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Abstract

Planningby forward chainingthroughthe world spacehas
long beendismissedas being “obviously” infeasible. Nev-
erthelessthis approachto planning hasmary advantages.
Most importantly forward chainingplannersmaintaincom-
pletedescriptionf the intermediatestateghatariseduring
thecourseof theplan'sexecution. Thesestatesanbeutilized
to provide highly effective searctcontrol. Anotheradvantage
is that suchplannerscansupportricher planningrepresenta-
tionsthatcanmodel, e.g.,resourcesandresourceconsump-
tion. Forwardchainingplannersarestill plaguedhowever by
theirtraditionalweakness& alack of goaldirection,andthe
factthatthey searchotally orderedactionsequencedn this
papenve addressheissueof goaldirection. We presentwo
algorithmghatprovide aforwardchainingplannemwith more
informationaboutthegoal,andallow it to avoid certaintypes
of irrelevantstateinformationandactions.

Intr oduction

In this paperwe presenttwo ways of improving the effi-
cieng of aforward chainingplanner Suchplannerssearch
in the spaceof worlds generatecby applyingall possible
(totally ordered)actionsequenceso the initial state? The
two mechanismsorrespondo waysof makingtheseplan-
nersmoregoal directedby allowing themto ignoreactions
that areirrelevantto the goal. The first methodutilizes a
static analysisof the domainactions. It runsin polyno-
mial time andis performedonindividual planningproblems
prior to plansearch.The analysisallows the plannerto ig-
noresomeof the domainactionsduring planningwhile still
retainingcompletenessThe secondmethodis a dynamic
control mechanisnthat operateduring search. It prunes
from the searchspaceaction sequencesontainingactions
madeirrelevantby otheractionsin the sequenceThis has
theeffectof pruningfrom thesearctspacecertainredundant

1Copyright©1998, AmericanAssociationfor Artificial Intel-
ligence(www.aaai.og). All rightsresered.

2Thereis arangeof terminologyusedto referto suchplanners.
Weld [Wel94] calls this kind of plannera progressie world-state
plannerMcDermott{McD96] callsit searchindn thespaceof plan
prefixes,and Russelland Norvig [RN95] it call a progressie to-
tally orderedsituationspaceplanner Theterm“forward chaining”
is moresuccinctandit alsohasalong history.
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paths.Thetwo mechanismsanbe usedtogetheito achieve
evengreateimprovements.

At this point the readermay wonderwhy we are inter-
estedin forward chainingplanners sincethis approacho
planninghaslong beendismissedn the planningcommu-
nity in favor of moresophisticateépproachedn our opin-
ion, however, of all theapproacheto Al planningthathave
beendevelopedjncludingrecentinnovationdike Graphplan
[BF97] andSatplan[KS96], forward chaininghasthe most
promise. This is a controversial opinion, and althoughwe
hopeto accumulatemore evidenceto supportit, we know
thatit is anopinionthatthe reademight not share.In this
paperwe canonly offer a brief defenseof forward chaining
andwhy furtherdevelopmenbf thisapproacho planningis
worthwhile.

Forward chaining plannershave two particularly use-
ful properties. First, they maintain completeinformation
aboutthe intermediatestatesgeneratedy a potentialplan.
This information can be utilized to provide highly effec-
tive searchcontrol, bothdomainindependenbeuristiccon-
trol [McD96], andeven more effective domaindependent
control. For example, with domain specific information
in the blocksworld domain,the TLPLAN system[Bac95]
developedin [BK96b] can generatesolutionsto problems
involving 100 blocks in under 10 secondswhere as the
fastestdomain independenplanners,Graphplanand Sat-
plan,bothtakeover 1000secondso solve problemsnvolv-
ing 11 blocks.FurthermoreTLPLAN cansolve problemsn
arangeof otherdomainsordersof magnituddasterthanary
otherplanningsystem,andthe intermediatestatescanalso
be usedto ensurethat the plan satisfiesa rangeof tempo-
rally extendedconditions,of which maintenancandsafety
conditionsare just simpleinstancedBK96a]. The second
adwantageof forward chainingplannerss they cansupport
rich planninglanguagesThe TLPLAN systemfor example,
supportghefull AbL languageincludingfunctionsandnu-
meric calculations Numbersandfunctionsareessentiafor
modelingmary featuresof real planningdomains,particu-
larly resourcesndresourceeonsumption.

Neverthelessforward chaining plannershave a number
of well known deficiencieghat are at the root of their dis-
missalby the planningcommunity Oneof the mostserious
deficiencieds thatsuchplannersarenot goal directed,and
thuscanendup pursuingactionsequenceBrelevantto the



currentgoal. Thisis anespeciallyseriougproblemwhenwe

considerscalingup suchplanners.Usefulintelligentagents
will probablyhave to dealwith a rangeof differentprob-

lems,andwill have at their disposala rangeof differentac-

tions. Only a small subsetf theseactionsarelikely to be

relevantto ary particulartask.If aforwardchainingplanner
hasto explore all possibleactionsirrespecte of the goal,

thenit is ultimately doomedto failure. The algorithmswe

develophereaddresshis problem,anddoingsowe demon-
stratethatthis particularagumentagainsforward chaining
plannersanbe countered.

