
Making Forward Chaining Relevant

FahiemBacchus
Dept.of ComputerScience

Universityof Waterloo
Waterloo,Ontario
Canada,N2L 3G1

fbacchus@logos.uwaterloo.ca

YeeWhyeTeh
Dept.of ComputerScience

Universityof Toronto
Toronto,Ontario

Canada,M5S1A4
ywteh@logos.uwaterloo.ca

Abstract

Planningby forward chainingthroughthe world spacehas
long beendismissedasbeing “obviously” infeasible. Nev-
ertheless,this approachto planninghasmany advantages.
Most importantly forward chainingplannersmaintaincom-
pletedescriptionsof the intermediatestatesthatariseduring
thecourseof theplan’sexecution.Thesestatescanbeutilized
to providehighlyeffectivesearchcontrol.Anotheradvantage
is thatsuchplannerscansupportricherplanningrepresenta-
tions that canmodel,e.g.,resourcesandresourceconsump-
tion. Forwardchainingplannersarestill plaguedhoweverby
their traditionalweaknesses:a lack of goaldirection,andthe
fact thatthey searchtotally orderedactionsequences. In this
paperwe addresstheissueof goaldirection.We presenttwo
algorithmsthatprovideaforwardchainingplannerwith more
informationaboutthegoal,andallow it to avoid certaintypes
of irrelevantstateinformationandactions.

Intr oduction
In this paperwe presenttwo waysof improving the effi-
ciency of a forwardchainingplanner. Suchplannerssearch
in the spaceof worlds generatedby applyingall possible
(totally ordered)actionsequencesto the initial state.2 The
two mechanismscorrespondto waysof makingtheseplan-
nersmoregoaldirectedby allowing themto ignoreactions
that are irrelevant to the goal. The first methodutilizes a
static analysisof the domain actions. It runs in polyno-
mial timeandis performedonindividualplanningproblems
prior to plansearch.Theanalysisallows the plannerto ig-
noresomeof thedomainactionsduringplanningwhile still
retainingcompleteness.The secondmethodis a dynamic
control mechanismthat operatesduring search. It prunes
from the searchspaceactionsequencescontainingactions
madeirrelevantby otheractionsin the sequence.This has
theeffectof pruningfrom thesearchspacecertainredundant

1Copyright c
�

1998,AmericanAssociationfor Artificial Intel-
ligence(www.aaai.org). All rightsreserved.

2Thereis a rangeof terminologyusedto referto suchplanners.
Weld [Wel94] calls this kind of plannera progressive world-state
planner, McDermott[McD96] callsit searchingin thespaceof plan
prefixes,andRussellandNorvig [RN95] it call a progressive to-
tally orderedsituationspaceplanner. Theterm“forward chaining”
is moresuccinctandit alsohasa longhistory.

paths.Thetwo mechanismscanbeusedtogetherto achieve
evengreaterimprovements.

At this point the readermay wonderwhy we are inter-
estedin forward chainingplanners,sincethis approachto
planninghaslong beendismissedin the planningcommu-
nity in favor of moresophisticatedapproaches.In ouropin-
ion, however, of all theapproachesto AI planningthathave
beendeveloped,includingrecentinnovationslike Graphplan
[BF97] andSatplan[KS96], forwardchaininghasthemost
promise. This is a controversialopinion, andalthoughwe
hopeto accumulatemoreevidenceto supportit, we know
that it is anopinionthat thereadermight not share.In this
paperwe canonly offer a brief defenseof forwardchaining
andwhy furtherdevelopmentof thisapproachto planningis
worthwhile.

Forward chaining plannershave two particularly use-
ful properties. First, they maintaincompleteinformation
aboutthe intermediatestatesgeneratedby a potentialplan.
This information can be utilized to provide highly effec-
tive searchcontrol,bothdomainindependentheuristiccon-
trol [McD96], andeven more effective domaindependent
control. For example, with domain specific information
in the blocksworld domain,the TLPLAN system[Bac95]
developedin [BK96b] can generatesolutionsto problems
involving 100 blocks in under 10 seconds,where as the
fastestdomain independentplanners,Graphplanand Sat-
plan,bothtakeover 1000secondsto solveproblemsinvolv-
ing 11blocks.Furthermore,TLPLAN cansolveproblemsin
arangeof otherdomainsordersof magnitudefasterthanany
otherplanningsystem,andthe intermediatestatescanalso
be usedto ensurethat the plan satisfiesa rangeof tempo-
rally extendedconditions,of which maintenanceandsafety
conditionsare just simple instances[BK96a]. The second
advantageof forwardchainingplannersis they cansupport
rich planninglanguages.TheTLPLAN systemfor example,
supportsthefull ADL language,includingfunctionsandnu-
mericcalculations.Numbersandfunctionsareessentialfor
modelingmany featuresof realplanningdomains,particu-
larly resourcesandresourceconsumption.

Nevertheless,forward chainingplannershave a number
of well known deficienciesthat areat the root of their dis-
missalby theplanningcommunity. Oneof themostserious
deficienciesis thatsuchplannersarenot goaldirected,and
thuscanendup pursuingactionsequencesirrelevant to the

currentgoal.This is anespeciallyseriousproblemwhenwe
considerscalingup suchplanners.Useful intelligentagents
will probablyhave to deal with a rangeof differentprob-
lems,andwill have at their disposala rangeof differentac-
tions. Only a small subsetof theseactionsarelikely to be
relevantto any particulartask.If a forwardchainingplanner
hasto explore all possibleactionsirrespective of the goal,
thenit is ultimately doomedto failure. Thealgorithmswe
develophereaddressthisproblem,anddoingsowedemon-
stratethatthisparticularargumentagainstforwardchaining
plannerscanbecountered.

