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1.1 Introduction
Rich hierarchical structures are common across many disciplines, making the discovery of
hierarchies a fundamental exploratory data analysis and unsupervised learning problem.
Applications with natural hierarchical structure include topic hierarchies in text (Blei et
al. 2010), phylogenies in evolutionary biology (Felsenstein 2003), hierarchical community
structures in social networks (Girvan and Newman 2002), and psychological taxonomies
(Rosch et al. 1976).

A large variety of models and algorithms for discovering hierarchical structures have been
proposed. These range from the traditional linkage algorithms based on distance metrics
between data items (Duda and Hart 1973), to maximum parsimony and maximum likelihood
methods in phylogenetics (Felsenstein 2003), to fully Bayesian approaches that compute
posterior distributions over hierarchical structures (e.g. Neal 2003). We will review some of
these in Section 1.2.

A common feature of many of these methods is that their hypothesis spaces are restricted to
binary trees, where each internal node in the hierarchical structure has exactly two children.
This restriction is reasonable under certain circumstances, and is a natural output of the
popular agglomerative approaches to discovering hierarchies, where each step involves the
merger of two clusters of data items into one. However, we believe that there are good reasons
why restricting to binary trees is often undesirable. Firstly, we simply do not believe that
many hierarchies in real world applications are binary trees. Secondly, limiting the hypothesis
space to binary trees often forces spurious structure to be “hallucinated” even if this structure
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is not supported by data, making the practitioners task of interpreting the hierarchy more
difficult. Finally, this spurious structure is also undesirable from an Occam’s razor point of
view: the methods are not returning the simplest hierarchical structure supported by the data,
because the simpler structures which explain the data can involve non-binary trees and these
are excluded from the hypothesis space.
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Figure 1.1 Bayesian hierarchical clustering (left) and Bayesian rose trees (right) on the same
synthetic data set. The three groups of 15 similar data items all cluster into groups under both models.

Figure 1.1(left) shows an example whereby spurious structure is imposed on data by a
model that assumes binary trees. In this case the model is Bayesian hierarchical clustering
(BHC) (Heller and Ghahramani 2005), a probabilistic model for binary hierarchical
clustering. The data set consists of three clusters of data items, each of which has no further
internal substructure. Nevertheless, BHC produced cascades of internal nodes to represent
each of the clusters. This is an unnecessarily complex structure for the simple clusters in the
data set, and is a telltale sign among probabilistic binary hierarchical clustering algorithms
that the tree is not representing large clusters in the data properly. Ideally the tree structure
should be simplified by collapsing each cascade into a single node with many children, as in
Figure 1.1(right), expressing the lack of substructure among the data items.

In this chapter we describe a probabilistic model for hierarchical structure discovery that
operates in a broadened hypothesis space. Here each internal node can have an arbitrary
number of children, allowing the model to use simpler, non-binary, trees to describe data
if they do so better than binary trees. To help us choose among different trees, we will
take a Bayesian model selection approach and choose the tree with highest marginal data
likelihood. Part of the contribution of this paper is the design of a likelihood that conforms
to our intuitions, such that structures with higher likelihoods also tend to be the ones that
are subjectively simpler. We refer to trees in this broadened hypothesis space as rose trees, as
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they are known in the functional programming literature (Bird 1998; Meertens 1988), and our
model as Bayesian rose tree mixture models. The non-binary tree given in Figure 1.1(right)
is in fact the structure discovered by our model.

We take a Bayesian approach to discovering hierarchy structure. At each step in
constructing the tree, we perform a Bayesian hypothesis test for each possible merge. The
best merge is then greedily selected. This results in the discovery of a single tree structure,
analogous to in Heller and Ghahramani (2005), as opposed to a fully Bayesian approach,
where a prior over trees is defined and the posterior approximated using Monte Carlo
sampling (e.g. Felsenstein 2003; Neal 2003). A fully Bayesian approach, while in many
ways appealing, is computationally very expensive and complex to implement due to the
very large (super-exponential) number of trees and the complex Metropolis-Hastings moves
that are often necessary for Markov chain Monte Carlo methods to mix properly over the
posterior. A deterministic, single solution may also make interpreting the results easier for
those modelers who are not very familiar with Bayesian methodology.

Therefore in this chapter we opt for a greedy approach, constructing a tree in an
agglomerative bottom-up fashion. This gives an efficient algorithm that we find works well
empirically.

The remainder of this chapter is organised as follows: In Section 1.2 we briefly review
the existing literature on probabilistic hierarchical structure discovery and place Bayesian
rose trees within this context. In Section 1.3 we describe our model in detail. In Section 1.4
we describe our greedy agglomerative construction algorithm. In Section 1.5 we discuss
relationships with variants and other plausible extensions to BHC. Finally, in Section 1.6
we report experimental results using Bayesian rose trees, and conclude in Section 1.7.

1.2 Prior work

There is a very diverse range of methods for hierarchical structure discovery, and
unfortunately it is not possible to review every contribution here. Most methods for
hierarchical structure discovery can be construed as methods for hierarchical clustering,
where each subtree corresponds to a cluster of data items. Classic introductions to clustering
can be found in Hartigan (1975), McLachlan and Basford (1988) and Kaufman and
Rousseeuw (1990), while Jain et al. (1999) is a more recent survey and Murtagh (1983)
is a survey of classic methods for hierarchical clustering.

The most popular methods for hierarchical clustering are probably the agglomerative
linkage methods (Duda and Hart 1973). These start with each data item in its own cluster and
iteratively merge the closest pair of clusters together, as determined by some distance metric,
until all data belong to a single cluster. A record is kept of the order of merges and used to
form a hierarchy, where data items reside on the leaves, and branch lengths correspond to
distances between clusters. Different methods are determined by different distance metrics
among data items, and how these distances are combined define distances between clusters.
Popular linkage methods include single, complete and average linkage, where the distance
between two clusters is defined to be the minimum, maximum and average inter-cluster data
item distances respectively. Whilst straightforward and computationally efficient, linkage
methods are not model-based, making comparisons between the discovered hierarchies based
on different distances difficult due to a lack of an objective criteria.

Another important area for hierarchical structure discovery is phylogenetics, where the
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problem is to infer the phylogenetic tree relating multiple species, and where a rich variety of
approaches have been explored (Felsenstein 2003). These include non-model-based methods,
e.g. linkage algorithms based on distances among species (Fitch and Margoliash 1967;
Saitou and Nei 1987; Studier and Keppler 1988) and parsimony-based methods (Camin and
Sokal 1965), as well as model-based maximum likelihood methods Felsenstein (1973, 1981).
Consistency has been shown of maximum likelihood estimators (Rogers 1997; Yang 1994).
Another approach taken in phylogenetics is the Bayesian one, where a prior over phylogenetic
trees is defined and the posterior distribution over trees estimated (Huelsenbeck and Ronquist
2001; Yang and Rannala 1997). This ensures that uncertainty in inferred hierarchical
structures is accounted for, but is significantly more complex and computationally expensive.