Of coursethere are other amgumentsagainst forward
chainingplannerghatstill remain.Mostimportantlyamong
theseis theissueof totally vs. partially orderedactionse-
guencesThefactthatforwardchainingplannersxploreto-
tally orderedactionsequenceseemainsanareaof difficulty
for suchplannersWe do not addresshisissuehere,but we
are currently exploring somemechanismgor dealingwith
this problemalso.

Theoverall aim of this andotherwork we arepursuingis
totry toimprove thebaselingperformancef forwardchain-
ing planners.Searchcontrolstill remainsan essentiatom-
ponentin makingsuchplannergperformeffectively,® but ef-
fective control information, especiallydomain specificin-
formation, is often quite expensve to acquire. By improv-
ing thebaselingperformanceave hopeto requirelesscontrol
informationandto makethe informationwe do have more
effective.

In the sequelve presenthetwo methodsve have devel-
opedfor addinggoaldirectionto forwardchainingplanners
andgive someempiricalresultsshaving their effects.

Static Relevance

Thefirst algorithmwe describes onethatoperategprior to

searchingor a plan. Hence,we call it “static” relevance.
Firstanexample. Saythatwe have the following actionsin

thedomain:

1. pre(aq1) = {P}, effects(a1) = {Q, S},
2. pre(az) = {Q}, effects(az) = {R}, and
3. pre(az) = { P}, effects(as) = {T'},

wherethe actionsare specifiedusingthe STRIPS represen-
tationwith pre beingthe setof preconditionsgffects being
thesetof effectswhich canbepositiveliterals(adds)or negy-
ative literals (deletes).

In the initial statel = {P}, bothactionsa; andas can
be executed. If thegoal G = {R}, thenit is easyto see
thatthereis noreasorto executeactionas: it doesnotyield
a goal literal nor doesit yield a preconditionthat can ulti-
matelybe usedto producea goal literal. Action ¢; onthe
otherhandproduces which canbe usedby actiona, to
produceagoalliteral. However, theotherliteral it produces,
S doesnotfacilitatetheexecutionof ary relevantactions.In
sum,for thisinitial stateandgoalthe actiona; is irrelevant
asis theliteral S producedy actiona; .

3In fact, effective searchcontrol is essentiafor the succes®f
ary planningarchitecture.

Inputs: Theinitial statel andthe goalstateG, both spec-
ified asa collectionof groundliterals, anda setof ground
actioninstancesActs specifiedusingthe STRiPS represen-
tation.

Output: A setof literals, RelvLits, andactions,RelvActs,
thatarepotentiallyrelevantto theplanningproblemof trans-
formingI to G.

Procedure Static(l, G, Acts)

1. ReacLits := I, RelvLits := G,
RelvActs := ReacActs := ;

2. ReacActs := {a: pre(a) C ReacLits};

3. if ReacActs was changed in step 2 then:
ReacLits := I U ¢ peacacts 14 : £ € effects(a)};

4. if ReacLits waschangedn step3then: gotostep2;

5. if thereexists¢ € G suchthat{ ¢ ReacLits then:
return(Failure);

6. RelvActs := {a :
RelvLits) # 0};

7. if RelvActs waschangedn step6 then: RelvLits:=
G U UaERel'vActs{e : e € pre(a)};

8. if RelvLits waschangedn step7 then goto step6;

9. return(RelvLits, RelvActs);

Tablel: StaticRelevanceAlgorithm

a € ReacActs A (effects(a) N

Our staticrelevancealgorithmis designedo detectthese
kinds of irrelevance,and as we explain below it can be
usedto simplify a planningproblemandto provide forward
chainingwith a degreeof goal direction. The algorithmfor
computingthe setof staticallyrelevant actionsandliterals
for a specificplanningproblemis givenin Table1. Theal-
gorithm takesasinput a fully groundsetof actions. This
setcanbe computedrom a setof parameterize@perators
by instantiatingthe operatorsn all possiblewayswith the
constantscontainedin the initial statel.* First the algo-
rithm performsaforwardpasgo detecthesetof potentially
reachablditeralsandactions. A literal is reachablef it is
presenin theinitial stateor if it is theeffect of somereach-
ableaction. An actionis reachablef all of the literalsin
its preconditionsarereachable.Note that markinga literal
or an actionasreachabledoesnot meanthatit is actually
reachabldrom theinitial state.In particular anactionmay
have all of its preconditiongnarkedasbeingreachablebut
the conjunctionof thesepreconditionanight in fact not be
reachable. The loop in steps2—4 computeghe reachable
sets,ReacLits and ReacActs.