Of course there are other argumentsagainst forward
chainingplannersthatstill remain.Most importantlyamong
theseis the issueof totally vs. partially orderedactionse-
quences.Thefactthatforwardchainingplannersexploreto-
tally orderedactionsequencesremainsanareaof difficulty
for suchplanners.We donot addressthis issuehere,but we
arecurrentlyexploring somemechanismsfor dealingwith
thisproblemalso.

Theoverall aim of thisandotherwork wearepursuingis
to try to improvethebaselineperformanceof forwardchain-
ing planners.Searchcontrolstill remainsanessentialcom-
ponentin makingsuchplannersperformeffectively,3 but ef-
fective control information,especiallydomainspecificin-
formation,is oftenquiteexpensive to acquire.By improv-
ing thebaselineperformancewehopeto requirelesscontrol
informationandto makethe informationwe do have more
effective.

In thesequelwe presentthetwo methodswe have devel-
opedfor addinggoaldirectionto forwardchainingplanners
andgive someempiricalresultsshowing their effects.

Static Relevance
Thefirst algorithmwe describeis onethatoperatesprior to
searchingfor a plan. Hence,we call it “static” relevance.
First anexample.Saythatwe have thefollowing actionsin
thedomain:

1. �������	��
��������� , �������������	��
�����! #"%$�� ,
2. �������	�'&������ �� , �������������	�'&��(��!)*� , and
3. �������	��+!�������� , �������������	��+,�����-.� ,

wheretheactionsarespecifiedusingthe STRIPS represen-
tationwith �/�0� beingthesetof preconditions,�����0�,��� being
thesetof effectswhichcanbepositiveliterals(adds)or neg-
ative literals(deletes).

In the initial state123����� , both actions��
 and ��+ can
be executed. If the goal 456�!)*� , then it is easyto see
thatthereis no reasonto executeaction � + : it doesnotyield
a goal literal nor doesit yield a preconditionthat canulti-
matelybe usedto producea goal literal. Action �/
 on the
otherhandproduces which canbe usedby action �'& to
produceagoalliteral. However, theotherliteral it produces,
$ doesnotfacilitatetheexecutionof any relevantactions.In
sum,for this initial stateandgoaltheaction ��+ is irrelevant
asis theliteral $ producedby action �
 .

3In fact, effective searchcontrol is essentialfor thesuccessof
any planningarchitecture.

Inputs: The initial state1 andthegoalstate 4 , bothspec-
ified asa collectionof groundliterals, anda setof ground
actioninstances78�,��� specifiedusingthe STRIPS represen-
tation.
Output: A setof literals, 9:��;=<%>@?A�	� , andactions,9:��;=<%78�,��� ,
thatarepotentiallyrelevantto theplanningproblemof trans-
forming 1 to 4 .

Procedure BDC,EFC,GIHJ��1'"�4#"�7K���	���
1. 9��0LJ�0>(?A���NMOP1 ; 9��Q;O<�>(?A���RMST4 ;
9���;=<%78���	�RMON9��0LJ�078�,����MONU ;

2. 9��0LJ�07K���	��MOV�,�WM!�������	�'�RXY9��0LJ�0>(?��	�!� ;
3. if 9��0LJ�07K����� was changed in step 2 then:
9��0LJ�0>(?A����MOP1[Z]_^!`JaDb�c�dfe�dhgji���k.M!k.l2�����0�,�������m�%� ;

4. if 9��0LJ�0>(?A��� waschangedin step3 then: gotostep2;
5. if thereexists k]lY4 suchthat k2nlY9��0LJ�0>(?A��� then:

return(Failure);
6. 9���;=<%78���	�#MOo�,��M.�plq9��0LJ�078�,���srt�u�����0�,�������m��v
9���;=<%>@?A���,�.nwUm� ;

7. if 9���;=<%78���	� waschangedin step6 then: 9:��;=<%>@?A�	��MO
4xZ]\#^!`JaDbzy {he�dugji��Qk[M|kKl]�/�0�J�	�'�%� ;

8. if 9��Q;O<�>(?A��� waschangedin step7 then goto step6;
9. }!~�C��(}!���A9��Q;O<�>(?��	�!"�9��Q;O<�7K���	�,� ;

Table1: StaticRelevanceAlgorithm

Our staticrelevancealgorithmis designedto detectthese
kinds of irrelevance,and as we explain below it can be
usedto simplify a planningproblemandto provide forward
chainingwith a degreeof goaldirection.Thealgorithmfor
computingthe setof staticallyrelevant actionsandliterals
for a specificplanningproblemis givenin Table1. Theal-
gorithm takesas input a fully groundsetof actions. This
setcanbecomputedfrom a setof parameterizedoperators
by instantiatingthe operatorsin all possiblewayswith the
constantscontainedin the initial state 1 .4 First the algo-
rithm performsaforwardpassto detectthesetof potentially
reachableliteralsandactions. A literal is reachableif it is
presentin theinitial stateor if it is theeffect of somereach-
ableaction. An action is reachableif all of the literals in
its preconditionsarereachable.Note thatmarkinga literal
or an actionas reachabledoesnot meanthat it is actually
reachablefrom theinitial state.In particular, anactionmay
have all of its preconditionsmarkedasbeingreachable,but
the conjunctionof thesepreconditionsmight in fact not be
reachable.The loop in steps2–4 computesthe reachable
sets,9��0LJ�0>(?A��� and 9��0L���78�,��� .