Similar to model-based phylogenetics, recent machine learning approaches to model-based
hierarchical structure discovery have a dichotomy between maximum likelihood estimation
(Friedman 2003; Heller and Ghahramani 2005; Segal et al. 2002; Vaithyanathan and Dom
2000) and Bayesian posterior inference (Kemp et al. 2004; Neal 2003; Roy et al. 2007; Teh
et al. 2008; Williams 2000), reflecting the trade-off between simplicity and computational
efficiency on the one hand, and knowledge of structural uncertainty on the other. The
approach taken in this paper is a direct extension of those in Friedman (2003) and Heller
and Ghahramani (2005); we will discuss these in more detail in Section 1.5.

There are few hierarchical clustering methods that directly produce non-binary hierarchies.
Williams (2000) fixes the maximum number of layers and nodes per layer, and defines a
prior over trees whereby each node picks a node in the layer above independently. Blei et al.
(2010) uses a nested Chinese restaurant process to define a prior over layered trees. Both are
Bayesian methods which are quite computationally complex, and use Monte Carlo sampling
for inference. This is to be expected since with non-binary hierarchies the number of internal
nodes inferred can vary, and methods that cannot account for varying numbers of parameters
can easily overfit. In methods that infer branch lengths as well as binary tree structures, non-
binary hierarchies can be obtained by visual inspection and by heuristics for collapsing short
branches.

1.3 Rose trees, partitions and mixtures

In this section we describe our probabilistic model, as well as the terminology used in the
subsequent sections. We shall refer to the hierarchical clustering structure describing a data
set as a rose tree, and to the probabilistic model based on a rose tree as a Bayesian rose
tree mixture model, or BRT for short. Figure 1.2 gives two examples of rose trees over data
items labelled a—e, one with all binary internal nodes, and one with a ternary node. We
will use these as running examples throughout this section. Leaves correspond to data items
and every node of a tree corresponds to a cluster of its leaves, with nodes higher up the tree
corresponding to larger clusters.

Let D be a set of data items. Our probabilistic model for these data items D under a rose
tree T , p(D|T ), is a mixture model where each mixture component is a partition of the data
set, which is in turn a disjoint set of clusters of data items. The role of the rose tree T is as a
model index dictating which partitions of the data set are included in the mixture model; in
particular, the partitions that are included are those that are “consistent” with the rose tree T .
In the following, we will elaborate on the key concepts of clusters, partitions and rose trees,
and how each of these are modelled in our probabilistic model.
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Binary tree B Rose tree R

a b c d e a b c d e

Figure 1.2 Examples of rose trees with five leaves labelled a—e. Left: a rose tree with only binary
internal nodes and a cascading subtree (on leaves a, b, and c). Right: a rose tree with a ternary node
resulting from collapsing the cascading subtree.

Definition 1.3.1 A rose tree T either consists of a single leaf x ∈ D, or consists of a root
node along with nT children, say T1, . . . , TnT

, each of which are rose trees whose leaves are
disjoint. We write children(T ) for the set of children of T , and pa(Ti) for the parent of Ti. A
node or subtree, identified by its root, T ′, of a rose tree T is either T or one of its descendants
under the child relation. The ancestors of T ′, ancestor(T ′), consists of the nodes of T that
has T ′ as a descendant. The leaves leaves(T ′) of a node T ′ is the set of data items that are
descendants of T ′.

For example, the tree in Figure 1.2(right) consists of two children, each being itself a tree,
one with leaves a, b and c, and one with leaves d and e. Each node of a rose tree can be taken
to mean that its leaves form a cluster of data items that are more similar among themselves
than to other data items. To make this precise, we will model each cluster of data items using
a single shared parameter, with different clusters using different parameters.

Definition 1.3.2 A cluster is a set of data items D ⊆ D. Let θ parameterize a probability
distribution for a data item x ∈ D, f(x|θ), with a corresponding prior f(θ|η) and
hyperparameter η. Marginalising out θ, the probability of a cluster of data items D is:

f(D) =

∫
f(θ|η)

∏
x∈D

f(x|θ)dθ (1.1)

In Section 1.3.2 we describe two models for clusters used in our experiments (Section 1.6):
a beta-Bernoulli model and a Gaussian process model.

Definition 1.3.3 A partition φ is a disjoint set of clusters whose union is the whole data set
D. We shall write partitions using the “|” symbol, for example ab|c denotes a partition of the
set {a, b, c} into clusters {a, b} and {c}. We model the probability of D under a partition as
the product of the probabilities of its constituent clusters,

g(φ = {D1| . . . |DJ}) =

J∏
j=1

f(Dj) (1.2)

where f(Dj) is the probability of the jth cluster of the partition.
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Because each cluster in a partition is modelled independently using one parameter, the
likelihood of a partition will be high if data items have high intra-cluster similarities and
low inter-cluster similarities.

We have shown how partitions are constructed from clusters, now we turn to showing how
a Bayesian rose tree is constructed as a mixture over partitions. Each node of the rose tree is
meant to represent a group of data items, at leaves, which share some element of similarity.
Therefore, it seems reasonable to assume that each cluster of each partition in the mixture
corresponds to one subtree of the rose tree. Partitions consisting of such clusters are called
tree consistent partitions, and will constitute the components of the mixture model.

Definition 1.3.4 A partition is consistent with a rose tree T if each cluster in the partition
corresponds to the leaves of some subtree in T . Denote the set of all partitions consistent
with T by Φ(T ).

Our definition of Φ(T ) is a straightforward generalisation of the definition of tree-consistent
partitions found in Heller and Ghahramani (2005) to rose trees. It is easy to see that Φ(T )
can be constructed explicitly by recursion as follows:

Φ(T ) = {leaves(T )} ∪ {φ1|. . . |φnT
: φi ∈ Φ(Ti), Ti ∈ children(T )} (1.3)

where children(T ) are the children of T , nT are the number of children of T , and {leaves(T )}
represents the partition where all data items at the leaves of T are clustered together. Roughly,
each partition starts at the root of the tree, and either keeps the leaves in one cluster or
partitions the leaves into the subtrees, the process repeating on each subtree. The end result
is that each φ ∈ Φ(T ) consists of disjoint clusters, each of which consists of the leaves of
some subtree in T . For example, the partitions consistent with the rose trees in Figure 1.2 are
given in the middle column of Figure 1.3.