Thenthe algorithm performsa backwardgpassto detect
the setof potentiallyrelevantliterals andactions. A literal
is relevantif it is reachableandit appearsn the goalor in
thepreconditiorof arelevantaction.An actionis relevantif
it is reachableandit producesarelevantliteral. Theloopin
step6—8computegherelevantsets,RelvLits and RelvActs.

“We have given the algorithmin termsof groundactions,but
our implementationn fact works directly with the parameterized
operators. It generateshe groundactionsonly on an as needed
basis.



1. Remoe all irrelevantliterals from I to form a new
initial statel’ = I N RelvLits.

2. Remae all irrelevant actionsfrom Acts to form a
new setof actionsActs’ = Acts N RelvActs.

3. Modify every actiona € Acts’ by removing from
effects(a) all literals £ suchthatboth £ and—¢ are
irrelevant(i.e., notin RelvLits).

Table2: ReducedlanningSpaceAlgorithm

Therearea numberof pointsto be madeaboutthe algo-
rithm. First, the algorithmoperate®n literals, i.e., positive
or nggative atomicfacts. Henceif the actionshave nega-
tiveliteralsaspreconditionshealgorithmcontinuego func-
tion properly The only caveatis that underthe standard
closedworld assumptiorusedby mostplanners] contains
mary implicit negative facts. The algorithmdoesnot place
thesenggative factsin thesetReacLits eventhoughthey are
in fact reachablditerals (the algorithmdoesplacenegative
factsproducedby actionsinto ReacLits). Instead,when-
ever we testa negative literal for membershipn ReacLits
(in steps2, 6, and7) theimplementatioralsoteststo seeif
theliteral is implicitly in I. The endresultis thatthe final
setRelvLits containsall relevantliterals, both positive and
negative.

Secondalthoughwe have specifiedthe two loopsasre-
computingthe setsfrom scratchijt is notdifficult to seethat
thesecomputationscan be performedincrementally Our
implementatiordoesthe computatiorincrementally

And finally, we have foundthatin practiceit is moreef-
ficientto do aninitial backwardassfrom G markingall
of the predicateand actionnameghat are potentiallyrele-
vant. In particular thisinitial passignoresthe amumentgo
the actionsandliterals. Oncethe nameshave beenmarked
we canrestricttheforwardpasgo only considediteralsand
actionswhosenamesave beenmarkedasbeingpotentially
relevant.

Utilizing Static Relevance

Oncewe have the setof relevantliterals andactionsgener
atedby theabove algorithm,we canusethemto constructa
smallerplanningspace.The smallerspacecanbeviewedas
beinga quotientspacewherethe statesof the original plan-
ning spacehave beenreducednto a smallersetof equiva-
lent classesSearchfor a plancanthenbe conductedn this
smallerspace.

In particular the original planningspaceis specifiedby
theinitial statel, the goal G, andthe setof actionsActs.
Thealgorithmgivenin Table2 constructshereducedspace
(I', Acts', G). Thealgorithmis specifiedasusingandgen-
eratinga setof groundactions.However, in ourimplemen-
tation we do not explicitly storethis set. Instead,we use
the original setof parameterizedperators,and checkthe
groundactionsandeffectsgeneratedt plantime to ensure
thatthey arerelevant.

Thereducedblanningspacepreserescompleteness.

Theorem1 Theke exists a sequencef actionsfrom Acts
that can solvethe planning problemof transforming!l to a
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Figurel: Decreasethranchingfactorusingstaticrelevance

statesatisfyingG iff there existsa sequencef actionsfrom
Acts' that can solvethe planning problemof transforming
I’ to a statesatisfyingG.

And it is notthathardto compute.

Theorem 2 Thecompleity of computinghereducedlan-
ning spaceis O(o*), whee o is the numberof domainob-
jects mentionedn the initial state’, and k£ is a constant
equalto the maximumarity of the domainopemtors and
predicates. This compleity is polynomialin the sizeof I.
More precisely let n be the numberof distinct opemtors
(theparameterizeapelatorsfromwhich thegroundactions
are geneated),let m bethe numberof domainpredicates.
Bothof theseare constantsThenthecompleity is bounded
aboveby (n + m)o*.

Thereducedlanningspaceofferstwo advantagegor for-
wardchainingplannersFirst,thereis theobviousadwantage
that by remaving irrelevant actionswe reducethe branch-
ing factorof the searchspacethey explore. The secondad-
vantageis a bit more subtle. Any searchenginecan prof-
itably employcycle checking.Breadth-firsbasedsearchof-
fersthe mostopportunityfor cycle checkinghowever, even
whenutilizing depth-firstbhasedsearchthesearchenginecan
still checkfor statecyclesalongthe currentpathbeing ex-
plored. By remaving irrelevanteffectsfrom the actionsand
theinitial statein thereducedlanningspacestatesbecome
equialentthatwould not have beenequivalentin the origi-
nal spaceandcycle checkingcanplay a greaterrole.

