: Independent Components Analysis, Density Estimation, Overcomplete Representa-
tions, Sparse Representations

1. Introduction

There have been two dominant ways of understanding ICA, one based on a bottom-up, filtering
view and the other based on a top-down, causal generative view. In the information maximization
approach (Bell and Sejnowski, 1995, Shriki et al., 2002) the aim is to maximize the mutual infor-
mation between the observations and the non-linearly transformed outputs of a set of linear filters.
In the causal generative view (Pearlmutter and Parra, 1996, MacKay, 1996, Cardoso, 1997), on the
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Figure 1: Different methods for non-Gaussian linear components analysis.

other hand, the aim is to build a density model in which independent, non-Gaussian sources are
linearly combined to produce the observations.

The main point of this paper is to show that there is a third, “energy-based” approach to un-
derstanding ICA which combines a bottom-up, filtering view with the goal of fitting a probability
density to the observations. The parameters of an energy-based model specify a deterministic map-
ping from an observation vector x to a feature1 vector and the feature vector determines a global
energy, E(x). The probability density of x is defined by

p(x) =
e−E(x)

Z
,

where Z is a normalization factor - the integral of the numerator over all possible observation vec-
tors. The energy-based approach is interesting because it suggests a novel and tractable way of
extending ICA to overcomplete and multi-layer models.

The relationship between the three approaches is depicted in Figure 1. In general, they are
quite different, but they all become equivalent for the “square” and noiseless case, that is, when
the number of sources or features equals the number of observations and there is no observation
noise. While complete representations have been applied successfully to a wide range of problems,
researchers have recently argued for “overcomplete” representations where there are more sources
or features than observations. Apart from greater model flexibility, reported advantages include
improved robustness in the presence of noise (Simoncelli et al., 1992), more compact and more
easily interpretable codes (Mallat and Zhang, 1993) and superresolution (Chen et al., 1998).

The natural way to extend the causal generative approach to the overcomplete case is to retain
the assumption that the sources are independent when the model is used to generate data and to

1. When discussing energy-based models, we use the term “feature” rather than “source” for reasons that will become
clear when we discuss extensions to the overcomplete case.
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Models
Marginal distribution
over ‘source’ vectors
(before an observation)

Conditional distribution
over ‘source’ vectors
(after an observation)

Square
Independent
(by assumption)

Independent
(because deterministic)

Causal
overcomplete

Independent
(by assumption)

Dependent
(explaining-away)

Energy-based
overcomplete

Dependent
(rejecting-away)

Independent
(because deterministic)

Table 1: Independence properties of three types of models.

accept the consequence that an observation vector creates a posterior distribution over a multiplicity
of source vectors. In this posterior distribution, the sources are conditionally dependent due to the
effect known as “explaining-away” and, in general, the distribution has the unfortunate property that
it is computationally intractable.

The natural way to extend the information maximization approach to overcomplete representa-
tions is to retain both the simple, deterministic, feedforward filtering of observations and the mutual
information objective function (Shriki et al., 2002). However, because the manifold of possible filter
outputs typically does not consist of the whole space (except in the square case), the equivalence
with causal generative models breaks down.

When our energy-based approach to ICA is made overcomplete, it continues to be a proper
density model and it retains the computationally convenient property that the features are a deter-
ministic function of the observation vector. However, it abandons the marginal independence of
the features (which is why we do not call them sources). A useful way of understanding the dif-
ference between energy-based density models and causal generative density models is to compare
their independence properties. Table 1 summarizes the similarities and differences.

The table reminds us that the different views are equivalent in the square case, and hence, in the
absence of observations, the sources are marginally independent. Further, the posterior distribution
over source vectors conditioned on an observation vector collapses to a point in the absence of
noise, so the sources are trivially independent in the posterior distribution. In the causal generative
approach this conditional independence of the sources is seen as a fortuitous consequence of using
as many sources as observations and avoiding noise in the observations, and is not retained in the
overcomplete case. In the energy-based view, the conditional independence of the features is treated
as a basic assumption that remains true even in the overcomplete case. We can consider the energy
contributed by the activity of a feature of an energy-based model as the negative log probability of a
one-dimensional, non-Gaussian distribution. However not all combinations of feature activities can
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occur because the lower-dimensional observation space only maps to a restricted manifold in the
feature space.

The marginal dependence of the features in an overcomplete, energy-based model can be under-
stood by considering an illuminating but infinitely inefficient way of generating unbiased samples
from the energy-based density model. First we sample the features independently from their “prior”
distributions (the negative exponentials of their individual energy contributions) and then we reject
cases in which the feature activities do not correspond to valid observation vectors. This process of
“rejecting-away” creates dependencies among the activities of different features.

For some applications, such as unmixing sound sources, the causal generative approach is
clearly more appropriate than the energy-based approach because we have a strong prior belief
that the sources are marginally independent. In many other applications, however, the real aim is
to model the probability density of the data, or to discover interpretable structure in the data, or to
extract a representation that is more useful for controlling action than the raw data itself. In these
applications, there is no a priori reason for preferring the causal generative approach to the energy-
based approach that characterizes each observation vector by representing the degree to which it
satisfies a set of learned features.

2. Square ICA

In this section we will briefly review standard models for ICA. One of the first expositions on ICA
(Comon, 1994) used the entropy of linearly transformed input vectors as a contrast function to find
statistically independent directions in input space. Indeed many, if not all, ICA algorithms ulti-
mately reduce to optimizing some sort of “contrast function”; this overview will not mention them
all. Rather we will focus on reviewing two general approaches to ICA, namely the causal generative
approach (Pearlmutter and Parra, 1996, MacKay, 1996, Cardoso, 1997) and the information max-
imization approach (Bell and Sejnowski, 1995, Shriki et al., 2002). Subsequent sections will then
compare these canonical approaches with our proposed energy-based approach, and in particular
will explore the consequences of making the different models overcomplete.

Consider a real valued input, denoted by x, of dimensionality D, and an M-dimensional source
or feature vector, denoted by s. In this section we will consider the special case where the number
of input dimensions is equal to that of the sources or features, i.e. D = M.