All rose trees include the complete partition {leaves(T )} and (by recursion) the completely
discriminating partition where each data item in D is in its own cluster. Different trees give
rise to different sets of partitions between these two extremities. The binary tree with the
fewest tree consistent partitions between these extremities is a cascading binary tree, where
at each internal node one leaf is separated from the other leaves. On the other hand, the
simplest rose tree has just two consistent partitions: the complete partition consisting of all
leaves in one cluster, and the completely discriminating partition. In general, a rose tree
will have at most the same number of partitions as a binary tree. The rose tree allows us to
represent simple hierarchical structure without having to introduce spurious partitions, like
in the cascading binary tree.

We are now ready to define our Bayesian rose tree mixture model:

Definition 1.3.5 Given a rose tree T , A Bayesian rose tree is a mixture over partitions in
Φ(T ) of the cluster of data items at its leaves D = leaves(T ):

p(D|T ) =
∑

φ∈Φ(T )

m(φ|T )g(φ) (1.4)

where m(φ|T ) is the mixing proportion of partition φ, and g(φ) is the data likelihood term
for partition φ given in (1.2).
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In general the number of partitions consistent with T can be exponentially large in the
number of leaves, making (1.4) computationally intractable for large data sets. Instead, we
propose a specific factorised form for the mixture proportions, m, that allows for (1.4) to be
computed efficiently by recursion as well as for the efficient agglomerative tree construction
algorithm in Section 1.4. For each subtree T ′ of T , let πT ′ be a parameter between 0 and 1.
We shall discuss the choice of these parameters at length in Section 1.3.1. We will compute
(1.4) recursively as follows:

p(leaves(T )|T ) = πT f(D) + (1− πT )
∏

Ti∈children(T )

p(leaves(Ti)|Ti) (1.5)

where f(D) is the probability of the cluster D. Equation (1.5) corresponds to the following
generative process: Beginning at the root of the tree, with probability πT , generate θ
according to the prior f(θ|η), and all data items according to f(·|θ). Otherwise, recurse down
the tree, with each subtree independently generating the data items at its leaves according to
the same process. If a leaf is reached the recursion stops and the data item is generated. Note
that it follows from this narrative that we can identify each cluster of the data with a node of
the tree.

Comparing (1.5) and (1.4), we find that

m(φ|T ) =
∏

S∈ancestorT (φ)

(1− πS)
∏

S∈subtreeT (φ)

πS (1.6)

where subtreeT (φ) are the subtrees in T corresponding to the clusters in the partition φ,
and ancestorT (φ) are the ancestors of subtrees in subtreeT (φ). Figure 1.3 gives these mixing
proportions for the two example rose trees.

In summary, the marginal probability of a data set D under a rose tree T is a mixture
over the partitions consistent with T , with the probability of D under a partition φ ∈ Φ(T )
being a product of the probabilities of clusters in φ. We call our mixture a Bayesian rose tree
(BRT) mixture model. In Section 1.3.1 we motivate using a particular choice of the mixing
proportions πT , and in Section 1.5 we contrast our Bayesian rose tree mixture over partitions
to a number of related models.

1.3.1 Avoiding needless cascades

In this section we propose a particular choice for the mixing proportions πT given by:

πT = 1− (1− γ)nT−1 (1.7)

where 0 ≤ γ ≤ 1 is a hyperparameter of the model controlling the relative proportion of
coarser partitions of the data as opposed to finer ones. When restricted to just binary trees,
πT = γ and the BRT reduces to one of the models in Heller and Ghahramani (2005). Subtrees
T with more children are assigned a larger πT and so the likelihood of the cluster at the root
of the subtree is more highly weighted than smaller clusters further down the subtree.

As we will see, this choice of πT is intimately related to our maxim that the maximum
likelihood tree should be simple if the data are unstructured. We will start by considering the
simple situation given by the running examples in Figure 1.3 before the more general case.
The two rose trees in Figure 1.3 differ from each other only in that B places the data items



8 Discovering Non-binary Hierarchical Structures with Bayesian Rose Trees

Binary tree B
m(φ|B) φ ∈ Φ(B)

γ a b c d e

a b c d e

(1− γ)γ2 a b c|d e
(1− γ)2γ2 a b|c|d e
(1− γ)3γ a|b|c|d e
(1− γ)2γ a b c|d|e
(1− γ)3γ a b|c|d|e
(1− γ)4 a|b|c|d|e

Rose tree R
m(φ|R) φ ∈ Φ(R)

a b c d e

γ a b c d e
(1− (1− γ)2)(1− γ)γ a b c|d e
(1− (1− γ)2)(1− γ)2 a b c|d|e

(1− γ)3γ a|b|c|d e
(1− γ)4 a|b|c|d|e

Figure 1.3 Examples of (top) a binary tree B with a cascading subtree (on leaves a, b, and c) and
(bottom) a rose tree R with the cascade collapsed into one node. All tree-consistent partitions for
each tree, as well as the associated mixture proportions, are listed to the left of the corresponding
tree. Note that m({a b c|d e}|R) = m({a b c|d e}|B) +m({a b|c|d e}|B) and m({a b c|d|e}|R) =
m({a b c|d|e}|B) +m({a b|c|d|e}|B). That is, the mixing proportion assigned to each of the partition
in R is the sum of those of partitions in B that are refinements of the partition in R.

a, b, c into a cascading structure with two binary nodes while R uses a single ternary node.
The figure also shows the set of partitions and their mixing proportions given by (1.6) and
(1.7).

Suppose that a, b and c are similar to each other but are otherwise indistinguishable, yet
are distinguishable from d and e. We would like a model that prefers the rose tree R over the
binary treeB, since its structure matches the similarity relationships among the data items. To
do this, note that because the data items a, b, c belong together in one cluster, we can expect
the inequality f({a, b, c}) > f({a, b})f({c}) to hold. This implies the following inequalities
among the partition likelihoods:

g({a b c|d e}) > g({a b|c|d e})

g({a b c|d|e}) > g({a b|c|d|e}) (1.8)

Expanding the likelihoods for R and B as a mixture of the likelihoods under each partition,
using the inequalities (1.8), and using the equalities in the mixing proportions noted in the
caption of Figure 1.3, we find that

p({a, b, c, d, e}|R) > p({a, b, c, d, e}|B) (1.9)

In other words, the collapsed rose tree R is assigned a higher likelihood than the binary tree
B. Therefore if we were to select the rose tree with higher likelihood we would have chosen
the one that better describes the data, i.e. R.
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In the general case, if we have a cluster of n indistinguishable data items, we can guarantee
preferring a rose treeR consisting of a single internal node with n children over a treeB with
multiple internal nodes, for example a cascading binary tree, if the mixing proportion of the
complete partition in R is the sum over the mixing proportions of all partitions consistent
with B except the most discriminating partition. Fortunately, under (1.7) this sum turns out
to be the same regardless of the structure of B, and equals,

πR = 1− (1− γ)n−1 (1.10)

Equation (1.10) can be easily proven by induction on the number of internal nodes of B.
Using this, we can now show that the collapsed rose tree R will be more likely than a rose
tree which introduces spurious structure (e.g. cascades).