Empirical Results

To teststaticrelevancewe conductedhreetests. Thefirst
two are designedto show the claimed propertiesof static
relevance: thatirrelevant actionscan be ignoredwhich re-
ducesthe branchingfactor, and that eliminating irrelevant
literalsfacilitatesgreatercycle-detection.

The first testwas to run a simple blocks world prob-
lem with 4 blocksin the initial world state,and 4 blocks



in the goal state. The test consistedof addingn new ac-
tionsas, . .., a, Wherea; is theactionpre(a;) = {F;}, and
effects(a;) = {G;}. We settheinitial stateto containall of
the P; sothatall of theseextra actionsareexecutableput the
goaldoesnotcontainary G; soin factthey areall irrelevant.
A standardorward-chainingplanner(we usethe TLPLAN
systenfor all of ourtest§Bac95]),will have anincreasingly
higherbranchingfactorasn increasesbhut staticrelevance
will detectthat theseactionsare irrelevant and hencewill
not be affectedby their presence.Figure 1 shows the re-
sults. We ran TLPLAN using breadthfirst search. In the
testwe alsoran Ucpop. UcPoP usesgoal regressionso it
alsois unafectedby theseextra actions. Theresultsshov
that with staticrelevanceTLPLAN, like UcpPoP, is ableto
achieve aruntimeunafectedby n, withoutit its complexity
climbsrapidly.

Thenext testis designedo shaw thatstaticrelevancefa-
cilitatescycle detection.Again we usethe block world do-
main, but this time we makemultiple copiesof eachof the
operatorsin particular we makethreecopiesof eachof the
operatorickup, putdovn, stack andunstack For the:-th
copy(: = 1,2, 3), of pickupandunstackwe addthe effects
extral(i) and—-extra2(z), andfor putdavn andstackwe add
theeffectsextra2(s) and—extral(s).

Neither of the predicatesxtral or extra2 appeatin the
goal, andthusthey areirrelevant. Without staticrelesance,
TLPLAN is unableto utilize cycle-checkingproperly as
eventhoughacycle mightbe presenin the standardlocks
world componenbf theworld, thevariouschangeso theex-
traliteralsextral andextra? makegheworld different(most
of thetime). Whenstaticrelevanceis used however, we see
thatthis extendeddomainreducego the original blocksdo-
main (with threecopiesof eachoperator).

Our testconsistedof running 10 random3 blocks prob-
lems (to corvert a randominitial stateto a randomgoal
state). Without the irrelevant literals TLPLAN took 0.061
secondsn total run time to executethe testsbut whenthey
werepresentts runtimeroseto 13.92secondsWhenstatic
relevanceis usedthis droppedbackdown to 1.98seconds.

The final testwasdesignedo addresghe classicalcrit-
icism of forward chainingplannersthatthey cannotscale
up in thefaceof increasinghumbersf availableactions.In
thistestwe usedablocksworld problemcontainings blocks
thattakesTLPLAN 1.4 secondgo solwe usingbreadth-first
searchexploring 741worlds.

Then we added in a number of additional (non-
interacting)domains,running TLPLAN with the union of
the domainactionsandwith aninitial statethat contained
literals from the other domains(so that the additionalac-
tions were executable). The domainswe addedwere stan-
dard test domains: the monke/ and bananasyocket, lo-
gistics, and tires domains,as well as an artificial domain
containing20 actions. After addingin only one extra do-

5The differencebetweerthis andthe original run time arises
from the extra time requiredto run the staticrelevancealgorithm
aswell assomeplantime overheadrequiredby our implementa-
tion. Thislatteroverheactouldbereducedy amoresophisticated
implementation.

main TLPLAN wasunableto solve the original problemaf-

ter searchingb000 worlds. With static relevancehowever

its runtime returnedto the previous 1.4 secondgapproxi-
mately) and stayedthereaswe keptincreasingthe number
of additionaldomains.

In all casesthe staticrelevancealgorithmtook approxi-
mately0.03 secondgo execute:its run time remainedcon-
stantas we increasedhe numberof extra domains. This
wasdueto theinitial backwardgpass(mentionedoriefly in
thetext above) thatmarksactionandpredicatenamesprior
to theforwardreachabilitypass.In thistesttheinitial back-
wardspassds ableto eliminateall of theactionsfrom the ex-
tradomaindrom ary furtherprocessingAlso the planners
run time did not increasebecausehe staticrelevancealgo-
rithm is ableto remove the otherdomains’operatordrom
thelist of operatorgrior to planning: sinceno instanceof
ary of theseoperatorsappearsn the setof relevantactions,
the plannerdoesnot needto considerthematall.®

Related Work

Oneway of understandingtaticrelevanceis to view it asa
mechanisnthatallows aforwardchainingplannerto realize
someof the benefitsof partial order planners(in particu-
lar, plannersbasedon the SNLP algorithm[MR91]). When
suchplannersaaddactiongto thepartialplansthey aresearch-
ing, they only consideractionsthatachiere openconditions.
Suchconditionscanonly begenerateih theplanby thegoal
or by the preconditionf an actionaddedto achiere some
prior opencondition. It is not hardto seethat staticrele-
vanceis essentiallycomputingthe setof all the actionsthat
could potentially achieze an openconditionin someplan.
The key differenceis thatit alsotakesinto accountthe ac-
tion bindingsthatarereachabldrom theinitial state.