2.1 The Causal Generative Approach

In the causal generative approach, the sources s are assumed to be independent, that is, the distribu-
tion p(s) factorizes as

p(s) =
M

∏
i=1

pi(si), (1)

while the inputs are simply linear combinations of the sources. Moreover, we will assume for now
that there is no noise on the inputs, i.e.

x = As,

where A is a square invertible matrix called the mixing matrix. Inverting this relationship we have

s = Wx W = A−1, (2)
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where the inverse mixing matrix W will be called the filter matrix since each row acts as a linear
filter of the inputs.

The aim is now to recover the statistically independent source signals s from the linearly mixed
observations x. This turns out to be possible only if the statistical properties of the sources are non-
Gaussian. Thus, we shall assume that the probability distribution of the sources will be modelled
by non-Gaussian prior distributions pi(si). Since the relation between sources and inputs is deter-
ministic and one-to-one, we may view it as a change of coordinates. Deriving an expression for the
probability distribution of the inputs x can therefore be accomplished by transforming expression
(1) to x-space, using the Jacobian of that transformation,

p(x) =
M

∏
i=1

pi(si(x))

∣

∣

∣

∣

∂s
∂x

∣

∣

∣

∣

=
M

∏
i=1

pi(wT
i x)|detW |, (3)

where wT
i are the rows of W . Learning proceeds by averaging the log-likelihood for the above model

over a data distribution2 p0(x) and using the derivatives of it with respect to W for gradient ascent:

∂〈log p(x)〉p0

∂wi j
=

〈

∂ log pi(si)

∂si
x j

〉

p0

+
[

W−T ]

i j ,

where wi j is the jth entry of wi and [W−T ]i j is the i jth entry of the matrix W−T .

2.2 The Information Maximization Approach

An alternative, more neurally plausible approach to ICA was put forward by Bell and Sejnowski
(1995).3 In that paper it was assumed that a certain transformation was applied to the inputs,

yi = fi(wT
i x) i = 1 . . .M, (4)

with fi(·) being a monotone squashing function such as a sigmoid and wi a set of linear filters. It
was then argued that maximizing the mutual information4 between outputs y and inputs x, which
is equivalent to maximizing the entropy of y due to the deterministic relation (4), would lead to
independent components. This effect can be understood through the decomposition

H(y) =
M

∑
i=1

Hi(yi)− I(y1, . . . ,yM),

with H(y) the entropy of y, Hi(yi) the individual entropies, and I the mutual information among
yi’s. Maximizing the joint entropy thus involves maximizing the individual entropies of the yi’s and
minimizing the mutual information between the yi’s, i.e. making the yi’s independent.

This approach can best be described as a filtering approach, since each yi is just a squashed
version of the filter outputs si = wT

i x. This is in contrast with the causal generative approach where
we instead think of x as being generated by s in a top-down manner.

2. This data distribution is the underlying distribution from which our observed data is sampled. In practice, we replace
this by the empirical distribution over the training set.

3. In fact this information maximization approach to ICA was proposed first, followed by the causal generative ap-
proach. We presented the two approaches in reverse order here for more intuitive exposition.

4. Note that this mutual information is measured with respect to the data distribution p0.
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2.3 Equivalence of the Two Approaches

For square representations the information maximization approach turns out to be equivalent to
the causal generative one if we interpret fi(·) to be the cumulative distribution function of pi(·)
(Pearlmutter and Parra, 1996, MacKay, 1996, Cardoso, 1997). This can be seen by observing that
the entropy H(y) can be written as a negative KL divergence using a change of variables as follows:

H(y) = −
∫

dy p0(y) log p0(y) = −
∫

dx p0(x) log
p0(x)

|detJ(x)|
, (5)

where p0(y) = p0(x)
|detJ(x)| and J(x) is the Jacobian of the transformation between y and x,

Ji j(x) =
∂yi(x)

∂x j
. (6)

Using some basic algebra it can be shown that |detJ(x)| is in fact exactly equal to Equation (3), since
fi satisfies f ′i (·) = pi(·), being the cumulative function of pi. Therefore maximizing the entropy in
Equation (5) is indeed equivalent to maximizing the log likelihood of the model (3). Note also that
if the sources are actually distributed according to pi(·) and mixed using A, then the transforma-
tion (4) maps the input variables to independent, uniformly distributed variables over the range of
fi(·), i.e. the interval [0,1] in case of a sigmoid. This geometric interpretation will be helpful in
Section 3.2.

2.4 Square ICA with Input Noise

In the previous section we have shown that the causal generative approach, in the special case of a
square mixing matrix and no noise, is equivalent to the information maximization approach. This
equivalence will break down, however, when we consider a noise model for the inputs. In that case,
there is no longer a deterministic relationship between the inputs and the sources. It is, however,
still straightforward to write a probabilistic model for the joint distribution over sources and inputs,

p(x,s) = p(x|s)
M

∏
i=1

pi(si).

Unfortunately, even for isotropic Gaussian noise it is no longer true that given a mixing matrix A
the optimal reconstruction of the sources is simply given by Equation (2). Instead, one typically
computes the maximum a posteriori (MAP) value (or the mean, depending on the objective) of the
posterior distribution p(s|x).

3. Overcomplete Generalizations of ICA

The equivalence between the two approaches also breaks down when there are more sources than
input dimensions, i.e. when we consider overcomplete representations of the data. We will now
review overcomplete generalizations of ICA based on both approaches.

3.1 The Causal Generative Approach

Arguably the most natural way to extend the ICA framework to overcomplete representations is
through the causal generative approach. The corresponding directed graphical model is depicted in
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Figure 2A. For noiseless inputs, finding the most probable state s corresponding to a particular input
x now translates into the following optimization problem:

sMAP = argmax
s

{

M

∑
i=1

log pi(si)

∣

∣

∣

∣

such that x = As

}

.

The above problem is typically hard and it can only be solved efficiently for certain choices of pi(·).
For instance Lewicki and Sejnowski (2000) argued that by choosing the priors to be Laplacian the
problem can be mapped to a standard linear program.