Proposition 1.3.6 Let B be rose tree with nB > 1 children T1, . . . , TnB
, and T1 being an

internal node. Let R be a rose tree obtained by collapsing the B and T1 nodes into one,
i.e. R has children(R) = children(T1) ∪ T2 ∪ · · ·TnB

. Suppose the data items of T are
indistinguishable, i.e. the likelihoods of the non-complete partitions are smaller than for the
complete partition:

g({leaves(T1)|φ2| . . . |φnB
}) < g({leaves(R)}) (1.11)

for every φi ∈ Φ(Ti), i = 2, . . . , nB . Then the likelihood of B is lower than for R:

p(leaves(B)|B) < p(leaves(R)|R). (1.12)

Proof. By construction, we have Φ(R) ⊂ Φ(B). Let ψ = {leaves(R)} be the complete
partition and δ(B,R) = Φ(B)\Φ(R) be those partitions of B not in R. It is straightforward
to see that

δ(B,R) = {leaves(T1)|φ2| . . . |φnB
: φi ∈ Φ(Ti)} (1.13)

The mixture likelihood of B can now be decomposed as:

p(leaves(B)|B) = πBg(ψ) +
∑

φ∈δ(B,R)

m(φ|B)g(φ) +
∑

φ∈Φ(R)\{ψ}

m(φ|B)g(φ) (1.14)

From the premise (1.11) we find that:

p(leaves(B)|B) < g({ψ})

πB +
∑

φ∈δ(B,R)

m(φ|B)

 +
∑

φ∈Φ(R)\{ψ}

m(φ|B)g(φ) (1.15)

We now turn to evaluating the summation over δ(B,R) in (1.15). From (1.13) and (1.5) we
see that the mixture proportion assigned to each φ ∈ δ(B,R) is:

m(φ|B) = (1− πB)πT1

nB∏
i=2

m(φi|Ti) (1.16)

Because (1.16) decomposes into a product over the partition of each subtree Ti, i =
2, . . . , nB , and

∑
φi∈Φ(Ti)

m(φi|Ti) = 1, we see that
∑
φ∈δ(B,R)m(φ|B) = (1− πB)πT1 .

Now from (1.7) we see that the term in the parentheses of (1.15) is

πB + (1− πB)πT1
= πR = m(ψ|R). (1.17)

On the other hand m(φ|B) = m(φ|R) for each φ ∈ Φ(R)\{ψ}. We have now established
the right hand side of (1.15) as p(leaves(R)|R). �
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Proposition 1.3.6 applies when the root of the tree along with one of its children are collapsed
into one node. This can be trivially generalised to collapsing any subtree.

Corollary 1.3.7 Let S be a rose tree with a subtree B, and T be constructed by collapsing
all internal nodes of B into one node. If the data items under B are indistinguishable, i.e.
non-complete partitions in B have lower likelihoods than the complete one, then:

p(leaves(S)|S) < p(leaves(T )|T ). (1.18)

1.3.2 Cluster models

Each cluster D of data items has an associated marginal likelihood f(D) defined according
to (1.1). In this chapter we consider two families of parameterised cluster models: for d-
dimensional binary data, we use a product of beta-Bernoulli distributions, and for curves
in R2, we use Gaussian processes. Other cluster models may be considered, e.g. other
exponential families with conjugate priors.

Binary data clusters

For d-dimensional binary data, we model the ith dimension independently using a Bernoulli
distribution with parameter θi, and use a beta prior for θi with hyperparameters (αi, βi).
Integrating out the parameters, the cluster likelihood f(D) is then the probability mass
formed by a product of independent beta-Bernoulli distributions in each dimension:

f(D) =

d∏
i=1

∫
f(Di|θi)f(θi|αi, βi)dθi

=

d∏
i=1

Beta(αi + ni, βi + |D| − ni)
Beta(αi, βi)

(1.19)

whereDi consists of the ith entry of each data item inD, ni is the number of ones inDi, and
|D| is the total number of data items in cluster D. The hyperparameters of the entire cluster
model are thus η = {(αi, βi)}di=1.

Gaussian process expert clusters

Here we consider data items consisting of input-output pairs, D = {(xi, yi)}ni=1, and are
interested in modelling the conditional distribution over outputs given inputs. Rasmussen
and Ghahramani (2002) proposed a DP mixture of Gaussian process (GP) experts where a
data set is partitioned, via the DP mixture, into clusters each of which is modelled by a GP.
Such a model can be used for nonparametric density regression, where a full conditional
density over an output space is estimated for each value of input. This allows generalisation
of GPs allowing for multi-modality and non-stationarity. The original model in Rasmussen
and Ghahramani (2002) had mixing proportions which do not depend on input values; this
was altered in the paper in an ad hoc manner using radial basis function kernels. Later Meeds
and Osindero (2006) extended the model by using a full joint distribution over both inputs
and outputs, allowing for properly defined input dependent mixing proportions.
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With both approaches MCMC sampling was required for inference, which might be slow
in convergence. Here we consider using Bayesian rose trees instead. The joint distribution of
each cluster is modelled using a Gaussian over the inputs and a GP over the outputs given the
inputs:

f(D) = f({xi})f({yi}|{xi}) (1.20)

where

f({xi}) =

∫ ∫ [
n∏
i=1

N (xi|µ,R−1)

]
N (µ|m, (rR)−1)IG(R|S, ν)dµdR

f({yi}|{xi}) = N ({yi}|0,K) (1.21)

where N (x|µ,Σ) is the Normal density with mean µ and covariance Σ, IG(R|S, ν) is a
Wishart density with degrees of freedom ν and scale matrix S, and the matrix K is a Gram
matrix formed by the covariance function of the GP (we used the squared exponential).
The normal inverse Wishart prior over the parameters µ and R is conjugate to the normal
likelihood, so f(D) can be computed analytically. It follows that for a Gaussian process
expert cluster that the hyperparameters η are (r, ν,S) where r is the scaling parameter of the
normal inverse Wishart prior.

1.4 Greedy construction of Bayesian rose tree mixtures
We take a model selection approach to finding a rose tree structure given data. Ideally we
wish to find a rose tree T ∗ maximising the marginal probability of the data D:

T ∗ = argmax
T

p(D|T ) (1.22)

This is intractable since there is a super-exponential number of rose trees.
Inspired by the success of other agglomerative clustering algorithms, we instead consider

constructing rose trees in a greedy agglomerative fashion as follows. Initially every data item
is assigned to its own rose tree: Ti = {xi} for all data items xi. At each step of our algorithm
we pick two rose trees Ti and Tj and merge them into one tree Tm using one of a few merge
operations. This procedure repeats until just one tree remains (for n data items this will occur
after n− 1 merges), and is illustrated in Figure 1.4.