Gereini and Schuberf{GS9§ have developedan algo-
rithm for computingactionbindingsthatarereachabldérom
theinitial state.They thenusethis informationin an SNLP-
style planner(Ucpropr [PW92), to help it avoid exploring
actionsthatarerelevant but not reachable Their algorithm
is closelyrelatedto ours. Thekey differences thatthey use
their algorithmto computereachabilityinformation,where
aswe useoursto computerelevanceinformation.Also they
work with setsof bindingsinsteadof fully groundliterals
andactions.Fully groundliterals provide strongerinforma-
tion thansetsof binding (i.e., the relevancesetscomputed
aresmaller),andwe have foundthatthereis hardlyarny com-
putationaltime penaltyover working with setsof bindings.
We alsodealwith negative literals. We do not, however, deal
with ADL actionswhereas Gereini and Schubert algo-
rithm canhandlethewhen clause®f ADL actions.It would
not be difficult, however, to extendour algorithmto handle
this caseaswell.

®In somecasesan operatommay have somerelevantinstances
andsomeirrelevantinstances Sincethe plannerworkswith oper
atorsnot actions(operatoiinstances)it mustconsidetthe operator
instancegjeneratedt plantime to determinewhetheror notit is
relevant. This addsa constantime overheadat plantime. How-
ever, whenno instancds relevant, we caneliminatethatoverhead
by remaving the operatorentirely



Ourstaticrelevancealgorithmis alsosomeavhatrelatedo
the planninggraphconstructiorof Graphplan:bothcanbe
viewed asbeinga type of reachabilityanalysis.Onediffer-
enceis thatwe do not computeexclusiity sets. To do so,
however, Graphplars planninggraphmustgrow with the
lengthof theplan. An interestingquestionis whetheror not
someexclusiity information canbe gained(which would
allow furtherreductionof therelevancesets)withoutpaying
theplanlengthfactor

Nebelet al. [NDK97] point out that the size of Graph-
plan’s planninggraphcan be a seriousissuein its perfor
mance andthey have developeda collectionof heuristicso
deteciirrelevantliterals. Theirheuristicsareableto detecir-
relevancesbeyondwhatour algorithmcandetect.However,
in doing sothey losecompletenesstheir heuristicscanre-
move relevantinformationthusrenderinghe planningprob-
lem unsohable. Neverthelessit may be possibleto utilize
someof theirtechniquedo extendour approach.

Dynamic Relevance

Staticrelevanceis ausefulideabut it is relatively weak.lt is
particularlyproblematiovhentestingwith thestandarduite
of planningtestdomains.Invariably thesetestdomainsare
designedo generateplansfor one particularpurpose,and
oftenall of theactionsin thedomainendup beingstatically
relevantfor the planningproblemat hand(althoughnot all
of theeffectsdo).

In this sectionwe describeanotheralgorithmthat keeps
track of relevance dynamically Again we can moti-
vate the idea with an example. Considerthe standard
blocks world with four operatorspickup, putdovn, stack
and unstack Say that in the initial world we have
{ontablda), ontablgb), ontabld¢), ontabldd) }. Now con-
sidertheactionsequenc@ickup(a), stackKa, b), pickup(c),
stacKc, d), unstacKa, b), putdavn(a). It is clearthatthere
wasnever ary needto move blocka, andthattheshorterac-
tion sequencepickup(c), stacKc, d) would have achiered
the samefinal state. Unfortunately unlesswe are doing
blind breadth-firssearctthereis no guarante¢hattheplan-
nerwould have seenand rememberedhe shorterplan be-
fore it visited the longer sequence.Dynamic relevanceis
designedto prunesuchsequence$rom the searchspace.
We thusavoid having to searchall of the descendantsf the
prunedsequencaswell, which meanghatsuchpruninghas
canpotentiallyyield exponentialsavingsduringsearch.

