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Hyperparameter Estimation

In the Brownian motion case, the only hyperparameter in this model is the covariance matrix Λ. For
simplicity, we consider only the diagonal case: Λ = diag(λ1, λ2, . . . , λD). We place independent
Gamma priors on the inverse variances with hyperparameters a and b. In our experiments we set
a = b = 1.1 so that the prior has mode at 1. Conditioned on a geneology, the posterior distribution
of λ−1

d is again Gamma, with hyperparameters âd and b̂d given by:
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The MAP λ−1
d = (âd − 1)/b̂d.

Next consider the binary vector case. The two hyperparameters qd1 and λd can be optimized sepa-
rately for each entry d. Unfortunately there is no closed form solution and we used Newton steps,
reparametrizing qd1 as qd1 = 1/(1 + exp(−vd)) so that the resulting optimization is unconstrained.
The cost function to be maximized is:
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Updates for the multinomial case can be derived analogously.

Predictive Density

Given a tree and a new individual y′ we wish to know: (a) where y′ might coalescent and (b) what
the density is at y′. To answer (a), assume that y′ coalesces with the genealogy at time t, where
tj > t > tj+1. The prior probability of this coalescesce is:

exp[−
j∑
i=1

(n− i+ 1)δi − (n− j)(tj − t)] (3)

At time t, there are n − j individuals that y′ could coalesce with. In the Brownian motion case, y′
may merge with sibling ρs, and the parent of ρs is ρp. To perform this merge, we need to create
a new parent ρp′ between ρs and ρp to become the parent of y′ and ρs. The probability of this
change is the probability of ρp′ under ρp, times the probability of ρs and y′ under ρp′ , divided by
the probability of ρs under ρp. Marginalizing out ρp′ , we obtain:[

(2π(v0 − t))D det Λ
]−1/2

exp
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||y0 − y′||Λ(v0−t) − (n− j + 1)(ts − t)

]
(4)

v0 = [(vρs
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+ t− tp)−1]−1; y0 = v0[ŷρs
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Here, v0 is the posterior variance and y0 is the posterior mean; ŷρs
and vρs

are the messages passed
up through the tree, while ŷρp

and vρp
are the messages passed down through the tree. The full

predictive density is obtained by summing the product of the prior and Eq (4) over all siblings at all
time steps; we draw 10 equally spaced samples between tj and tj+1. Care must be made to correctly
handle the root: we draw 10 equally spaced samples beginning at the minimum t and t −maxj δj ;
moreover, there are no messages coming down from the root, so those terms are excluded from the
likelihood in (4).

Marginal Likelihood Estimation
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Figure 1: Error in Monte Carlo estimates of the marginal likelihood of a small data set.

In order to evaluate the quality of the proposal distributions, we calculated the exact marginal
likelihood under the Brownian diffusion coalescent process on a small tree with data points at
{−3.1416, 2.1718, 1.618}. We then ran the particle filters without resampling to gather 4000
weighted samples, computed the Monte Carlo estimate of the marginal likelihood for n =
1, . . . , 4000, and measured the difference from the true marginal likelihood. Figure 1 shows the
results. In summary, as expected, SMC-PostPost is the best. Instead of sampling from the coa-
lescent time prior, and as an alternative to sampling from the computational expensive mixture of
generalized inverse Gaussian in SMC-PostPost, various approximations to the conditional distribu-
tion on coalescent times were developed. A gaussian fit failed in this task, suffering from high
variance. The gamma fit was superior, but in experience, also suffered from large variance. We
believe both of these failed due to tails that are too short (the Gamma assigning too little mass close
to zero).
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NIPS Coalescent

01234567

Ruppin_E (8) Baird_B (6) Coolen_A (4) Meilijson_I (4) Eeckman_F (3)
bifurcation attractors memories hopfield capacity attraction memory attractor associative network
Mjolsness_E (9) Saad_D (9) Leen_T (7) Gold_S (6) Rangarajan_A (6)
saddle eigenvalue energy dynamics network tank equations eigenvalues convergence gradient
Koch_C (12) Alspector_J (6) Lazzaro_J (6) Murray_A (6) Cauwenberghs_G (5)
chip circuit voltage vlsi transistor analog resistive charge pulse chips
Sejnowski_T (22) Koch_C (18) Bower_J (11) Dayan_P (10) Pouget_A (10)
spike ocular cells firing stimulus eye cell cortex cortical visual
Hinton_G (12) Sejnowski_T (10) Amari_S (7) Zemel_R (7) Pentland_A (6)
infomax image ica images kurtosis blind object pca views becker
Jordan_M (16) Tresp_V (13) Smola_A (11) Moody_J (10) Scholkopf_B (10)
data training regression learning model algorithm error em risk set
Singh_S (15) Barto_A (10) Sutton_R (8) Sanger_T (7) Dayan_P (5)
critic policy reinforcement agent controller reward robot sutton actions mdp
Mozer_M (14) Lippmann_R (11) Giles_C (10) Bengio_Y (9) Sejnowski_T (8)
network training units hidden input learning networks neural output speech

Figure 2: Top of the tree derived from the NIPS abstract data, with most indicative words and most
frequent authors for each sub-node.