Each step of the algorithm consists of picking a pair of trees as well as a merge operation.
We use a maximum likelihood ratio criterion, picking the combination that maximises:

L(Tm) =
p(leaves(Tm)|Tm)

p(leaves(Ti)|Ti)p(leaves(Tj)|Tj)
(1.23)

We use the likelihood ratio rather than simply the likelihood p(leaves(Tm)|Tm) because the
denominator makesL(Tm) comparable across different choices of trees Ti and Tj of differing
sizes (Friedman 2003; Heller and Ghahramani 2005).

We considered a number of merge operations to allow for nodes with more than two
children to be constructed: a join, an absorb, and a collapse operation (see Figure 1.5). In all
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input: data D = {x1 . . . xn},
cluster model p(x|θ),
cluster parameter prior p(θ|η),
cluster hyperparameters η

initialise: Ti = {xi} for i = 1 . . . n
for c = n to 2 do

Find the pair of trees Ti and Tj , and merge operation m with the highest likelihood
ratio:

L(Tm) =
p(leaves(Tm)|Tm)

p(leaves(Ti)|Ti)p(leaves(Tj)|Tj)
Merge Ti and Tj into Tm using operation m
Tn+c−1 ← Tm
Delete Ti and Tj

end for
output: Bayesian rose tree Tn+1, a mixture over partitions of D

Figure 1.4 Agglomerative construction algorithm for Bayesian rose trees.

operations the merged rose tree Tm has leaves(Tm) = leaves(Ti) ∪ leaves(Tj), the difference
being the resulting structure at the root of the merged tree. For a join, a new node Tm is
created with children Ti and Tj . A join is chosen if the children of Ti and Tj are related, but
are sufficiently distinguishable to keep both subtrees separated. For an absorb the children of
the resulting tree Tm are children(Ti) ∪ {Tj}, that is, tree Tj is absorbed as a child of Ti. This
operation is chosen if the children are related, but there exists finger distinguishing structure
already captured by Tj . This operation is not symmetric so we also consider the converse,
where the children are {Ti} ∪ children(Tj). Finally, a collapse merges the roots of both trees,
so that the resulting children of Tm are children(Ti) ∪ children(Tj). This is performed when
the children of Ti and Tj are indistinguishable so may be combined and treated similarly.

Binary hierarchical clustering algorithms such as Heller and Ghahramani (2005) only need
to consider the join operation. To be able to construct every possible rose tree the absorb
operation is necessary as well. Intuitively, a join merge makes the tree taller whilst an absorb
merge makes the tree wider. The collapse operation is not technically necessary, however we
found that including it allowed us to find better rose trees.

In general the computational complexity of the greedy agglomerative clustering algorithm
of Section 1.4 is in Ω(n2 log nL) (where L is a contribution to the complexity due to the
particular cluster likelihood). Firstly, for every pair of data items we must calculate the
likelihood of a merged tree—there are O(n2) such pairs. Secondly, these pairs must be
sorted—requiringO(n2 log n) computational complexity. The data structure we use is simply
a binary heap.

If the cluster marginal likelihood is a d-dimensional product of beta-Bernoulli distributions
(i.e., for d-dimensional binary valued data) then L = O(d). Instead of keeping track of every
data items, it is sufficient to keep track of the sufficient statistics (counts of zeros and ones) of
each cluster. The same argument applies to any conjugate exponential family cluster model.
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Ta Tb Tc Td Te

Ti Tj

Ta Tb Tc Td Te

Ti Tj

Join (Tm)

Ta Tb Tc

Td Te

Tj

Absorb (Tm)

Ta Tb Tc Td Te

Collapse (Tm)

Figure 1.5 Merges considered during greedy search.

For a BRT mixture of Gaussian process experts, L = O(n3), which comes from performing
Cholesky decompositions of Gram matrices.

There are several opportunities for approximations to improved the computational
complexity of the greedy agglomerative algorithm. Heller (2008) explored using
randomisation to sample random subsets of the data set to make the computational
complexity scale more favourably, and Xu et al. (2009) use a flat clustering to constrain one
level of the hierarchy, thereby reducing the complexity of discovering the remaining structure.
Low-rank approximations (such as Williams and Seeger (2001)) could also be used to reduce
the computational complexity of the Gaussian process expert variant.

1.4.1 Prediction

Two kinds of prediction are possible with BRT: predicting partially observed data items, and
predicting unobserved data items themselves.

The predictive probability of a Bayesian rose tree for partially observed data is

p(Dm|D, T ) =
p(Dm,D|T )

p(D|T )
(1.24)

where Dm are the unobserved parts of data items in D. The denominator of (1.24) is the
quantity optimised to find T , and calculating it is tractable if marginalising components of
the cluster likelihood is tractable.

As the rose tree T only accounts observed data items, predicting unobserved data requires
additional assumptions about the location of unobserved data within the rose tree. The
assumption we make is the same as in Heller (2008): the probability of an unobserved data
item being in a particular cluster is proportional to the number of observed data items in
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that cluster and also the number of observed data items in any cluster above it in the tree.
Intuitively this assumption means that an unobserved data item is more likely to come from
larger cluster than a smaller cluster and it is more likely to come from a cluster higher up the
tree than further down the tree. The predictive distribution of an unobserved data item is then
a mixture over clusters in T :

p(x|D, T ) =
∑

S∈subtree(T )

wSf(x|leaves(S)) (1.25)

where wS = rS

 ∏
A∈ancestor(S)

(1− rA)
nA→S
|leaves(S)|


rS =

πSf(leaves(S))

p(D|S)
(1.26)

where subtree(T ) are the subtrees of T corresponding to each cluster in T , ancestor(S) are
the ancestors of the subtree S, and nA→S is the number of data items in the subtree of A
containing all the leaves of S. f(x|leaves(S)) is the predictive cluster distribution of the
corresponding cluster model. Since in (1.25) x belongs to every cluster of T with some
probability, (1.25) does not describe a Bayesian rose tree mixture model.