Thenthe algorithmperformsa backwardspassto detect
the setof potentiallyrelevant literalsandactions.A literal
is relevant if it is reachableandit appearsin the goalor in
thepreconditionof a relevantaction.An actionis relevantif
it is reachableandit producesa relevant literal. Theloop in
step6–8computestherelevantsets,9��Q;O<�>(?��	� and 9:��;=<%78�,��� .

4We have given the algorithmin termsof groundactions,but
our implementationin fact worksdirectly with theparameterized
operators. It generatesthe groundactionsonly on an as needed
basis.

1. Remove all irrelevant literals from 1 to form a new
initial state1J�/t1[v]9��Q;O<�>(?��	� .

2. Remove all irrelevant actionsfrom 78�,��� to form a
new setof actions78���	� � �78�,���@v]9��Q;O<�78�,��� .

3. Modify every action �wlp78�,��� � by removing from
�����0�,�������m� all literals k suchthat both k and ��k are
irrelevant(i.e.,not in 9��Q;O<�>(?A���).

Table2: ReducedplanningSpaceAlgorithm

Therearea numberof pointsto bemadeaboutthealgo-
rithm. First, thealgorithmoperateson literals, i.e., positive
or negative atomic facts. Henceif the actionshave nega-
tiveliteralsaspreconditionsthealgorithmcontinuesto func-
tion properly. The only caveat is that underthe standard
closedworld assumptionusedby mostplanners,1 contains
many implicit negative facts. Thealgorithmdoesnot place
thesenegative factsin theset 9��0LJ�0>(?��	� eventhoughthey are
in fact reachableliterals(thealgorithmdoesplacenegative
factsproducedby actionsinto 9��0L���>@?A�	�). Instead,when-
ever we testa negative literal for membershipin 9��0LJ�0>(?��	�
(in steps2, 6, and7) the implementationalsoteststo seeif
the literal is implicitly in 1 . The endresultis that the final
set 9��Q;O<�>(?��	� containsall relevant literals,both positive and
negative.

Second,althoughwe have specifiedthe two loopsasre-
computingthesetsfrom scratch,it is notdifficult to seethat
thesecomputationscan be performedincrementally. Our
implementationdoesthecomputationincrementally.

And finally, we have foundthat in practiceit is moreef-
ficient to do an initial backwardspassfrom 4 markingall
of the predicateandactionnamesthat arepotentiallyrele-
vant. In particular, this initial passignorestheargumentsto
theactionsandliterals. Oncethenameshave beenmarked
wecanrestricttheforwardpassto only considerliteralsand
actionswhosenameshave beenmarkedasbeingpotentially
relevant.

Utilizing Static Relevance
Oncewe have thesetof relevant literalsandactionsgener-
atedby theabove algorithm,wecanusethemto constructa
smallerplanningspace.Thesmallerspacecanbeviewedas
beinga quotientspacewherethestatesof theoriginalplan-
ning spacehave beenreducedinto a smallersetof equiva-
lent classes.Searchfor a plancanthenbeconductedin this
smallerspace.

In particular, the original planningspaceis specifiedby
the initial state 1 , the goal 4 , andthe setof actions 78���	� .
Thealgorithmgivenin Table2 constructsthereducedspace
�	1���"%78�,��� � "�4*� . Thealgorithmis specifiedasusingandgen-
eratinga setof groundactions.However, in our implemen-
tation we do not explicitly storethis set. Instead,we use
the original set of parameterizedoperators,and checkthe
groundactionsandeffectsgeneratedat plantime to ensure
thatthey arerelevant.

Thereducedplanningspacepreservescompleteness.

Theorem 1 There exists a sequenceof actionsfrom 7K�����
that can solvetheplanningproblemof transforming1 to a

0 2 4 6 8 10 12 14 16 18 20
10

−2

10
−1

10
0

10
1

10
2

R
un

 ti
m

e
in

 s
ec

on
ds

 (
lo

g
sc

al
e)

Number of irrelevant actions

TLPLAN
UCPOP
Static Relevance − plan time
Static Relevance − preprocessing

Figure1: Decreasedbranchingfactorusingstaticrelevance

statesatisfying4 if f there existsa sequenceof actionsfrom
78���	� � that can solvethe planningproblemof transforming
1�� to a statesatisfying4 .

And it is not thathardto compute.

Theorem 2 Thecomplexity of computingthereducedplan-
ning spaceis ���	�!��� , where � is the numberof domainob-
jects mentionedin the initial state 1 , and � is a constant
equal to the maximumarity of the domainoperators and
predicates.This complexity is polynomialin the sizeof 1 .
More precisely, let � be the numberof distinct operators
(theparameterizedoperatorsfromwhich thegroundactions
are generated),let � be the numberof domainpredicates.
Bothof theseare constants.Thenthecomplexity is bounded
aboveby �	�W�T���z�!� .

Thereducedplanningspaceofferstwo advantagesfor for-
wardchainingplanners.First,thereis theobviousadvantage
that by removing irrelevant actionswe reducethe branch-
ing factorof thesearchspacethey explore. Thesecondad-
vantageis a bit moresubtle. Any searchenginecanprof-
itably employcyclechecking.Breadth-firstbasedsearchof-
fersthemostopportunityfor cycle checking,however, even
whenutilizing depth-firstbasedsearchthesearchenginecan
still checkfor statecyclesalongthe currentpathbeingex-
plored.By removing irrelevanteffectsfrom theactionsand
theinitial statein thereducedplanningspace,statesbecome
equivalentthatwould not have beenequivalentin theorigi-
nal space,andcycle checkingcanplaya greaterrole.