One can “soften” this optimization problem by introducing a noise model for the inputs. For
instance, using a spherical Gaussian noise model with noise variance σ2 we find the following joint
probability density distribution over sources and inputs:

p(x,s) = p(x|s) p(s) = Nx
[

As,σ2I
]

M

∏
i=1

pi(si). (7)

This leads to the following maximization problem to reconstruct the sources from the inputs:

sMAP = argmax
s

{

−
1

2σ2 |x−As|2 +
M

∑
i=1

log pi(si)

}

. (8)

Maximum likelihood learning for the above noisy model using the EM procedure involves av-
eraging over the posterior distribution p(s|x). Unfortunately this inference problem is intractable
in general and approximations are needed. In the literature one can find a whole range of approx-
imate inference techniques applied to this problem. In Olshausen and Field (1996) the posterior is
approximated by a delta function at its MAP value. Thus at every iteration of learning and for every
data vector the maximization in Equation (8) needs to be performed.5 In Lewicki and Sejnowski
(2000) it was argued that the approximation can be significantly improved if a Gaussian distribution
around this MAP value was constructed by matching the second derivatives locally (i.e. the Laplace
approximation). Attias (1999) and Girolami (2001) use a variational approach which replaces the
true posterior with a tractable approximation which is itself adapted to better approximate the pos-
terior. Finally, MCMC sampling methods, such as Gibbs sampling may be employed to solve the
inference problem approximately (Olshausen and Millman, 2000).

A notably different variation on the generative theme is the Bayesian approach taken by Hyvari-
nen and Inki (2002). There, a prior distribution p(A) over possible mixing matrices A is introduced
which favors orthogonal basis vectors (columns of A). They argue that the role of the Jacobian
|detW |= 1/|detA| in Equation (3) is precisely to encourage orthogonality among basis vectors and
that it is therefore a reasonable assumption to remove this Jacobian in favor of the extra prior. The
resultant expression is then easily extended to overcomplete representations.

We want to stress that causal generative models will almost always lead to very difficult infer-
ence problems. In contrast, generating unbiased samples from the distribution p(x) is relatively
straightforward, since we first sample source values independently from their priors and subse-
quently sample the input variables according to the conditional Gaussian in Equation (7).

5. In fact the situation is slightly better using a variational point of view. One can show that one can also improve a
bound on the log-likelihood by jointly maximizing over s and A. We also note that an extra condition on the mixing
matrix is needed to prevent it from collapsing to 0.
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sources: s

inputs: x

features: u

inputs: x auxiliary vars: z
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Figure 2: (A) Directed graphical model corresponding to the causal generative approach to ICA. (B) Undi-
rected graphical model for an EBM. (C) Directed graphical model representation for an EBM with
auxiliary variables clamped at 0.

x−space y−space

y=f(Wx)
T

Figure 3: Mapping used by the information maximization approach given by Equation (4).

3.2 The Information Maximization Approach

In Section 2 an information maximization approach to ICA was discussed for the simple case when
the number of inputs is equal to the number of sources and no noise is assumed on the inputs. A
natural question is whether that objective can be generalized to overcomplete representations. One
possibility advocated by Shriki et al. (2002) is to define again the parametrized nonlinear mapping
(4) between inputs and outputs and to maximize their mutual information (which amounts to maxi-
mizing the entropy of the outputs). Note that this approach is best classified as a filtering approach,
and that inputs are mapped one-to-one onto a subset of all possible outputs, i.e. the image of that
mapping forms a lower dimensional manifold in output space (see Figure 3). Shriki et al. (2002)
showed that this objective translates into maximizing the following expression for the entropy,

H(y) = −
∫

dx p0(x) log
p0(x)

√

det(J(x)T J(x))
, (9)

where J(x) is the Jacobian defined in Equation (6), and p0(x) is the data distribution.

4. Energy-Based Models

By interpreting ICA as a filtering model of the inputs, we now describe a very different way of
generalizing ICA to overcomplete representations. Energy-based models (EBM) preserve the com-
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putationally attractive property that the features u are simple deterministic functions of the inputs,
instead of stochastic latent variables as in a causal generative model. As a consequence, even in
the overcomplete setting the posterior p(u|x) collapses to a point, which stands in sharp contrast
to overcomplete causal models which define a posterior distribution over the sources. In fact, for
overcomplete EBMs, not all feature values are allowed, since not all values lie in the image of the
mapping from x to u. This is similar to the information maximization approach but very different
from the causal generative approach where all source values are allowed.

Let ui(x;wi) be the mapping from x to feature ui with parameters wi. The features are used for
assigning an energy E(x), to each possible observation vector x, as follows:

E(x) =
M

∑
i=1

Ei(ui(x;wi)). (10)

The probability of x is defined in terms of its energy through the Boltzmann distribution6

p(x) =
e−E(x)

Z
=

e−∑i Ei(ui(x;wi))

Z
, (11)

where Z denotes the normalization constant (or partition function),

Z =
∫

x′
e−E(x′) dx′. (12)

Standard ICA with non-Gaussian priors pi(si) is implemented by having the same number of sources
as input dimensions and using

ui(x,wi) = wT
i x Ei(ui) = − log pi(ui). (13)

Furthermore, in this special case of standard ICA the normalization term in Equation (11) is tractable
and simplifies to

Z =

∣

∣

∣

∣

1
det(W )

∣

∣

∣

∣

, (14)

where the rows of W are the filters wT
i .

The above energy-based model suggests thinking about ICA as a filtering model instead of a
causal generative model. That is, observations are linearly filtered rather than independent sources
being linearly mixed. Hinton and Teh (2001) interpreted these filters as linear constraints, with the
energies serving as costs for violating the constraints. Using energies corresponding to heavy tailed
distributions with a sharp peak at zero means that the constraints should be “frequently approxi-
mately satisfied”, but will not be strongly penalized if they are grossly violated.