1.4.2 Hyperparameter optimisation

We optimise the hyperparameters of the cluster marginal likelihood, η, and the mixture
proportion parameter, γ, by gradient ascent on the log marginal likelihood log p(D|T ). From
(1.5), the gradient of the marginal log likelihood log p(D|T ) with respect to the cluster
hyperparameters can be efficiently computed recursively:

∂ log p(D|T )

∂η
= rT

∂ log f(leaves(T ))

∂η

+ (1− rT )
∑

Ti∈children(T )

∂ log p(leaves(Ti)|Ti)
∂η

(1.27)

where rT is given by (1.26).
Similarly, the gradient for the mixture proportion parameter γ:

∂ log p(D|T )

∂γ
= rT

∂ log πT
∂γ

(1.28)

+ (1− rT )

∂ log(1− πT )

∂γ
+

∑
Ti∈children(T )

∂ log p(leaves(Ti)|Ti)
∂γ

 .
After optimising the hyperparameters for a particular tree, the marginal log likelihood

can be optimised further using these hyperparameters in a coordinate ascent procedure:
greedily find a better tree given the current hyperparameters (Figure 1.4), then find the best
hyperparameters for that tree (via (1.27) and (1.28)), and repeat until convergence, alternating
between optimising the hyperparameters and the tree. This optimisation procedure is not



Discovering Non-binary Hierarchical Structures with Bayesian Rose Trees 15

2 4 6 8 10
β1

2

4

6

8

10

β
2

3960

3900

3840

3780

3720

3660

3600

3540

Figure 1.6 Sensitivity of optimising the marginal likelihood to initial conditions. β1 and β2 of beta-
Bernoulli cluster model initialised as above, all other hyperparameters held fixed. Background colour
indicates marginal log likelihood at convergence via scale at left of plot.

guaranteed to find a global optimum of the marginal likelihood, as the marginal likelihood is
typically not convex in its cluster hyperparameters. However the optimisation procedure will
eventually converge upon a local optimum for the hyperparameters and tree, if the cluster
likelihood is bounded, as both steps optimise the same objective function.

We found that, particularly where binary data are missing, optimising the beta-Bernoulli
hyperparameters is sensitive to initial conditions: Figure 1.6 shows the effect of changing
the value of just two of the hyperparameters of the beta-Bernoulli cluster models on the
optimised log marginal likelihood log p(D|T ) of BRT. All other hyperparameters were held
fixed. Consequently, we used 10 restarts at random points around a MAP estimate of the
cluster hyperparameters, and for missing data, we averaged the hyperparameters of the beta-
Bernoulli model over a small region around the optimum found.

1.5 Bayesian hierarchical clustering, Dirichlet process and product
partition models

In this section we describe a number of models related to Bayesian rose trees: finite mixture
models, product partition models (Barry and Hartigan 1992), PCluster (Friedman 2003),
Bayesian hierarchical clustering (BHC) (Heller and Ghahramani 2005), and Dirichlet process
mixture models.

1.5.1 Mixture Models and Product Partition Models

A Bayesian rose tree is a mixture model over partitions of the data. This is an unusual way
to model how data items cluster and it may be beneficial to consider how other clustering
models relate to mixtures over partitions.
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We start by considering a typical Bayesian mixture model consisting of K components.
Such a model associates each data item, say xi, with a latent indicator variable, say zi ∈
{1, . . . ,K}, for the cluster to which it belongs. We can express this as a mixture over
partitions as follows:

p(D) =

n∏
i=1

K∑
zi=1

p(zi)p(xi|zi) =
∑
φ

m(φ)
∏
Dj∈φ

f(Dj) =
∑
φ

m(φ)g(φ) (1.29)

where the component parameters have been marginalized out, and φ ranges over all possible
partitions of the data with up to K clusters. This is a consequence of interchanging the
product and summation and using the commonality among the values of the zi’s to form
partitions. The likelihood g(φ) is the probability of the data under the partition φ given in
(1.2), whilst m(φ) is the mixing proportion over partitions and is obtained by summing over
all assignments {zi} giving rise to partition φ.

If the mixing proportion factorises into separate terms for each cluster, say m(φ) =∏
D∈φm(D), the last term of (1.29) is the marginal probability of a product partition model

(Barry and Hartigan 1992). An example of a product partition model with an unbounded
number of mixture components is the Dirichlet process (DP) mixture model, which has
m(φ) corresponding to the probability of a particular seating arrangement under the Chinese
restaurant process:

m(φ) =

∏
D∈φ αΓ(|D|)

α(α+ 1) · · · (α+ n− 1)
(1.30)

In the context of regression, our Bayesian rose tree mixture of Gaussian process experts also
bears some resemblance to an extension of product partition models described by Müller and
Quintana (In Press). There, the mixing proportionsm(φ) are allowed to depend on covariates
in a form functionally similar to one we would obtain if we condition on the inputs in (1.21).

Compared to the finite mixture model and product partition model, the Bayesian rose
tree mixture model allows a larger range over the number of components in its partitions,
ranging from those with a single cluster to those with as many clusters as there are data
items. On the other hand, all the partitions in a Bayesian rose tree have to be consistent with
the tree structure. A Bayesian rose tree can be interpreted as follows: the data are partitioned
in some unknown way, but all the reasonable ways in which the data could be partitioned are
consistent with some rose tree.

1.5.2 PCluster and Bayesian Hierarchical Clustering

Our work on Bayesian rose trees is directly motivated by issues arising from prior works on
PCluster and Bayesian hierarchical clustering (BHC). The first model, PCluster (Friedman
2003), is a direct probabilistic analogue of linkage methods where a likelihood ratio similar
to (1.23) is used to measure the distance between two clusters. Each iteration of the
agglomeration procedure thus produces a partition of the data with a likelihood similar to
(1.2). However the resulting tree structure itself does not correspond to a probabilistic model
of the data, rather it is simply a trace of the series of partitions discovered by the procedure.

Addressing the lack of a probabilistic model in PCluster, Heller and Ghahramani (2005)
proposed a probabilistic model indexed by binary trees called BHC. BHC is a mixture over
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partitions consistent with the binary tree, and the BRT approach described in the present
chapter is a generalisation and reinterpretation of BHC. There are three distinct differences
between BRT and BHC: Firstly, the likelihood and agglomerative construction of BHC
only accounts for binary trees. Secondly, Heller and Ghahramani (2005) considered two
alternative parameterizations of the mixing proportions πT . In the first parameterisation of
BHC, which we shall call BHC-γ, πT equals some constant γ, and is in agreement with BRT
on binary trees. The second parameterisation of BHC, which we shall call BHC-DP, uses a πT
which leads tom(φ) being precisely the mixing proportion of φ under the DP mixture (1.30).
Since the marginal probability of the data under the DP mixture is a sum over all partitions,
while that for BHC is only over those consistent with the tree, (1.4) gives a lower bound on
the DP mixture marginal probability. Note that a similar setting of πT in BRT allows it to
also produce lower bounds on the DP mixture marginal probability. However, since the set of
partitions consistent with a BRT is always a subset of the ones consistent with some binary
tree where we replace each non-binary internal node on the rose tree with a cascade of binary
nodes, the BRT lower bound will always be no higher than that for the BHC. This argument
obviates the use of BRT as approximate inference for DP mixtures. In fact our reason for
using rose trees is precisely because the set of partitions is smaller—all else being equal,
we should prefer simpler models by Occam’s Razor. This view of hierarchical clustering is
very different from the one expounded by Heller and Ghahramani (2005), and is the third
distinction between BHC and BRT. In the next section we will compare the parameterization
of BRTs described in Section 1.3 against BHC as well as other parameterizations of BRT
inspired by BHC.