Empirical Results
To teststatic relevancewe conductedthreetests. The first
two are designedto show the claimedpropertiesof static
relevance: that irrelevant actionscanbe ignoredwhich re-
ducesthe branchingfactor, and that eliminating irrelevant
literalsfacilitatesgreatercycle-detection.

The first test was to run a simple blocks world prob-
lem with 4 blocks in the initial world state,and 4 blocks

in the goal state. The test consistedof adding � new ac-
tions���
 ",������"0��� where��� is theaction �������	���I����!���I� , and
�������������	� � ��o��4 � � . We settheinitial stateto containall of
the � � sothatall of theseextraactionsareexecutable,but the
goaldoesnotcontainany 4.� soin factthey areall irrelevant.
A standardforward-chainingplanner(we usethe TLPLAN
systemfor all of ourtests[Bac95]),will haveanincreasingly
higherbranchingfactoras � increases,but staticrelevance
will detectthat theseactionsare irrelevant andhencewill
not be affectedby their presence.Figure 1 shows the re-
sults. We ran TLPLAN usingbreadthfirst search. In the
testwe alsoran UCPOP. UCPOP usesgoal regressionso it
alsois unaffectedby theseextra actions. Theresultsshow
that with staticrelevanceTLPLAN, like UCPOP, is ableto
achieve a runtimeunaffectedby � , without it its complexity
climbsrapidly.

Thenext testis designedto show thatstaticrelevancefa-
cilitatescycle detection.Again we usetheblock world do-
main,but this time we makemultiple copiesof eachof the
operators.In particular, wemakethreecopiesof eachof the
operatorspickup, putdown, stack, andunstack. For the � -th
copy(��o�!"���"��), of pickup andunstackweaddtheeffects
extra1 �	�I� and � extra2���f� , andfor putdown andstackweadd
theeffectsextra2 ���f� and � extra1�	�I� .

Neitherof the predicatesextra1 or extra2 appearin the
goal,andthusthey areirrelevant. Without staticrelevance,
TLPLAN is unable to utilize cycle-checkingproperly as
eventhougha cycle mightbepresentin thestandardblocks
worldcomponentof theworld,thevariouschangesto theex-
tra literalsextra1andextra2makestheworld different(most
of thetime). Whenstaticrelevanceis used,however, wesee
thatthisextendeddomainreducesto theoriginalblocksdo-
main(with threecopiesof eachoperator).

Our testconsistedof running10 random3 blocksprob-
lems (to convert a randominitial stateto a randomgoal
state). Without the irrelevant literals TLPLAN took 0.061
secondsin total run time to executethe testsbut whenthey
werepresentits run timeroseto 13.92seconds.Whenstatic
relevanceis usedthisdroppedbackdown to 1.98seconds.5

The final testwasdesignedto addressthe classicalcrit-
icism of forward chainingplanners,that they cannotscale
up in thefaceof increasingnumbersof availableactions.In
thistestweusedablocksworldproblemcontaining5 blocks
that takesTLPLAN 1.4 secondsto solve usingbreadth-first
searchexploring 741worlds.

Then we added in a number of additional (non-
interacting)domains,running TLPLAN with the union of
the domainactionsandwith an initial statethat contained
literals from the other domains(so that the additionalac-
tions wereexecutable).The domainswe addedwerestan-
dard test domains: the monkey and bananas,rocket, lo-
gistics, and tires domains,as well as an artificial domain
containing20 actions. After addingin only oneextra do-

5The differencebetweenthis andthe original run time arises
from theextra time requiredto run thestaticrelevancealgorithm
aswell assomeplan time overheadrequiredby our implementa-
tion. Thislatteroverheadcouldbereducedby amoresophisticated
implementation.

mainTLPLAN wasunableto solve theoriginalproblemaf-
ter searching5000worlds. With static relevancehowever
its runtime returnedto the previous 1.4 seconds(approxi-
mately)andstayedthereaswe kept increasingthenumber
of additionaldomains.

In all cases,the staticrelevancealgorithmtook approxi-
mately0.03secondsto execute:its run time remainedcon-
stantas we increasedthe numberof extra domains. This
wasdueto the initial backwardspass(mentionedbriefly in
the text above) thatmarksactionandpredicatenamesprior
to theforwardreachabilitypass.In this testtheinitial back-
wardspassis ableto eliminateall of theactionsfrom theex-
tra domainsfrom any furtherprocessing.Also theplanner’s
run time did not increasebecausethestaticrelevancealgo-
rithm is ableto remove the otherdomains’operatorsfrom
the list of operatorsprior to planning: sinceno instanceof
any of theseoperatorsappearsin thesetof relevantactions,
theplannerdoesnotneedto considerthematall.6

RelatedWork

Oneway of understandingstaticrelevanceis to view it asa
mechanismthatallowsaforwardchainingplannerto realize
someof the benefitsof partial order planners(in particu-
lar, plannersbasedon the SNLP algorithm[MR91]). When
suchplannersaddactionsto thepartialplansthey aresearch-
ing, they only consideractionsthatachieveopenconditions.
Suchconditionscanonlybegeneratedin theplanby thegoal
or by thepreconditionsof anactionaddedto achieve some
prior opencondition. It is not hard to seethat static rele-
vanceis essentiallycomputingthesetof all theactionsthat
could potentiallyachieve an opencondition in someplan.
The key differenceis that it alsotakesinto accounttheac-
tion bindingsthatarereachablefrom theinitial state.