In this new approach it is very natural to include more constraints than input dimensions. Note
however, that the marginal independence among the sources which was a modelling assumption for
overcomplete causal models, is no longer true for the features in the EBMs in general. Instead, since
the posterior p(u|x) reduces to a point, the features given the inputs are trivially independent:

p(u|x) = ∏
i

δ(ui − ûi(x,wi)),

6. We note that the additive form of the energy leads to a product form for the probability distribution, which was called
a “product of experts” (PoE) model in (Hinton, 2002).
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where ûi(x,wi) is the feature computed in Equation (13). The semantics of such probabilistic mod-
els is consistent with that of undirected graphical models as depicted in Figure 2B. The above means
that inference in EBMs is trivial. On the other hand, sampling from the distribution p(x) is diffi-
cult and involves MCMC in general. This is precisely opposite to causal generative models where
inference is hard but sampling easy.

4.1 Relating EBMs to Causal Generative ICA

We will now discuss how the proposed overcomplete EBMs relate to the causal generative approach
to ICA. Intuitively, an EBM can be interpreted as the conditional distribution obtained from a larger
square ICA model when we observe a number of variables. This relationship explains how is it that
in EBMs the features u are conditionally independent given x, but marginally dependent without
observations.

In the previous section we have already argued that when the number of input dimensions
matches the number of features, an EBM is strictly equivalent to standard ICA as described in
Section 2. In the following we will assume that there are more features than input dimensions
(i.e. M > D).

Consider an ICA model where we have added M−D auxiliary input dimensions z. We will de-
note the total input space by v = [x,z]. We will also add additional filters from the new z variables to
all features and denote them by F , i.e. the total filter matrix is now G = [W |F]. We will assume that
the new filters are chosen such that G is invertible, i.e. that the new enlarged space is fully spanned.
For this enlarged ICA model we can again write the probability distribution as in Equation (3), here
being

p(x,z) =
M

∏
i=1

pi(wT
i x+ fT

i z)|detG|,

where fT
i are the rows of F . Next, we write the probability density for the conditional distribution,

p(x|z) =
p(x,z)
p(z)

=
p(x,z)

∫

p(x′,z)dx′
,

where the |detG| terms have cancelled. If we choose the auxiliary variables z = 0 then this can be
written as

p(x|z = 0) =
∏i pi(wT

i x)
∫

∏i pi(wT
i x′)dx′

.

The above is of course just an EBM where the partition function is given by

Z =
∫

∏
i

pi(wT
i x′)dx′.

Note that the above derivation is independent of the precise choice of the filters F as long as they
span the extra dimensions.

In the previous subsection we have seen that an EBM may be interpreted as an undirected graphi-
cal model with conditional independence of the features given the inputs. From the above discussion
we may conclude that we can also interpret the EBM as a conditional distribution p(x|z = 0) on a
directed graphical model, where M −D auxiliary variables z have been clamped at 0 (see Figure
2C). By clamping the extra nodes at 0 we introduce dependencies among the features through the
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phenomenon of “explaining away”. In other words, the features are “marginally” dependent when
x is unobserved. When x is observed, the whole input vector [x,z] is now observed so the posterior
distribution over the features again collapse to a point, trivially implying conditional independence.

4.2 Relating EBMs to Information Maximization

In Section 3.2 we saw that in the information maximization approach to overcomplete representa-
tions one maximizes the entropy of Equation (9). The fact that the quantity

√

det(J(x)T J(x)) in
that equation is not normalized in general, as opposed to the complete case, prevents expression (9)
from being a negative KL divergence. If we therefore define the probability density

p(x) =
1
Z

√

det(J(x)T J(x)), (15)

where Z is the normalization constant, then minimizing the KL divergence KL[p0||p] is equivalent to
maximizing the log-likelihood of the model p(x). Importantly, p(x) is consistent with the definition
of an EBM if we choose as the energy

E(x) = − log

(

√

det(J(x)T J(x))

)

= −
1
2

Tr
[

log
(

J(x)T J(x)
)]

.

The energy-based density model p(x) in Equation (15) has a simple interpretation in terms of the
mapping (4). This mapping is depicted in Figure 3 where it is shown that the x-coordinates define
a parametrization of the manifold. It is not hard to show that the distribution p(x) is transformed
precisely to a uniform distribution p(y) = 1/Z on the manifold in y-space, where the normalization
constant Z may thus be interpreted as the volume of this manifold. Minimizing the KL divergence
KL[p0||p] can therefore be interpreted as mapping the data to a manifold in a higher dimensional
embedding space, in which the data are distributed as uniformly as possible. The relation between
information maximization and the above energy-based approach is summarized by the following
expression:

H(y) = −KL(p0(x)||p(x))+ log(Manifold-Volume) . (16)

The first term describes the “fit” of the model p(x) to data, while the second term is simply the
entropy of the uniform distribution p(y) on the manifold. Relative to the energy-based approach,
maximizing the mutual information will have a stronger preference to increase the volume of the
manifold, since this is directly related to the entropy of p(y). Note that in the square case the
manifold is exactly the whole image space [0,1]M, hence its volume is always fixed at 1, and Equa-
tion (16) reduces exactly to the KL divergence KL(p0(x)‖p(x)).

In the overcomplete case, experiments will have to decide which approach is preferrable and
under what circumstances.

5. Parameter Estimation for Energy-Based Models

In Section 4 we proposed energy-based models as probabilistic models for overcomplete represen-
tations. We did however not discuss how to fit the free parameters of such models (e.g. filters wT

i )
efficiently to data. In this section we will address that issue.

First, we describe the usual maximum likelihood method of training such models. For overcom-
plete models, we show that maximum likelihood is not a practical solution, because of the non-trivial
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partition function. In light of this, we propose another estimation method for energy-based models
called contrastive divergence (Hinton, 2002). This is a biased method, but we will show that the
bias is acceptably small compared with the gain in efficiency in training overcomplete models, and
the ease with which we can generalize the method to new and more intricate models.

Let p0(x) be the distribution of the observed data, and p∞(x) = p(x) be the model distribution
given in Equation (11) (the notation will become apparent later in the section). We would like p∞

to approximate p0 as well as possible. The standard measure of the difference between p0 and p∞

is the Kullback-Leibler (KL) divergence:

KL(p0‖p∞) =
∫

p0(x) log
p0(x)
p∞(x)

dx.