1.6 Results

We compared BRT with several alternate probabilistic hierarchical clustering models: two
binary hierarchical clustering algorithms, BHC-γ and BHC-DP, and two other rose tree
hierarchical clustering algorithms. We shall call the model where BRT has πT = γ, BRT-
γ. BRT-γ differs from BHC-γ only in the number of possible children. Furthermore we
shall call the model where BRT has πT configured in a similar fashion to BHC-DP, BRT-
DP. In this way, all models with prefix “BRT” shall have rose trees and all models with prefix
“BHC” shall have binary trees, whilst the suffix denotes how πT is parameterised. The cluster
likelihood models used are described in Section 1.3.2.

For BHC-DP and BRT-DP we report its marginal likelihood p(D|T ), not the lower bound
on the DP mixture, which is p(D|T ) multiplied by a factor that is less than one.

1.6.1 Optimality of tree structure

The agglomerative scheme described in Section 1.4 is a greedy algorithm that is not
guaranteed to find the optimal tree. Here we compare the trees found by BRT, BHC-γ and
BHC-DP against the optimal (maximum likelihood) rose tree T ∗ found by exhaustive search.
We generated data sets of sizes ranging from 2 to 8, each consisting of binary vectors of
dimension 64, from a BRT mixture with randomly chosen rose tree structures. On each of the
n data sets we compare the performances in terms of the average log2 probability of the data
assigned by the three greedily found trees T relative to the maximum likelihood Bayesian
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Figure 1.7 Per data item log2 probability of trees found greedily by BRT, BHC-γ and BHC-DP,
relative to the optimal Bayesian rose tree. Error bars are one standard error. Lower in graph is better.

rose tree T ∗,

∆l =
1

ln

n∑
i=1

log2 p(Di|T ∗i )− log2 p(Di|Ti) (1.31)

where l is the number of data vectors in the data set. ∆l measures the average number of
bits required to code for a data vector under T , in excess of the same under T ∗. The results,
averaged over 100 data sets per data set size are shown in Figure 1.7. We see that BRT finds
significantly better trees than either BHC algorithms. We also found that BRT frequently
finds the optimal tree, e.g. when l = 8 BRT found the optimum 70% of the time. Note that
when l = 2 BHC-DP produced higher log probability than the optimal BRT T ∗, although it
performed significantly worse than BHC-γ and BRT for larger l. This is because the BHC-DP
and BRT models are not nested so BHC-DP need not perform worse than T ∗.

1.6.2 Hierarchy likelihoods

We compared the marginal likelihoods of trees found by BHC-γ, BHC-DP, BRT-γ,
BRT-DP, and BRT on five binary-valued data sets. These are the same data sets used
in Heller and Ghahramani (2005). The characteristics of the data sets are summarised
in Table 1.1. toy is a synthetic data set constructed where ones only appear in
three disjoint parts of the binary vector, with each class having ones in a different
part. The hierarchies in Figure 1.1 were found by BHC-γ and BRT on this data set.
spambase is the UCI repository data set of the same name (Frank and Asuncion
2010). newsgroups is the CMU 20newsgroups data set restricted to the news groups
rec.autos, rec.sport.baseball, rec.sport.hockey, and sci.space, and
pre-processed using Rainbow (McCallum 1996). digits is a subset of the CEDAR Buffalo
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Table 1.1 Characteristics of data sets.

Data set Attributes Classes Binarisation

toy 12 3 handcrafted
spambase 57 2 zero or non-zero
newgroups 485 4 word presence/absence
digits 64 10 threshold at 32
digits024 64 3 threshold at 32

Table 1.2 Log marginal likelihoods and standard errors

Data set BHC-DP BRT-DP BHC-γ BRT-γ BRT

toy −215 ± 0.0 −215 ± 0.0 −168 ± 0.1 −167 ± 0.2 −166 ± 0.1
spambase −2258 ± 7.3 −2259 ± 7.2 −1980 ± 7.0 −2006 ± 8.0 −1973 ± 7.6
digits024 −4010 ± 6.8 −4015 ± 6.8 −3711 ± 6.9 −3726 ± 6.9 −3702 ± 7.0
digits −4223 ± 6.9 −4216 ± 6.9 −3891 ± 6.7 −3916 ± 6.6 −3888 ± 6.8
newsgroups−10912 ± 61 −10937 ± 55 −10606 ± 63 −10807 ± 59 −10645 ± 60

Table 1.3 Log10 of the number of partitions used by the maximum likelihood
tree, with standard errors.

Data set BHC-DP BRT-DP BHC-γ BRT-γ BRT

toy 4 ± 0.0 4 ± 0.0 4 ± 0.0 4 ± 0.0 1 ± 0.0
spambase 14 ± 0.1 14 ± 0.1 14 ± 0.1 14 ± 0.1 7 ± 0.1
digits024 15 ± 0.1 15 ± 0.1 15 ± 0.1 13 ± 0.1 6 ± 0.1
digits 17 ± 0.1 17 ± 0.1 17 ± 0.1 16 ± 0.1 8 ± 0.1
newsgroups 14 ± 0.1 14 ± 0.1 14 ± 0.1 13 ± 0.1 7 ± 0.1

Table 1.4 Log predictive probabilities on 10% missing data and standard errors.

Data set BHC-DP BRT-DP BHC-γ BRT-γ BRT

toy −14.7 ± 0.7 −14.7 ± 0.7 −14.4 ± 0.6 −14.6 ± 0.6 −14.3 ± 0.6
spambase −190 ± 1.7 −187 ± 1.9 −192 ± 1.7 −192 ± 1.7 −190 ± 1.6
digits024 −347 ± 2.1 −345 ± 2.3 −345 ± 2.2 −345 ± 2.2 −343 ± 2.1
digits −372 ± 2.6 −371 ± 2.7 −369 ± 2.7 −371 ± 2.6 −370 ± 2.8
newsgroups−1122 ± 11 −1122 ± 11 −1114 ± 11 −1114 ± 11 −1114 ± 11
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digits data set, and digits024 is the same data set with only samples corresponding to the
digits 0, 2, and 4.

Each data set consists of 120 data vectors split equally among the classes, except for toy
which has only 48 data vectors. When the original data sets are larger the 120 data vectors
are subsampled from the original.

Table 1.2 shows the average log likelihoods of the trees found on these data sets. BRT
typically finds a more likely tree; the difference between the DP-approximating models and
others is significant, whilst the difference between the πT = γ models and BRT is often
significant.