Gerevini and Schubert[GS96] have developedan algo-
rithm for computingactionbindingsthatarereachablefrom
theinitial state.They thenusethis informationin anSNLP-
style planner(UCPOP [PW92]), to help it avoid exploring
actionsthatarerelevantbut not reachable.Their algorithm
is closelyrelatedto ours.Thekey differenceis thatthey use
their algorithmto computereachabilityinformation,where
asweuseoursto computerelevanceinformation.Also they
work with setsof bindingsinsteadof fully groundliterals
andactions.Fully groundliteralsprovidestrongerinforma-
tion thansetsof binding (i.e., the relevancesetscomputed
aresmaller),andwehavefoundthatthereis hardlyany com-
putationaltime penaltyover working with setsof bindings.
Wealsodealwith negativeliterals.Wedonot,however, deal
with ADL actionswhereas Gerevini andSchubert’s algo-
rithm canhandlethewhenclausesof ADL actions.It would
not bedifficult, however, to extendour algorithmto handle
this caseaswell.

6In somecasesan operatormay have somerelevant instances
andsomeirrelevant instances.Sincetheplannerworkswith oper-
atorsnotactions(operatorinstances),it mustconsidertheoperator
instancesgeneratedat plan time to determinewhetheror not it is
relevant. This addsa constanttime overheadat plan time. How-
ever, whenno instanceis relevant,wecaneliminatethatoverhead
by removing theoperatorentirely.

Ourstaticrelevancealgorithmis alsosomewhatrelatedto
theplanning� graphconstructionof Graphplan:bothcanbe
viewedasbeinga typeof reachabilityanalysis.Onediffer-
enceis thatwe do not computeexclusivity sets. To do so,
however, Graphplan’s planninggraphmustgrow with the
lengthof theplan.An interestingquestionis whetheror not
someexclusivity informationcanbe gained(which would
allow furtherreductionof therelevancesets)withoutpaying
theplanlengthfactor.

Nebelet al. [NDK97] point out that the sizeof Graph-
plan’s planninggraphcan be a seriousissuein its perfor-
mance,andthey have developedacollectionof heuristicsto
detectirrelevantliterals.Theirheuristicsareabletodetectir-
relevancesbeyondwhatouralgorithmcandetect.However,
in doingso they losecompleteness:their heuristicscanre-
moverelevantinformationthusrenderingtheplanningprob-
lem unsolvable. Nevertheless,it maybepossibleto utilize
someof their techniquesto extendourapproach.

Dynamic Relevance
Staticrelevanceis ausefulideabut it is relatively weak.It is
particularlyproblematicwhentestingwith thestandardsuite
of planningtestdomains.Invariablythesetestdomainsare
designedto generateplansfor oneparticularpurpose,and
oftenall of theactionsin thedomainendupbeingstatically
relevant for theplanningproblemat hand(althoughnot all
of theeffectsdo).

In this sectionwe describeanotheralgorithmthat keeps
track of relevance dynamically. Again we can moti-
vate the idea with an example. Considerthe standard
blocks world with four operatorspickup, putdown, stack
and unstack. Say that in the initial world we have
� ontable�	�'� , ontable�A��� , ontable�	�,� , ontable���m�%� . Now con-
sidertheactionsequencepickup���'� , stack����"%��� , pickup���,� ,
stack�	�|"��'� , unstack���/"���� , putdown �	�'� . It is clearthatthere
wasneverany needto move block � , andthattheshorterac-
tion sequencepickup�	�,� , stack���!"0�m� would have achieved
the samefinal state. Unfortunately, unlesswe are doing
blind breadth-firstsearchthereis noguaranteethattheplan-
ner would have seenandrememberedthe shorterplan be-
fore it visited the longer sequence.Dynamic relevanceis
designedto prunesuchsequencesfrom the searchspace.
We thusavoid having to searchall of thedescendantsof the
prunedsequenceaswell, whichmeansthatsuchpruninghas
canpotentiallyyield exponentialsavingsduringsearch.

Dynamic relevance is basedon checking to see if an
action sequencehasa (not necessarilycontiguous)subse-
quenceof actionsthat are irrelevant. Consideran action
sequence�A���J"0��
�"0� & "���+!"0���!"��'�� . We can split such a se-
quenceinto two subsequences,R ¡�,����"���+!"0���!� andR
�,��
�"0� & "0�m��� . Thequestionis “When aretheactionsin R ir-
relevant?”Thereareprobablymany differentanswersto this
question,but anobviousoneis thefollowing:

Definition 3 A subsequenceR of an actionsequenceis ir-
relevantwhen

1. R, the complementof R is an executablesequence
(from theinitial state),and

2. whenR is executedit yields the samefinal stateas
theentireactionsequence.

Intuitively, the definition says that R, the complement
of R, is equivalent to the entire sequence,and henceR
is irrelevant. It shouldbe clear that completenessis pre-
served whenwe pruneactionssequencescontainingirrele-
vantsubsequencesfrom the forwardchainingsearchspace.
It shouldalsobeclearthat this definitioncoversthe exam-
ple givenabove. In particular, the subsequencepickup�	�'� ,
stack����"%��� , unstack�	��"%�Q� , putdown ���m� , is irrelevant.