Because p0 is fixed, minimizing the KL divergence is equivalent to maximizing the log likelihood
of the data under the model p∞. For energy-based models given by Equation (11), the derivative of
the KL divergence with respect to a weight wi j is

∂KL(p0‖p∞)

∂wi j
=

〈

∂E(x)
∂wi j

〉

p0

−

〈

∂E(x)
∂wi j

〉

p∞
, (17)

where 〈·〉q is the expectation operator under distribution q. Learning can now proceed by using the
derivative in Equation (17) for gradient descent in the KL divergence between the data distribution
and the model distribution,

∆wi j ∝ −
∂KL(p0‖p∞)

∂wi j
. (18)

The above update rule can be understood as lowering the energy surface at locations where there are
data (first term in Equation (17)) and at the same time raising the energy surface at locations where
there are no data but the model predicts high probability (second term in Equation (17)). This will
eventually result in an energy surface with low energy (high probability) in regions where there are
data present and high energy (low probability) everywhere else.

The second term on the RHS of Equation (17) is obtained by taking the derivative of the log
partition function (Equation (12)) with respect to wi j. In the square ICA case, the log partition func-
tion is exactly given by log |detW−1|, hence the second term evaluates to the i jth entry of the matrix
W−T . However if the model is overcomplete, there is no analytic form for the partition function so
exact computation is generally intractable. Instead, since the second term is an expectation under
the model distribution p∞, one possibility is to use Markov chain Monte Carlo (MCMC) techniques
to approximate the average using samples from p∞ (see Neal, 1993). This method inherits both the
advantages and drawbacks associated with MCMC sampling. The obtained estimate is consistent
(i.e. the bias decreases to zero as the length of the chains is increased), and it is very easily adapt-
able to other more complex models. The main drawback is that the method is very expensive – the
Markov chain has to be run for many steps before it approaches the equilibrium distribution p∞ and
it is hard to estimate how many steps are required. Also, the variance of the MCMC estimator is
usually high. To reduce the variance many independent samples are needed, incurring additional
computational costs. Therefore, estimating the derivative (17) accurately by MCMC sampling is
slow and can be unreliable due to high variance.

However, in the following we will argue that it is unnecessary to estimate the derivatives aver-
aged over the equilibrium distribution in order to train an energy-based model from data. Instead, we
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will average the derivatives over a different distribution, resulting from truncating the Markov chain
after a fixed number of steps. This idea, called contrastive divergence learning, was first proposed
by Hinton (2002) to improve both computational efficiency and reduce the variance at the expense
of introducing a bias for the estimates of the parameters with respect to the maximum likelihood
solution.

There are two ideas involved in contrastive divergence learning. The first one is to start the
Markov chain at the data distribution p0 rather than to initialize the Markov chain at some vague
distribution (e.g. a Gaussian with large variances). The reason usually given for using vague initial
distributions is that every mode of the equilibrium distribution has a chance of being visited by
some chain. This can help to overcome a problematic feature of many Markov chains – a low
mixing rate; once a chain enters a mode of the distribution it is hard to escape to a different mode.
However, we argue that starting at the data distribution is preferable since the training data already
contains examples from the various modes that the model distribution ought to have. Towards the
end of learning, when the modes of the model distribution roughly correspond to the modes in the
data distribution, the number of samples in each mode approximately matches the number of data
vectors in each mode. This further reduces the variance of the derivative estimates. A possible
danger with this technique is that certain spurious (empty) modes which are accidentally created
during learning may go unnoticed.

The second idea of contrastive divergence is to run the Markov chain for only a few iterations
rather than until equilibrium. Because the chains are started at the data distribution, even after only
a few iterations, any consistent tendency to move away from the data distribution provides valuable
information that can be used to adapt the parameters of the model. Intuitively, the parameters of
the model should be updated so that the Markov chain does not tend to move away from the data
distribution (since we want the Markov chain to equilibrate to the data distribution).

Combining the two ideas described above and defining pn(x) to be the distribution of the random
variable at the nth iteration of the Markov chain,7 the contrastive divergence learning algorithm is
implemented by using the following quantity to update the filters wi j:

∆wi j ∝ −

〈

∂E(x)
∂wi j

〉

p0

+

〈

∂E(x)
∂wi j

〉

pn

. (19)

Relative to maximum likelihood learning (Equations (17) and (18)) we have replaced the equilib-
rium distribution p∞ with pn, and the Markov chain is initialized at the data distribution p0. The
figure below gives pseudo-code for contrastive divergence learning.

Notice that in order to compute the average in the second term of Equation (19) we used samples
produced by Markov chains initialized at the corresponding data vectors used in the first term. This,
rather than uniformly sampling the initial states of the Markov chains from the data vectors, further
reduces the variance.

If in addition to the filter weights wi j additional parameters are present, for instance to model
the shape of the energies Ei, similar update rules as Equation (20) can be used to fit them to data.
For standard ICA, this would correspond to learning the shape of the prior densities.

7. This explains the notation p0 for the initial distribution of the Markov chain and p∞ for the limit distribution of pn as
n → ∞.
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Contrastive Divergence Learning for Energy-Based Models

1. Compute the gradient of the total energy with respect to the parameters and average over the
data cases dk.

2. Run MCMC samplers for n steps, starting at every data vector dk, keeping only the last sample
sk of each chain.

3. Compute the gradient of the total energy with respect to the parameters and average over the
samples sk.

4. Update the parameters using

∆wi j = −
η
N

(

∑
data dk

∂E(dk)

∂wi j
− ∑
samples sk

∂E(sk)

∂wi j

)

, (20)

where η is the learning rate and N the number of samples in each mini-batch.

In the ideal situation that the model distribution p∞ is flexible enough to perfectly model the
data distribution8 p0, and we use a Markov chain that properly mixes, then contrastive divergence
learning has a fixed point at the maximum likelihood solution, i.e. when p∞ = p0. This is not hard
to see, since at the maximum likelihood solution, the Markov chain will not change the model dis-
tribution, which implies that the derivatives in Equation (19) precisely cancel. In general however,
we expect contrastive divergence learning to trade-off variance with bias (see also Williams and
Agakov, 2002). Apart from this, it may also happen that for certain Markov chains spurious fixed
points exist in contrastive divergence learning (for some examples see MacKay, 2001).