Dynamic relevanceis basedon checkingto seeif an
action sequencéiasa (not necessarilycontiguous)subse-
guenceof actionsthat are irrelevant. Consideran action
sequenc€ag, a1, az, as, ¢4, az). We can split sucha se-
quenceinto two subsequence® = {ao,a3,as} andR =
{a1,as, as}. Thequestions “When arethe actionsin Rir-
relevant?” Thereareprobablymary differentanswerdo this
guestionput anobviousoneis thefollowing:

Definition 3 A subsequencR of an actionsequencés ir-
relevantwhen

1. R, the complemenbf R is an executablesequence
(from theinitial state),and

2. whenR is executedit yields the samefinal stateas
theentireactionsequence.

Intuitively, the definition saysthat R, the complement
of R, is equialentto the entire sequenceand henceR
is irrelevant. It shouldbe clear that completenesss pre-
sened whenwe pruneactionssequencesontainingirrele-
vantsubsequencdsom the forward chainingsearchspace.
It shouldalsobe clearthatthis definition coversthe exam-
ple givenabove. In particular the subsequencpickup(a),
stacKa, b), unstacKa, b), putdovn(a), is irrelevant.

Our definition does not cover all intuitively irrel-
evant cases, however. Consider the sequence of
actions pickup(a), stacKa,b), pickup(c), stacKe,d),
unstacKa, b), stacKa, ¢). The shortersequencgickup(c),
stacKc,d), pickup(a), stackKa,c) would have achiered
the samefinal state. However, the first sequenceontains
no irrelevant subsequencesTo detectcaseslike this we
would needa mechanisnthat can realize that the actions
stacKa, b) and unstacKa, b) canberemoved andthenthe
remainingactionsreorderedso that pickup(a) comesjust
prior to stacKa, ¢). Futurework may be ableto find some
additionalcaseghatcanbe detecteckfficiently.

It is possibleto give syntacticteststhatgivena sequence
and a subsequencean test if the subsequencés irrele-
vant. Thatis, we have developedsyntacticversionsof the
abore semantiaefinition. However, for our forward chain-
ing planneywe have foundthatit is mostefficientto imple-
mentthe testdirectly by simply executingthe complement
to determindf it is in factexecutableandyieldsanidentical
final state.

Our definition providesa fairly efficient testfor whether
or not a particularsubsequences irrelevant. However a
given sequencesontainsan exponentialnumberof subse-
guencesDetectingwhetheroneof themis irrelevantseems
to behard(we suspecthatthisis NP-hard).Sothe question
becomedow to testactionsequenceselatively efficiently
andstill detecta usefulnumberof onesthat containirrele-
vantsubsequences.

To addresghis problemwe have developeda greedyal-
gorithmthathascompleity linearin thelengthof theaction
sequenceThusit imposesanO(depthof thenode)overhead
on eachnodeexpandedn the searchspace.ln thedomains
we testedthe algorithmis able pruneaway sufiicient nodes
in the searchspaceto morethanmakeup for this overhead.
In futurework we intendto analyzethetradeof betweerthe
algorithm’s overheadandthereductionin the searchspace
it yieldsin moredetail.

The algorithm examinesa sequencef actionsandtries
to greedily constructa relevant subsequencehus possibly
detectingthat the sequencéhas an irrelevant subsequence
(thecomplemenbf thegreedilyconstructedelevantsubse-
guence).For eachactione; in the sequencét placesall of
the previousactionsa;, j < %, into asubsequenck anda;
into thesubsequendg. Thenfor eachsubsequerdctiona,,
1 < £, it greedilytriesto placea, into Rby checkingto seeif
ay is executablegiventhecurrentcontent®of R. Risasubse-
guenceof actionswhosefirst omittedactionis a; andwhose
otheromittedactionsarethosethatdependean a condition



Inputs: An action sequenceP = (aj,...,a,), @ NN
growndactiona, W the world generatedy executingthe
sequenceP in the initial state,a list of alternateworlds
AltWorld, suchthat AltWorld(«;) is the alternateworld as-
sociatedwith actiona;. AltWorld(a;) storestheworld gen-
eratedby thegreedysubsequenc&hosefirst omittedaction
is a;. If AltWorld(a;) is thesameworld asthatproducedoy
P we know thatwe have detecteda subsequencef P that
hasthe sameeffectsas P (henceP containsan irrelevant
subsequencelt is assumedhata is executablen W.
Output: Fail if we detecthata generatesnirrelevantsub-
sequenceglsetheextendedactionsequencé + a, thenew
final world W' = «(W), andanew list of alternateworlds,
AltWorld’ onefor every actionin theextendedsequence.