Table 1.3 shows the logarithm (base 10) of the number of partitions represented by the
maximum likelihood trees. BRT typically finds a tree with far fewer partitions than the other
models corresponding to a simpler model of the data. The other rose tree-based models (BRT-
DP and BRT-γ) have the same or only slightly fewer partitions than their corresponding
binary tree equivalents (BHC-DP and BHC-γ, respectively). This reflects our design of the
mixing proportion γT of BRT: partitions should only be added to the mixture where doing
so produces a more likely model. The resulting BRT model is easier to interpret by the
practitioner than the alternatives.

1.6.3 Partially observed data

We compared the predictive probabilities of trees found by BHC-γ, BHC-DP, BRT-γ, BRT-
DP, and BRT on the same five binary-valued data sets as in the previous section, but
with partially observed data. 10% of the data were removed at random. The predictive
probabilities, as calculated as in (1.24), are shown in Table 1.4 along with the standard errors.
The predictive performance of all five models is similar, with BRT performing slightly better
on toy and digits024, whilst BRT-DP and BHC-γ perform slightly better on spambase
and digits, respectively.

1.6.4 Psychological hierarchies

The data set of Figure 1.8 is from Cree and McRae (2003). The data set consists of a matrix
whose rows correspond to objects and whose columns correspond to features. The elements
of the matrix are binary and indicate whether a particular object has a particular attribute.
There are 60 objects and 100 attributes (such as used for transportation, has legs, has
seeds, is cute). Figure 1.8 shows the trees found by BRT and BHC-γ by clustering the 60
objects.

One noticeable oddity of the hierarchical clustering produced by BRT is that lions and
tigers inhabit their own cluster that is divorced of from the other animals. The features of the
data set also include is it ferocious?, does it roar? which only lions and tigers have, whilst
they share few attributes in common to other animals in this data set: this is why they lie on
a distinct branch. Removing the attributes is it ferocious?, does it roar? and lives in the
wilderness (shared only with deer) cause lions and tigers to be included along with other
animals.

This figure shows how BRT not only finds simpler, easier to interpret hierarchies than
BHC-γ but also more probable explanations of the data. BHC-DP, BRT-DP and BRT-γ also
find similarly less probable and more complicated hierarchies than BRT.
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Figure 1.8 Hierarchies found by BHC-γ and BRT on 60 objects (with 100 binary features) data set.

1.6.5 Hierarchies of Gaussian process experts

Figure 1.9 shows fits by a single Gaussian process, a BHC-γ mixture of Gaussian process
experts, and a BRT mixture of Gaussian process experts, to multi-modal data consisting of
two noisy interlaced sine waves. The background of the figure is coloured according to the
predictive density of the model: for BHC-γ and BRT this is calculated as in (1.25). The solid
lines on the Gaussian process and BRT plots correspond to the posterior mean of the clusters.
BRT finds a simpler and more probable explanation of the data than the alternate models:
two primary clusters (in red and yellow) identify with each sine wave, and a root cluster (in
green) tying the data together.

1.7 Discussion
We have described a model and developed an algorithm for performing efficient, non-binary
hierarchical clustering. Our Bayesian rose tree approach is based on model selection: each
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tree is associated with a mixture of partitions of the data set, and a greedy agglomerative
algorithm finds trees that have high marginal likelihood under the data.

Bayesian rose trees are a departure from the common binary trees for hierarchical
clustering. The flexibility implied by a mixture model over partitions with tree consistency is
used in Bayesian rose trees to allow mixture models with fewer components, and thus simpler
explanations of the data, than those afforded by BHC. The BRT mixture proportions are
designed so that simpler models which explain the data are favoured over more complicated
ones: this is in contrast to BHC-DP where forced binary merges create extra, spurious
structure which is not supported by the data.

We have demonstrated in our experiments that this algorithm finds simple models which
explain both synthetic and real-world data. On all data sets considered, our Bayesian rose
tree algorithm found a rose tree with higher marginal likelihood under the data than Bayesian
hierarchical clustering (BHC), as well significantly simpler explanations of the data, in terms
of the number of partitions. We built BRTs using two likelihood models, a beta-Bernoulli and
a Gaussian process expert. In both cases the model yielded reasonable mixtures of partitions
of the data.

Our use of BRT for nonparametric conditional density estimation is a proof of concept.
BRT offers an attractive means of fitting a mixture of GP experts compared to sampling
(Meeds and Osindero 2006; Rasmussen and Ghahramani 2002): with sampling one is never
sure when the stationary distribution is attained, while the BRT algorithm is guaranteed to
terminate after a greedy pass through the data set, constructing a reasonably good estimate of
the conditional density. Note however that the run time of the current algorithm isO(n5 log n)
where n is the number of data items. The additional O(n3) factor is due to the unoptimised
GP computations. An interesting future project would be to make the computations more
efficient using recent advanced approximations.

Another direction for BRT is to adapt the model and inference to produce more than
one tree. For example, co-clustering of both data items and their features simultaneously
(a probabilistic version of Hartigan (1972)) might allow a richer interpretation to the
data. Alternatively, one might imagine that for some data it is possible to extract multiple
hierarchical facets, by producing several equally plausible (though different) hierarchies of
the same data.

It might also be possible to further simplify the tree produced by BRT: for large amounts
of data it can be unwieldy to interpret the hierarchy produced. A common approach is to
“cut” the hierarchy to produce a flat clustering but this necessarily removes the hierarchical
information found. Instead one might adapt an approach similar to Aldous et al. (2008) where
a coarser sub-hierarchy is extracted in a probabilistic fashion.

Nonparametric Bayesian priors also exist for rose trees (such as Pitman (1999) and Bertoin
(2001)) and in future these could be used for non-binary hierarchical clustering that is able to
take structure uncertainty into account as well as leverage the nonparametric nature to predict
unobserved data items directly.
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Figure 1.9 A Gaussian process (top) with marginal log likelihood: −1037, on synthetic data of
two interlaced curves. Observations are crosses, and line is the posterior mean function of the GP.
Background grey scale indicates the predictive density of the GP (scale on left of predictive plot).
A BHC mixture of GP experts (middle) with marginal log likelihood: −801, consisting of 149 non-
singleton clusters in 7, 527, 281 partitions. To the left is the tree found by BHC. Finally, a BRT mixture
of GP experts (bottom) with marginal log likelihood: 59, consisting of 3 non-singleton clusters in
5 partitions. Background grey scale indicates corresponding density p(D∗|D) (as defined in Heller
(2008)) via scale on corresponding left of plot. The posterior mean functions passing through the
data points correspond to the two subtrees found by BRT, whilst the third posterior mean function
corresponds to the GP at root of the tree.