LLR (Time) Top Words and Top Authors
32.7 (-2.71) bifurcation attractors hopfield network saddle dynamics attractor eigenvalue equilibrium

Mjolsness E (9) Saad D (9) Ruppin E (8) Coolen A (7) Leen T (7)
.106 (-3.77) voltage model cells neurons neuron cell figure spike input time

Koch C (30) Sejnowski T (22) Bower J (11) Dayan P (10) Pouget A (10)
83.8 (-2.02) chip circuit voltage vlsi transistor analog resistive charge pulse chips

Koch C (12) Alspector J (6) Lazzaro J (6) Murray A (6) Cauwenberghs G (5)
140 (-2.43) spike ocular cells firing stimulus eye cell cortex cortical visual

Sejnowski T (22) Koch C (18) Bower J (11) Dayan P (10) Pouget A (10)
2.48 (-3.66) data model learning algorithm training set function latent mixture bayesian

Jordan M (17) Hinton G (16) Williams C (14) Tresp V (13) Moody J (12)
31.3 (-2.76) infomax image ica images kurtosis blind object pca views becker

Hinton G (12) Sejnowski T (10) Amari S (7) Zemel R (7) Pentland A (6)
31.6 (-2.83) data training regression learning model algorithm error em risk set

Jordan M (16) Tresp V (13) Smola A (11) Moody J (10) Scholkopf B (10)
39.5 (-2.46) critic policy reinforcement agent controller reward robot sutton actions mdp

Singh S (15) Barto A (10) Sutton R (8) Sanger T (7) Dayan P (5)
23.0 (-3.03) network training units hidden input learning networks neural output speech

Mozer M (14) Lippmann R (11) Giles C (10) Bengio Y (9) Sejnowski T (8)

Table 1: Nine clusters discovered in NIPS abstracts data.
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Phylolinguistics

In the second experiment, we restrict ourselves to languages from the following families: Niger-
Congo, Indo-European, Austronesian, Australian, Afro-Asiatic and Sino-Tibetan. We further re-
quire that a language have at most 60 of the 139 features unknown—this leaves 64 languages. The
coalescent for these languages is shown—together with corresponding language families—in Fig-
ure 3. In this figure, we can see that the coalescent is able to identify almost all of Indo-European
(with two exceptions: Persian is a bit far away and Hindi/Armenian are also). It does quite well with
Austronesian languages, erring only with Paamese. The Australian languages are mixed up a bit
with the Sino-Tibetan languages, which can perhaps be accounted for on the basis of areal sharing
(i.e., language change due to close proximity).
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[Australian]  Mangarrayi
[Australian]  Wardaman
[Australian]  Maung
[Australian]  Tiwi
[Australian]  Nunggubuyu
[Australian]  Ungarinjin
[Australian]  Yidiny
[Sino−Tibetan]  Bawm
[Australian]  Pitjantjatjara
[Australian]  Maranungku
[Australian]  Gooniyandi
[Sino−Tibetan]  Burmese
[Sino−Tibetan]  Garo
[Sino−Tibetan]  Meithei
[Australian]  Kayardild
[Australian]  Martuthunira
[Australian]  Ngiyambaa
[Afro−Asiatic]  Amharic
[Indo−European]  Armenian (Eastern)
[Indo−European]  Hindi
[Afro−Asiatic]  Beja
[Afro−Asiatic]  Oromo (Harar)
[Afro−Asiatic]  Iraqw
[Indo−European]  Persian
[Afro−Asiatic]  Arabic (Egyptian)
[Niger−Congo]  Diola−Fogny
[Niger−Congo]  Luvale
[Niger−Congo]  Swahili
[Niger−Congo]  Zulu
[Niger−Congo]  Nkore−Kiga
[Afro−Asiatic]  Hebrew (Modern)
[Afro−Asiatic]  Hausa
[Afro−Asiatic]  Berber (Middle Atlas)
[Indo−European]  Irish
[Niger−Congo]  Supyire
[Niger−Congo]  Grebo
[Austronesian]  Drehu
[Niger−Congo]  Ewe
[Austronesian]  Paamese
[Niger−Congo]  Koromfe
[Niger−Congo]  Sango
[Niger−Congo]  Yoruba
[Niger−Congo]  Igbo
[Austronesian]  Batak (Karo)
[Austronesian]  Indonesian
[Austronesian]  Taba
[Austronesian]  Kilivila
[Austronesian]  Fijian
[Austronesian]  Tukang Besi
[Austronesian]  Maori
[Sino−Tibetan]  Mandarin
[Austronesian]  Rapanui
[Austronesian]  Chamorro
[Austronesian]  Tagalog
[Austronesian]  Malagasy
[Austronesian]  Paiwan
[Indo−European]  English
[Indo−European]  German
[Indo−European]  French
[Indo−European]  Greek (Modern)
[Indo−European]  Latvian
[Indo−European]  Russian
[Indo−European]  Spanish

Figure 3: Coalescent for a subset of 64 languages from WALS.
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