Procedure Dynamic(P, a, W, AltWorld)
1 W =a(W),
2. fori:=1ton

(@ if a is executable in AltWorld(a;) then:
AltWorld' (a;) := a(AltWorld(a,)) (greedilyadd
it to the subsequencehosefirst omittedaction
is a;);
eIse?AItV\brId’(ai) := AltWorld(a; );

(b) if Altworld'(a;) = W then: return(Fail) (we
have detecteda subsequencehosecomplement
isirrelevant);

3. Altworld'(a) = W.
4. return(P + a, W', AltWorld").

Table3: DynamicRelesanceAlgorithm

producedy a;. Finally, it checksto seeif the complement
of Risirrelevantby checkingto seeif theactionsin Ryield
the samefinal stateasthe entiresequenceA moreefficient
incrementaimplementatioris givenin Table3. This algo-
rithm would be called wheneer we try to grow an action
sequencéy addinga new actiona. It returnseitherthein-
crementedaction sequencer rejectsa asbeinganillegal
extensionto thesequencé.e., it hasdeterminedhata gen-
eratesanirrelevantsubsequencelt shouldbe notedthat,in
thealgorithm,if thecurrentplan P is emptythenn = 0 and
theloop of step2 is never executed.

For example, say the planner examines the action
sequencepickup(a), stacKa,b), pickup(c), stacKe,d),
unstacKa, b), putdovn(a), givenabove. Whenit examines
the greedysubsequencstartingat pickup(a), it will place
pickup(a) in R, stacKa, b) in R, pickup(c) in R, stacKc, d)
in R, unstacKa, b) in R, andputdavn(a) in R. Thenit can
detectthatR = (pickup(c), stacKc, d)) yieldsthe samefi-
nal stateastheentiresequence.

As indicatedabove our greedyalgorithmdoesnot detect
all irrelevantsubsets Onesimpleexampleis the actionse-
guencezs, as, a3 anday, where— Py, =P, and—P; holdin
theinitial state.If a; addsP;, a, addsP,, a3 addsPs5, and
a4 deletesP; and P, thenthe subsequence,, a,, anday
areirrelevant. However, our algorithmwill not detectthis.
In this example,therearetwo “roots” in the irrelevantsub-
sequenceg; anda,. Our algorithmcanonly detectsingly
rootedirrelevantsubsequence§.heseideascanbe formal-

izedandthealgorithmextendedo detectk rootedirrelevant
subsequence®Vhenk > thelengthof theactionsequence,
all irrelevant subsequencesanbe detected.Unfortunately
the compleity of the algorithm grows exponentially with
k, and sinceirrelevancedetectionmust take place during
searchwe doubtthatthe £ > 1 versionswould be of prac-
tical importance As our empiricalresultswill demonstrate,
thegreedyk = 1 algorithmworkswell in practice.
Oneway of viewing dynamicrelevanceis onceagainto
compareit with what partial order plannersdo. In partic-
ular, SNLP style plannersensurethatno causalink is ever
violated. This meanghatevery actionin ary planexplored
must producesomething‘useful”. In partthis is what dy-
namicrelevancedetects:if all of anaction's effectsaresu-
persedegbrior to beingusedthatactionwill form anirrele-
vantsubset.However, dynamicrelevancegoesfurtherwith
its ability to detectthatcertainsubset®f actionswhencon-
sideredtogetherareredundant.

Combining Dynamic and Static Relevance: Unlike the
staticrelevancealgorithm, dynamicrelevancedoesnot de-
pendon the syntacticform of the actions,and can work

equallywell with STRIPS or ADL actions. Furthermoreijn

thosedomainswhere we can use static relevancewe can
apply both typesof relevancedetection. In particular we

canapplydynamicrelevancepruningwhensearchinghere-

ducedspaceproducedy staticrelevance.The experiments
we presenin thenext sectiondemonstratéhatthereis con-
siderablebenefitto be gainedfrom thecombination.

Empirical Results

For our first experiment,we consideredrussells flat tire
domain,wherethe generaltaskis to changea flat tire us-
ing actionssuchasinflatinganew tire, remaving anoldtire,
etc. In theinitial state,we have aflat tire on the hub, and
a naw, uninflatedtire, aswell asthe requiredtools, in the
trunk. Thestandardfix aflattire” goalfor thisdomain(the
fixit problemin the UcpPop distribution) contains9 literals.
In the experimentwe alwaysusedthe sameinitial statebut
generatedandomplanningproblemsof sizen (from 1-9)
by settingthe goalto be a randomlyselectedsizen subset
of the standardyoal literals. Further for eachn we choose
15randomgoalsof sizen (samplingwith replacemensince
for somevaluesof n therearelessthan 15 distinct candi-
date goals) and computedthe averagerun time. We ran
TLPLAN both with andwithout dynamicrelevancedetec-
tion, and UcpPoP using one of its distributed searchcon-
trol mechanisméwhich performsbetterthanthedefaultbest
first search).UcpPopP's performances dependenbn thein-
put orderof the goal literals, so whentestingUcpPopr on a
particularproblemwe ranit on 10 randompermutation®f
thegoal,takingtheaverage(thusrunningUcprop 150times
for eachvalueof n). TLPLAN ontheotherhandis indepen-
dentof the goalorderingso only onetestwasrequiredfor
eachproblem.Theresultsareshovn in Figure2.