Although we have argued that contrastive divergence learning seems a sensible way to fit energy-
based models to data, we have not shown that it corresponds to gradient descent on a cost function,
which is desirable to prove convergence. Now we will show a slightly weaker statement, namely
that the update (19) corresponds to an approximate gradient descent step on a cost function. Define
the contrastive divergence cost function (Hinton, 2002) as

CD = KL(p0‖p∞)−KL(pn‖p∞).

Note that this consists of the usual KL divergence between the data distribution and the model
distribution, subtracted by the KL divergence between the n-step distribution pn and the model
distribution. Using properties of Markov chains one can show that the n-step distribution is always
closer to the equilibrium model distribution, so that CD is always non-negative, with CD = 0 exactly
when p0 = p∞.

Taking derivatives of the contrastive divergence cost function with respect to the filter weights
wi j we find the following gradient:

∂CD
∂wi j

=

〈

∂E(x)
∂wi j

〉

p0

−

〈

∂E(x)
∂wi j

〉

pn

−
∂KL(pn‖p∞)

∂pn

∂pn

∂wi j
. (21)

8. In the case of finite data, we replace the data distribution by the empirical distribution, which is a mixture of delta-
functions. In this case, any smooth model distribution will not be able to perfectly fit the empirical data distribution
and the above argument fails. In fact, we may expect to incur a certain bias with respect to the maximum likelihood
solution.
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The first two terms in Equation (21) are identical to the ones proposed for the learning algorithm
in Equation (19). The last term represents the effect that changes in wi j have on the contrastive
divergence via the effect on pn, i.e the effect on the Markov chain itself when the parameters wi j are
altered. This term is hard to compute but fortunately it is typically very small and simulations by
Hinton (2002) suggest that it can be safely ignored. The results later in this paper further support
this claim.

6. Experiment: Blind Source Separation

To assess the performance of contrastive divergence as a learning algorithm, we compared a hybrid
Monte Carlo implementation of contrastive divergence with an exact sampling algorithm as well
as the Bell and Sejnowski (1995) algorithm on a standard “blind source separation” problem. The
model has the same number of input and source dimensions,9 and the energy of the model is defined
as

Ei(si) = − log(σ(si)(1−σ(si))),

where σ(s) = 1/(1 + exp(−s)) is the sigmoid function. This model is strictly equivalent to the
noiseless ICA model with sigmoidal outputs used by Bell and Sejnowski (1995).

The data consisted of 16, 5-second stereo CD recordings of music, sampled at 44.1 kHz.10 Each
recording was monoized, down-sampled by a factor of 5, randomly permuted over the time-index
and rescaled to unit variance. The resulting 88436 samples in 16 channels were linearly mixed
using the standard instamix routine with b = 0.5 (1 on the diagonal and 1/9 off the diagonal),11 and
whitened before presentation to the various learning algorithms.

We compared three different ways of computing or estimating the gradient (17):

Algorithm HMC: We used a hybrid Monte Carlo implementation of contrastive divergence. This
implementation uses 1 step of hybrid Monte Carlo simulation to sample from p1(x), which in
turn consists of 30 leap frog steps, with the step sizes adapted at the end of each simulation
so that the acceptance rate is about 90%. See Neal (1993) for further detail on hybrid Monte
Carlo.

Algorithm Equil: For noiseless ICA, it is possible to sample efficiently from the true equilibrium
distribution using the causal generative view. These samples can then be used to estimate the
second term of (17). To be fair, we used a number of samples equal to the number of data
vectors in each mini-batch.

Algorithm Exact: We can also compute the partition function using Equation (14) and evaluate the
second term of Equation (17) exactly. This is precisely Bell and Sejnowski’s algorithm.

Parameter updates were performed on mini-batches of 100 data vectors. The learning rate was
annealed from 0.05 down to 0.0005 in 10000 iterations of learning,12 while a momentum factor of

9. Note however that recovering more sound sources than input dimensions (sensors) is not possible with our energy-
based model, since the feautures are not marginally independent.

10. These data were prepared by Barak Pearlmutter. They can be found on his webpage at
http://www-bcl.cs.may.ie/∼bap/demos.html.

11. These data are available at http://sound.media.mit.edu/ica-bench/.
12. This consisted of 2000 iterations each at 0.05, 0.025, 0.005, 0.0025 and 0.0005.
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Figure 4: Evolution of the Amari distance for the various algorithms, averaged over 100 runs. Note
that HMC converged just as fast as the exact sampling algorithm Equil, while the exact
algorithm Exact is only slightly faster. The sudden changes in Amari distance are due to
the annealing schedule.
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Figure 5: Final Amari distances for the various algorithms, averaged over 100 runs. The boxes
have lines at the lower quartile, median, and upper quartile values. The whiskers show
the extent of the rest of the data. Outliers are denoted by “+”. This plot shows that the
deterministic method Exact performs slightly better than the sampling methods HMC and
Equil, probably due to the variance induced by the sampling. More importantly, it shows
that learning with brief sampling (HMC) performs equally well as learning with samples
from the equilibrium distribution (Equil).

0.9 was used to speed up convergence. The initial weights were sampled from a Gaussian with a
standard deviation of 0.1.

1250



SPARSE OVERCOMPLETE ENERGY-BASED MODELS

During learning we monitored the Amari distance13 to the true unmixing matrix. In Figures
4 and 5 we show the results of the various algorithms on the sound separation task. The main
conclusion of this experiment is that we do not need to sample from the equilibrium distribution in
order to learn the filters W. This validates the ideas behind CD learning.

7. Experiments: Feature Extraction

We present examples of the features delivered by our algorithm on several standard datasets. Firstly
we demonstrate performance on typical ICA tasks of determining an overcomplete set of features of
speech and natural images. Then, we show the algorithm applied to the CEDAR cdrom dataset of
handwritten digits and lastly, we present the feature vectors learned when the algorithm is applied
to the FERET database of human faces.