Our definition does not cover all intuitively irrel-
evant cases, however. Consider the sequence of
actions pickup�	�'� , stack����"%��� , pickup���,� , stack�	�!"0�'� ,
unstack���/"���� , stack�	��"0�,� . Theshortersequencepickup�	�,� ,
stack���!"0�m� , pickup���m� , stack�	��"0�,� would have achieved
the samefinal state. However, the first sequencecontains
no irrelevant subsequences.To detectcaseslike this we
would needa mechanismthat can realizethat the actions
stack����"%��� andunstack�	��"���� canbe removed andthenthe
remainingactionsreorderedso that pickup�	�'� comesjust
prior to stack�	��"���� . Futurework maybeableto find some
additionalcasesthatcanbedetectedefficiently.

It is possibleto give syntacticteststhatgivena sequence
and a subsequencecan test if the subsequenceis irrele-
vant. That is, we have developedsyntacticversionsof the
above semanticdefinition. However, for our forwardchain-
ing planner, wehave foundthatit is mostefficient to imple-
mentthe testdirectly by simply executingthe complement
to determineif it is in factexecutableandyieldsanidentical
final state.

Our definitionprovidesa fairly efficient testfor whether
or not a particularsubsequenceis irrelevant. However a
given sequencecontainsan exponentialnumberof subse-
quences.Detectingwhetheroneof themis irrelevantseems
to behard(wesuspectthatthis is NP-hard).Sothequestion
becomeshow to testactionsequencesrelatively efficiently
andstill detecta usefulnumberof onesthatcontainirrele-
vantsubsequences.

To addressthis problemwe have developeda greedyal-
gorithmthathascomplexity linearin thelengthof theaction
sequence.Thusit imposesan � (depthof thenode)overhead
on eachnodeexpandedin thesearchspace.In thedomains
we testedthealgorithmis ablepruneaway sufficient nodes
in thesearchspaceto morethanmakeup for this overhead.
In futurework weintendto analyzethetradeoff betweenthe
algorithm’s overheadandthereductionin the searchspace
it yieldsin moredetail.

The algorithmexaminesa sequenceof actionsand tries
to greedilyconstructa relevant subsequence,thuspossibly
detectingthat the sequencehasan irrelevant subsequence
(thecomplementof thegreedilyconstructedrelevantsubse-
quence).For eachaction ��� in thesequenceit placesall of
thepreviousactions�!¢ , £¥¤�� , into a subsequenceR and � �
into thesubsequenceR. Thenfor eachsubsequentaction ��¦ ,
��¤Nk , it greedilytriesto place� ¦ into Rby checkingto seeif
��¦ is executablegiventhecurrentcontentsof R. R is asubse-
quenceof actionswhosefirst omittedactionis ��� andwhose
otheromittedactionsarethosethatdependedonacondition

Inputs: An action sequence�§¨����
�",������"0� � , a new
ground© action � , ª the world generatedby executingthe
sequence� in the initial state,a list of alternateworlds
AltWorld, suchthat AltWorld �	� � � is the alternateworld as-
sociatedwith action ��� . AltWorld �	���I� storestheworld gen-
eratedby thegreedysubsequencewhosefirst omittedaction
is ��� . If AltWorld �	���A� is thesameworld asthatproducedby
� we know thatwe have detecteda subsequenceof � that
hasthe sameeffectsas � (hence� containsan irrelevant
subsequence).It is assumedthat � is executablein ª .
Output: Fail if wedetectthat � generatesanirrelevantsub-
sequence,elsetheextendedactionsequence�T�«� , thenew
final world ª��D��D�Aª�� , anda new list of alternateworlds,
AltWorld � onefor every actionin theextendedsequence.

Procedure ¬®D�(E'¯PGIH��A�R"0��"%ª«" AltWorld �
1. ª��FMS°�D�Aª�� ;
2. for ��MSt� to �

(a) if � is executable in AltWorld ��� � � then:
AltWorld � ��� � �RMOt�D� AltWorld �	� � �h� (greedilyadd
it to the subsequencewhosefirst omittedaction
is ���);
elseAltWorld � ��� � ��MO AltWorld �	� � � ;

(b) if AltWorld � �	� � �±²ª then: return(Fail) (we
have detecteda subsequencewhosecomplement
is irrelevant);

3. AltWorld � �	�'���ª .
4. return(�Y�T� , ª�� , AltWorld �).

Table3: DynamicRelevanceAlgorithm

producedby � � . Finally, it checksto seeif thecomplement
of R is irrelevantby checkingto seeif theactionsin R yield
thesamefinal stateastheentiresequence.A moreefficient
incrementalimplementationis givenin Table3. This algo-
rithm would be calledwhenever we try to grow an action
sequenceby addinga new action � . It returnseitherthe in-
crementedactionsequenceor rejects � as beingan illegal
extensionto thesequence(i.e., it hasdeterminedthat � gen-
eratesanirrelevantsubsequence).It shouldbenotedthat,in
thealgorithm,if thecurrentplan � is emptythen �]w³ and
theloopof step2 is never executed.

For example, say the planner examines the action
sequencepickup���'� , stack���/"���� , pickup���,� , stack���!"��'� ,
unstack�	��"���� , putdown ���'� , givenabove. Whenit examines
the greedysubsequencestartingat pickup�	�'� , it will place
pickup���'� in R, stack�	��"%�Q� in R, pickup�	�,� in R, stack���!"��'�
in R, unstack�	��"%�Q� in R, andputdown �	�'� in R. Thenit can
detectthatR ´�¶µF�A����·�µ��	�,� , stack�	�!"0�'�u yieldsthesamefi-
nalstateastheentiresequence.