Most problemswith » > 2 proved to be too hard for
bothTLPLAN andUcpPop (within thegivensearctbounds).
However, with dynamicrelevancedetection, TLPLAN was
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Figure2: Performancén theflat tire domain.

ableto solwve all of the problemsfor all testedsizes.In this
domaindynamicrelevanceis ableto capturesomenatural
andeffective controlinformationto help TLPLAN. For ex-
ample,onceactionswere executedto remove the flat tire
from the hub,actionsputtingit backon thehubwerenotal-
lowed, asthey would underminethe effectsof the previous
actions.Anotherexampleis thattoolscouldnot be put back
into the trunk until they wereused.

Whenn = 9 theproblemsgeneratedvereall thesameas
the standardyoal. TLPLAN with dynamicrelevancedetec-
tion took around1.97 secondgo solwe this problem,while
Ucropr wasonly ableto solve 41 out of the 150 problems
within thegivensearchhoundgi.e., it only solved41 out of
150differentrandompermutation®f thegoal).

The secondexperimentwe conducteduseda simplified
versionof the logisticsdomain. The logisticsdomainis a
very difficult domainfor totally orderedplannersbecause
such plannerscannottake advantageof the fact that the
movementsof the variouspackagesand vehiclesareinde-
pendenbf oneanother Neitherdynamicnorstaticrelevance
detectiondo arnything about the issue of total-orderings.
Hence, TLPLAN runsvery slowly onthis domainevenwith
relevancedetection. As a result,we useda simplified ver
sion of thedomain,wherethereareonly two cities,andwe
arerequiredto sendpackage$rom onecity to another The
problemswe usedin the experimentall containedaninitial
statein which 10 packagesverelocatedin onecity, andthe
goal wasto send: of the packagedo the othercity. We
ran TLPLAN, with andwithout bothdynamicandstaticrel-
evancedetection,using depthfirst search. The resultsare
shavnin Figure3.

TLPLAN without relevancedetectioncouldnot solve the
problem even for one package. TLPLAN with only dy-
namicrelevancehadsimilar difficultiesandwasalsounable
to solve ary of the problems. With staticrelevance,things
improved and TLPLAN was ableto solve up the 3 pack-
ageproblem. However with both typesof relevancedetec-
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Figure3: Performancén thesimplifiedlogisticsdomain.

tion, we wereableto boostthe performancesignificantly—
TLPLAN managedo solve the 6 packageproblembefore
thesearcHimit wasreached.

Thereare two distinctwaysin which irrelevanceoccurs
in this domain. The first one hasto do with the packages
thatdo not appeaiin thegoal. Actionsto move thesepack-
agesgreatly (and needlessly)ncreasethe branchingfactor
of the searchspace. The secondone hasto do with ac-
tions that undo the effects of an earlier action, for exam-
ple an“(unload packageruckl)” following a “(load pack-
ageltruckl)”. Marny actionsequencesontainsuchirrel-
evant subsequenceslt is clearthat staticrelevanceis ex-
actly whatis neededo detectthe first type of irrelevance,
while dynamicrelevanceis exactly whatis requiredo detect
the secondype of irrelevance. Either of theseirrelevances
sene to makeTLPLAN very inefficientwhensolving prob-
lems,which is why both dynamicrelevanceandstaticrele-
vancedetectiondo notwork very well by themseles.When
both dynamicand staticrelevancedetectionare employed,
TLPLAN is givenaconsiderabl@erformancédooost.

Conclusions

Our results demonstratethat considerablegains can be
achieved by addingthe notions of relevanceinto forward
chaining. A traditional agumenthas beenthat forward
chainingcannotscaleup becaus®f thelarge numberof ac-
tions a real agentcan execute. However, if mostof these
actionsareirrelevant for ary particulartask (aswe would
expectthemto be),thenour resultsshav thatfairly simple
notionsof irrelevancecanbe utilizedto ignorethem.Hence,
ourwork shavsthatthis particularagumentagainsforward
chainingis invalid.

Nevertheless,it is equally clear from our experiments
thatforward chainingplannersare“still notreadyfor prime
time; evenwhenaugmentedvith notionsof relevance.As
we discussedh theintroduction wefeel thatforwardchain-
ing hasconsiderablgotential,andit is for this reasonthat



we arepursuingthisandotherwork thatis aimedatimprov- [RN95] S.RussellandP Norvig. Artificial IntelligenceA

ing the “baseline” for forward chainingplanners.Thatis, ModernAppmoad. PrenticeHall, 1995.
we wantto enhancehe performancef suchplannersprior [Wel94] D. Weld. An introductionto leastcommitment
to applyingary domainindependenbr domaindependent planning. Al Magazine 15(4):27—611994.

heuristiccontrol. Our experimentshave shavn thatthe next
thing that needsto be addressedre the inefficienciespro-
ducedby usingtotal orderings We arecurrentlyworkingon
approacheto this problem.
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