For all the experiments described in this section we use an energy function of the form

Ei(ui(x,wi)) = γi log
(

1+(wT
i x)2) ,

which corresponds to modelling the data with a product of one-dimensional student-t distributions
of degree (2γ− 1) (Hinton and Teh, 2001). This energy function was chosen for its simplicity yet
versatility in describing super-Gaussian distributions. However, the algorithmic formulation allows
the use of arbitrary energy functions and results may be improved by a more systematic tailoring of
the energy function to particular datasets.

7.1 Speech

To test whether the model could extract meaningful filters from speech data we used recordings of
10 male speakers from the TIMIT database, uttering the sentence

“Don’t ask me to carry an oily rag like that.”

The sentences were down-sampled to 8kHz, and 50,000 12.5ms segments (each segment corre-
sponding to 100 samples) were extracted from random locations. Before presentation to the learning
algorithm the data was centred and sphered. The features were trained using contrastive divergence
with one step of hybrid Monte Carlo sampling consisting of 20 leap frog steps. Mini-batches of size
100 were used, while the learning rate was annealed from 0.05 to 0.0005 over 20000 iterations. The
filters were initialized at small random values and momentum was used to speed up convergence.

In Figure 6 we show 10 of the 200 features in the whitened domain together with their power
spectra. Recall that since there are 2 times more filters extracted as dimensions in the input space, the
energy-based model is no longer equivalent to a causal ICA model. Figure 7 shows the distribution
of power over time and frequency. There seems to be interesting structure around 1.5kHz, where
the filters are less localized and more finely tuned in frequency than average. This phenomenon is
also reported by Abdallah and Plumbley (2001).
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(A)

(B)

Figure 6: (A) Filters found by the 2× overcomplete EBM. The 5 filters in the first row are the
ones with largest power, indicating that they represent important features. The 5 filters in
the second row are randomly drawn from the remaining 195 filters. (B) Corresponding
power-spectra.
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Figure 7: Distribution of power over time and frequency. First the envelope of each filter (the
absolute value of its Hilbert transform) was computed and squared. Next, the squared
envelope and the power spectrum were thresholded by mapping all values greater than
half the peak value to one and the rest to zero. Gaps smaller than 6 samples in time and
3 samples in frequency were filled in. Finally, the outer product of the two “templates”
were computed, weighted by the total power of the filter, and added to the diagram.

7.2 Natural Image Patches

We tested our algorithm on the standard ICA task of determining the “independent” components
of natural images. The data set used is the imlog14 data set of van Hateren and van der Schaaf

13. The Amari distance (Amari et al., 1996) measures a distance between two matrices A and B up to permutations and

scalings:
(

∑N
i=1 ∑N

j=1
|(AB−1)i j |

maxk |(AB−1)ik|
+

|(AB−1)i j |
maxk |(AB−1)k j |

)

−2N2.

14. This data set is available at ftp://hlab.phys.rug.nl/pub/samples/imlog.
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Figure 8: Learned filters for natural images.

(1998). The logarithm of the pixel intensities was first taken and then the image patches were
centred and whitened. There were 122880 patches and each patch was 16×16 in size. We trained
a network with 256× 3 = 768 features, using contrastive divergence with 1 step of hybrid Monte
Carlo sampling consisting of 30 leap frog steps. The step size was adaptive so that the acceptance
rate is approximately 90%. Both wi and γi are unconstrained, but a small weight decay of 10−4

was used for wi to encourage the features to localize. The wi’s were initialized to random vectors
of length 1, while the γi’s were initialized at 1. Both wi and γi were trained with a learning rate of
0.01 and momentum factor of 0.9. We found however that the result is not sensitive to the settings
of these parameters. A random sample of 144 learned features in the whitened domain is shown in
Figure 8. They were roughly ordered by increasing spatial frequency. By hand, we counted a total
of 19 features which have not localized either in the spatial or frequency domain. Most of the other
features can be described well with Gabor functions. To further analyze the set of learned filters,
we fitted a Gabor function of the form used by Lewicki and Olshausen (1999) to each feature and
extracted parameters like frequency, location and extent in the spatial and frequency domains. These
are summarized in Figures 9 and 10, and show that the filters form a nice tiling of both the spatial
and frequency domains. We see from Figures 9 and 10 that filters are learned at multiple scales,
with larger features typically being of lower frequency. However we also see an over emphasis of
horizontal and vertical filters. This effect has been observed in previous papers (van Hateren and
van der Schaaf, 1998, Lewicki and Olshausen, 1999), and is probably due to pixellation.
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Figure 9: The spatial layout and size of the filters, which are described by the position and size of
the bars.

0 0.125 0.25 0.5Frequency

Figure 10: A polar plot of frequency tuning and orientation selectivity of the learned filters, with
the centre of each cross at the peak frequency and orientation response, and crosshairs
describing the 1/16-bandwidth.
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Figure 11: Learned filters for CEDAR digits. Filters are plotted in whitened space for clarity.

7.3 CEDAR Digits

We used 16x16 real valued digits from the “br” set on the CEDAR cdrom #1. There are 11000 digits
available, divided equally into 10 classes. The mean image from the entire dataset was subtracted
from each datum, and the digits were whitened with ZCA. A network with 361 features was trained
in the same manner as for natural image patches.

A random subset of learned filters is shown in Figure 11. To make it easier to discern the
structure of the learned filters, we present them in the ZCA whitened domain rather than in pixel
space. We note the superficial similarity between these filters and those found from the natural
scene experiments. However, in addition to straight edge filters we also see several curved filters.
We interpret the results as a set of ‘stroke’ detectors, modelling a space of strokes that gives rise to
the full digit set.