As indicatedabove our greedyalgorithmdoesnot detect
all irrelevantsubsets.Onesimpleexampleis theactionse-
quence��
 , � & , ��+ and ��� , where����
 , ��� & , and ���¸+ holdin
theinitial state.If �
 adds�
 , �'& adds��& , � + adds� + , and
� � deletes�
 and �(& , thenthesubsequence�
 , �'& , and � �
areirrelevant. However, our algorithmwill not detectthis.
In this example,therearetwo “roots” in the irrelevantsub-
sequence,�
 and �'& . Our algorithmcanonly detectsingly
rootedirrelevantsubsequences.Theseideascanbeformal-

izedandthealgorithmextendedto detect� rootedirrelevant
subsequences.When �®¹ thelengthof theactionsequence,
all irrelevantsubsequencescanbedetected.Unfortunately,
the complexity of the algorithmgrows exponentiallywith
� , and since irrelevancedetectionmust take placeduring
searchwe doubtthat the �2º»� versionswould beof prac-
tical importance.As ourempiricalresultswill demonstrate,
thegreedy�#o� algorithmworkswell in practice.

Oneway of viewing dynamicrelevanceis onceagainto
compareit with what partial orderplannersdo. In partic-
ular, SNLP styleplannersensurethatno causallink is ever
violated.This meansthatevery actionin any planexplored
mustproducesomething“useful”. In part this is what dy-
namicrelevancedetects:if all of anaction’s effectsaresu-
persededprior to beingusedthatactionwill form anirrele-
vantsubset.However, dynamicrelevancegoesfurtherwith
its ability to detectthatcertainsubsetsof actionswhencon-
sideredtogetherareredundant.

Combining Dynamic and Static Relevance: Unlike the
staticrelevancealgorithm,dynamicrelevancedoesnot de-
pendon the syntacticform of the actions,and can work
equallywell with STRIPS or ADL actions.Furthermore,in
thosedomainswherewe can use static relevancewe can
apply both typesof relevancedetection. In particular, we
canapplydynamicrelevancepruningwhensearchingthere-
ducedspaceproducedby staticrelevance.Theexperiments
wepresentin thenext sectiondemonstratethatthereis con-
siderablebenefitto begainedfrom thecombination.

Empirical Results
For our first experiment,we consideredRussell’s flat tire
domain,wherethe generaltask is to changea flat tire us-
ing actionssuchasinflatinganew tire, removing anold tire,
etc. In the initial state,we have a flat tire on the hub, and
a new, uninflatedtire, aswell as the requiredtools, in the
trunk. Thestandard“fix aflat tire” goalfor thisdomain(the
fixit problemin the UCPOP distribution) contains9 literals.
In theexperimentwe alwaysusedthesameinitial statebut
generatedrandomplanningproblemsof size � (from 1–9)
by settingthegoal to bea randomlyselectedsize � subset
of thestandardgoal literals. Further, for each� we choose
15randomgoalsof size � (samplingwith replacementsince
for somevaluesof � thereare lessthan15 distinct candi-
date goals)and computedthe averagerun time. We ran
TLPLAN both with andwithout dynamicrelevancedetec-
tion, and UCPOP using one of its distributed searchcon-
trol mechanisms(whichperformsbetterthanthedefaultbest
first search).UCPOP’s performanceis dependenton the in-
put orderof the goal literals, so whentestingUCPOP on a
particularproblemwe ran it on 10 randompermutationsof
thegoal,takingtheaverage(thusrunningUCPOP 150times
for eachvalueof �). TLPLAN ontheotherhandis indepen-
dentof the goalorderingso only onetestwasrequiredfor
eachproblem.Theresultsareshown in Figure2.

Most problemswith �¼º½� proved to be too hard for
bothTLPLAN andUCPOP (within thegivensearchbounds).
However, with dynamicrelevancedetection,TLPLAN was

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

16

18

20

Number of subgoals

R
un

 ti
m

e
in

 s
ec

on
ds

TLPLAN

UCPOP

Dynamic Relevance

Figure2: Performancein theflat tire domain.

ableto solve all of theproblemsfor all testedsizes.In this
domaindynamicrelevanceis ableto capturesomenatural
andeffective control informationto help TLPLAN. For ex-
ample,onceactionswereexecutedto remove the flat tire
from thehub,actionsputtingit backon thehubwerenotal-
lowed,asthey would underminetheeffectsof theprevious
actions.Anotherexampleis thattoolscouldnotbeputback
into thetrunkuntil they wereused.

When �]w¾ theproblemsgeneratedwereall thesameas
thestandardgoal. TLPLAN with dynamicrelevancedetec-
tion took around1.97secondsto solve this problem,while
UCPOP wasonly ableto solve 41 out of the 150problems
within thegivensearchbounds(i.e., it only solved41outof
150differentrandompermutationsof thegoal).

The secondexperimentwe conducteduseda simplified
versionof the logisticsdomain. The logisticsdomainis a
very difficult domainfor totally orderedplanners,because
such plannerscannottake advantageof the fact that the
movementsof the variouspackagesandvehiclesareinde-
pendentof oneanother. Neitherdynamicnorstaticrelevance
detectiondo anything about the issueof total-orderings.
Hence,TLPLAN runsveryslowly on thisdomainevenwith
relevancedetection.As a result,we useda simplifiedver-
sionof thedomain,wherethereareonly two cities,andwe
arerequiredto sendpackagesfrom onecity to another. The
problemswe usedin theexperimentall containedaninitial
statein which10packageswerelocatedin onecity, andthe
goal was to send � of the packagesto the other city. We
ranTLPLAN, with andwithoutbothdynamicandstaticrel-
evancedetection,usingdepthfirst search.The resultsare
shown in Figure3.

TLPLAN without relevancedetectioncouldnot solve the
problem even for one package. TLPLAN with only dy-
namicrelevancehadsimilardifficultiesandwasalsounable
to solve any of the problems.With staticrelevance,things
improved and TLPLAN was able to solve up the 3 pack-
ageproblem. However with both typesof relevancedetec-

1 2 3 4 5 6 7

10
0

10
1

10
2

10
3

Number of packages in goal

R
un

 ti
m

e
in

 s
ec

on
ds

 (
lo

g
sc

al
e)

Static Relevance
Dynamic and Static Relevance

Figure3: Performancein thesimplifiedlogisticsdomain.

tion, we wereableto boosttheperformancesignificantly—
TLPLAN managedto solve the 6 packageproblembefore
thesearchlimit wasreached.

Therearetwo distinct waysin which irrelevanceoccurs
in this domain. The first onehasto do with the packages
thatdo not appearin thegoal. Actionsto move thesepack-
agesgreatly(andneedlessly)increasethe branchingfactor
of the searchspace. The secondone has to do with ac-
tions that undo the effects of an earlier action, for exam-
ple an“(unloadpackage1truck1)” following a “(load pack-
age1truck1)”. Many action sequencescontainsuchirrel-
evant subsequences.It is clear that static relevanceis ex-
actly what is neededto detectthe first type of irrelevance,
while dynamicrelevanceis exactlywhatis requiredto detect
the secondtypeof irrelevance.Eitherof theseirrelevances
serve to makeTLPLAN very inefficientwhensolvingprob-
lems,which is why bothdynamicrelevanceandstaticrele-
vancedetectiondonotwork verywell by themselves.When
both dynamicandstaticrelevancedetectionareemployed,
TLPLAN is givena considerableperformanceboost.

Conclusions
Our results demonstratethat considerablegains can be
achieved by addingthe notionsof relevanceinto forward
chaining. A traditional argument has been that forward
chainingcannotscaleupbecauseof thelargenumberof ac-
tions a real agentcan execute. However, if mostof these
actionsare irrelevant for any particulartask (aswe would
expectthemto be), thenour resultsshow that fairly simple
notionsof irrelevancecanbeutilizedto ignorethem.Hence,
ourworkshowsthatthisparticularargumentagainstforward
chainingis invalid.

Nevertheless,it is equally clear from our experiments
thatforwardchainingplannersare“still not readyfor prime
time,” evenwhenaugmentedwith notionsof relevance.As
wediscussedin theintroduction,wefeel thatforwardchain-
ing hasconsiderablepotential,andit is for this reasonthat

wearepursuingthisandotherwork thatis aimedat improv-
ing the

¿
“baseline” for forward chainingplanners.That is,

we wantto enhancetheperformanceof suchplannersprior
to applyingany domainindependentor domaindependent
heuristiccontrol.Ourexperimentshave shown thatthenext
thing that needsto be addressedarethe inefficienciespro-
ducedby usingtotalorderings.Wearecurrentlyworkingon
approachesto thisproblem.

Acknowledgments
This work wassupportedin part by the CanadianGovern-
mentthroughtheirNSERCandIRIS programs.Thanksalso
to thereviewerswhomadeanumberof usefulcomments.

References
[Bac95] Fahiem Bacchus. Tlplan (version 2.0)

user’s manual. Available via the URL
ftp://logos.uwaterloo.ca:/pub/bacchus/tlplan-
manual.ps.Z,1995.

[BF97] A. Blum and M. Furst. Fast planningthrough
planninggraphanalysis. Artificial Intelligence,
90:281–300,1997.

[BK96a] F. BacchusandF. Kabanza.Planningfor tempo-
rally extendedgoals.In Proceedingsof theAAAI
NationalConference, 1996.

[BK96b] F. BacchusandF. Kabanza.Usingtemporallogic
to control searchin a forward chainingplanner.
In M. GhallabandA. Milani, editors,New Direc-
tions in AI Planning, pages141–153.ISO Press,
Amsterdam,1996.

[GS96] A. Gerevini and L. Schubert. Accelerating
partial-orderplanners:Sometechniquesfor ef-
fective searchcontrol and pruning. Journal of
Artificial IntelligenceResearch, 5:95–137,1996.

[KS96] H. KautzandBartS. Pushingtheenvelope:plan-
ning, propositionallogic, andstochasticsearch.
In Proceedingsof theAAAINationalConference,
pages1194–1201,1996.

[McD96] D. McDermott. A heuristicestimatorfor means-
endanalysisin planning. In Proceedingsof the
Third InternationalConferenceon A.I. Planning
Systems, 1996.

[MR91] D. McAllister andD. Rosenblitt.Systematicnon-
linearplanning. In Proceedingsof theAAAI Na-
tional Conference, pages634–639,1991.

[NDK97] B. Nebel,Y. Dimopoulos,andJ.Koehler. Ignor-
ing irrelevantfactsandoperatorsin plangenera-
tion. In Proceedingsof the4thEuropeanConfer-
enceonPlanning. SpringerVerlag,1997.

[PW92] J.S.PenberthyandD. Weld. UCPOP:A sound,
complete,partial orderplannerfor adl. In Pro-
ceedingsof theInternationalConferenceonPrin-
ciplesof KnowledgeRepresentationandReason-
ing, pages103–114,1992.

[RN95] S.RussellandP. Norvig. Artificial IntelligenceA
ModernApproach. PrenticeHall, 1995.

[Wel94] D. Weld. An introductionto leastcommitment
planning.AI Magazine, 15(4):27–61,1994.