7.4 FERET Faces

We used the full NIST FERET database of frontal face images.15 The data was first pre-processed
in the standard manner by aligning the faces, normalising the pixel intensities and cropping a central
oval shaped region.16 Then as an additional preprocessing step we centred the data and performed
PCA whitening, retaining the projections onto the leading 256 eigenvectors as the input dimensions

15. http://www.itl.nist.gov/iad/humanid/feret.
16. http://www.cs.coloradostate.edu/evalfacerec/index.htm.
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(A)

(B)

(C)

Figure 12: (A) 32 eigenfaces with largest eigenvalue plotted rowwise in descending eigenvalue
order. (B) Subset of 32 ‘type II’ feature vectors. The top row are hand picked, the
bottom row randomly selected. (C) Subset of 32 ‘type I’ feature vectors, all randomly
selected

to the algorithm. We trained a network with 361 features using contrastive divergence with hybrid
Monte Carlo sampling (3 sets of 20 leap frog steps). Both the wi’s and γi’s were unconstrained. The
wi’s were initialized uniformly over vectors of norm 1. The γi’s were initialized at 1. A learning
rate of 0.005 was used for the wi, whilst a learning rate of 0.001 was used for the γi.

Figure 12A shows the 32 leading eigenvectors plotted as face images, and Figure 12B shows a
subset of 32 filters as learned by our algorithm. In Bartlett et al. (2002) two kinds of square ICA
were applied to a lower resolution version of the FERET database. In relation to their work, the
filters shown in Figure 12B correspond to ‘type II’ ICA (each face constitutes an input line) rather
than ‘type I’ ICA (the value of a pixel across all faces constitutes an input line.) There seem to be
both similarities and notable differences between our features and their ‘type II’ results. As with
Bartlett et al. (2002), many of the filters that we learn are somewhat global in the sense that most
pixels have a nonzero weight. However, in addition to these global features and in contradistinction
to their ‘type II’ results, we also develop features with most of their weight concentrated in localised
sub-regions – for instance focusing on glasses, eyes, smiling mouths, moustaches, etc. Furthermore,
as well as global features that can perhaps be described as ‘archetypical faces’ we also see global
features which appear to mainly capture structure in the illumination of a face.

Lastly, Figure 12C illustrates the results when our algorithm is applied in a ‘type I’ manner
(using the pixels of the leading 256 principal components as inputs rather than the original pixel
values). This approach leads to features that are all highly localised in space. Our results are again
qualitatively similar to those described by Bartlett et al. (2002).
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Future work will show whether the overcomplete feature sets that our algorithm delivers can be
usefully employed in a face or expression recognition system.

8. Discussion

In this paper we have re-interpreted the standard ICA algorithm as an energy-based model and
studied its extension to overcomplete representations. We have shown that parameters of an EBM,
such as the filter weights and those parametrizing the energy function, can be efficiently estimated
using contrastive divergence learning. Through a number of experiments on standard data sets we
have shown that EBMs can efficiently extract useful features in high dimensions.

Contrary to causal generative models for overcomplete ICA, the features of an EBM exhibit
marginal dependencies. The advantage of allowing these dependencies in the model is fast infer-
ence. In causal generative models, the assumption of marginal independence often leads to in-
tractible inference which needs to be approximated using some iterative, data dependent scheme.
The role of these iterations can be understood as suppressing the “activity” of less relevant features,
thus producing a sparse code. Therefore, for causal generative models, overcomplete representa-
tions are expected to produce very compact (or sparse) codes, a fact which is often emphasized
as desirable (Olshausen and Field, 1997). Perhaps surprisingly, we have shown that such a slow
iterative process is not required for producing sparse and overcomplete representations.

However the above does suggest enriching EBMs with inhibitory lateral connections to achieve
the goal of further suppressing less relevant features in order to produce an even sparser represen-
tation. Preliminary experiments using a mean field approach to implement these lateral inhibitions
have been successful in learning good density models, but are slow due to the iterative optimization
for every data case.

Another powerful generalization of EBMs is a hierarchical non-linear architecture in which the
output activities are computed with a feed-forward neural network (Figure 13) and each layer may
contribute to the total energy (for related work see also Hyvrinen and Hoyer, 2001). To fit this
model to data, backpropagation is used to compute gradients of the energy with respect to both the
data vector (to be used in hybrid Monte Carlo sampling), and the weights (to be used for weight
updates). Since this algorithm applies backpropagation in an unsupervised setting and combines it
with contrastive divergence learning we have named it “contrastive backpropagation” (Hinton et al.,
2004).

Indeed, the contrastive backpropagation learning procedure is quite flexible. It puts no con-
straints other than smoothness on the activation functions or the energy functions.17 The procedure
can be easily modified to use recurrent neural networks that contain directed cycles by running each
forward pass for some predetermined number of steps and defining the energy to be any smooth
function of the time history of the activations. Backpropagation through time (Rumelhart et al.,
1986, Werbos, 1990) can then be used to obtain the required derivatives. The data-vector can also
change during the forward pass through a recurrent network. This makes it possible to model se-
quential data, such as video sequences, by running the network forward in time for a whole sequence
and then running it backward in time to compute the derivatives required for hybrid Monte Carlo
sampling and for updating the weights.

In Welling et al. (2003), a two-layer model was studied where the second layer performed a local
averaging of the non-linearly transformed activities of the first layer. This resulted in a topographic

17. There is also the necessary assumption that the energy is defined such that the Boltzmann distribution is normalizable.
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Figure 13: Architecture of a hierarchical non-linear energy-based model. Non-linearities are in-
dicated by sigmoidal units in output layer 1. Energies can be contributed by output
variables in both layers, and the number of output variables need not correspond to the
number of input variables.

ordering of the filters, where orientation, location and frequency are changing smoothly from one
filter to the next.

The energy-based approach to ICA we have presented stems from previous work on products
of experts (PoEs) (Hinton, 2002). In fact our model is a type of PoE in which each energy term
corresponds to one expert.

There is also an interesting link between EBMs and maximum entropy models (Della Pietra
et al., 1997, Zhu et al., 1997). Indeed, the probability distribution of a maximum entropy model
is also defined as a Boltzmann distribution Equation (11) over a sum of energy contributions Ei(x)
which are written as,

Ei(x) = λiui(x)

where ui(x) are fixed features of the model and where the weights λi are the parameters of the model
to be fit to data. In this sense, the proposed EBM can be interpreted as a maximum entropy model
with flexible learned features and a different energy function.

In conclusion we believe that the EBM provides a flexible modelling tool which can be trained
efficiently to uncover useful structure in data.
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