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Abstract

Hierarchical structure is ubiquitous in data
across many domains. There are many hier-
archical clustering methods, frequently used
by domain experts, which strive to discover
this structure. However, most of these meth-
ods limit discoverable hierarchies to those
with binary branching structure. This lim-
itation, while computationally convenient, is
often undesirable. In this paper we ex-
plore a Bayesian hierarchical clustering algo-
rithm that can produce trees with arbitrary
branching structure at each node, known
as rose trees. We interpret these trees as
mixtures over partitions of a data set, and
use a computationally efficient, greedy ag-
glomerative algorithm to find the rose trees
which have high marginal likelihood given the
data. Lastly, we perform experiments which
demonstrate that rose trees are better models
of data than the typical binary trees returned
by other hierarchical clustering algorithms.

1 Introduction

An important part of exploratory data analysis and
unsupervised learning is determining what hierarchi-
cal structure, if any, exists in data. Rich hierarchies
are common in data across many domains. For ex-
ample, topic hierarchies are found in text processing,
phylogenies in evolutionary biology, and hierarchical
community structures in social networks.

Most algorithms for hierarchical clustering construct
binary tree representations of data, where leaf nodes
correspond to data points and internal nodes corre-
spond to clusters. For example, traditional agglom-
erative linkage methods (Duda and Hart, 1973) start
with each data point in its own cluster and iteratively
merge the closest pair of clusters, as determined by
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Figure 1: Bayesian hierarchical clustering (left) and
Bayesian rose trees (right) on the same synthetic data
set. The three groups of 15 similar data points all clus-
ter into groups under both models. However Bayesian
hierarchical clustering defines a mixture model over
3,391 partitions whereas Bayesian rose trees defines a
mixture model over just 11 partitions of the data with
a higher marginal likelihood (marginal likelihood is on
the horizontal axis).

some distance metric, together until all data belong
to a single cluster. Current probabilistic and Bayesian
approaches to hierarchical clustering, to be discussed
later, produce binary trees as well.

This restriction of the hypothesis space to binary trees
alone is undesirable in many situations. Firstly, we
simply do not believe that many hierarchies in real
world applications are binary. Secondly, limiting al-
gorithms to binary trees often forces spurious struc-
ture to be hallucinated even if this structure is not
supported by data, making the practitioners task of
interpreting the trees more difficult. This spurious
structure is also undesirable from an Occam’s razor
point of view. The algorithms are not returning the
simplest structure supported by the data, because the



simpler models which explain the data have been ex-
cluded from the hypothesis space. Figure 1(left) shows
an example of such hallucinated structure returned
by Bayesian hierarchical clustering (BHC) (Heller and
Ghahramani, 2005). In this case cascades are used to
represent the three large clusters. This is a telltale
sign among probabilistic binary tree construction al-
gorithms that the tree cannot represent the large clus-
ters in the data properly. Ideally the tree structure
should be simplified by collapsing each cascade into a
single node with many children expressing the indistin-
guishability among the children, as in Figure 1(right).

In this paper we broaden the hypothesis space of our
hierarchical clustering algorithm to include trees with
arbitrary branching structure at each internal node.
We refer to these as rose trees, as they are known
in the functional programming literature (Meertens,
1988). Since there are many more options for branch-
ing structure, the space of rose trees is larger than
binary trees!, and the search for good trees is corre-
spondingly harder.

For the sake of computational efficiency, we take a
greedy agglomerative approach to constructing trees,
and consider three ways in which subtrees can be
merged: a join operation that creates a new node, an
absorb that does not, and a collapse that removes a
node (see figure 3).

We will show on multiple data sets that this algorithm
produces very good trees. Not only does our method
obtain more probable explanations of data, but it also
results in simpler, easier to interpret hierarchies.

In Section 2 we describe our model in detail and discuss
relationships with BHC. In Section 3 we describe our
agglomerative construction algorithm. In Section 4 we
report experimental results using Bayesian rose trees,
and finally, we conclude with a discussion of previous
related work in Section 5.

2 Rose trees, partitions and mixtures

The starting point of our approach is Bayesian hier-
archical clustering (BHC) (Heller and Ghahramani,
2005), a probabilistic approach to hierarchical clus-
tering. In BHC a tree is associated with a set of
tree-consistent partitions, and interpreted as a mix-
ture model, where each component of the mixture is
represented by a subset of tree nodes, and corresponds
to a partition of the data.

We start by giving proper definitions of rose trees, par-
titions, and our interpretation of rose trees as mixtures

! Asymptotically there are a factor of 2°(™ more rose
trees than binary trees.

over partitions. A rose tree is defined recursively: T
is a rose tree if either T = {z} for some data point
z,or T ={Th,...,T,,} where T}’s are rose trees over
disjoint sets of data points. In the latter case each T;
is a child of T and T has np children. Let leaves(T)
be the set of data points at the leaves of T'.

Our concepts of partitions and mixtures over parti-
tions are direct generalisations of the binary tree case
(Heller and Ghahramani, 2005). We denote partitions
using “|”, for example ab|c denotes a partition of the
set {a, b, ¢} into disjoint subsets {a, b} and {c}. A rose
tree T is used to represent a structured subset P(7")
of all partitions of some data points D. Specifically
it represents the set of partitions consistent with 7',
which can be defined recursively as follows:

(2

P(T) = {leaves(T)} U {¢1...|¢,LT; 7(;66 Cﬁg))} (1)

where ch(T') are the children of T, and {leaves(T)} rep-
resents the partition where all data points at the leaves
of T are clustered together. Two examples of the sets
of partitions associated with rose trees are shown in
Figure 2. Roughly, each partition starts at the root
of the tree, and either keeps the leaves in one cluster
or partitions the leaves into the subtrees, the process
repeating on each subtree. The end result is that each
¢ € P(T) cousists of non-overlapping clusters, each of
which consists of all the leaves of some subtree in T
We will denote these subtrees by fronty(¢) and the
set of ancestors of subtrees in frontr(¢) by ang(¢).
Note that all rose trees include the complete partition
{leaves(T')} and (by recursion) the completely discrim-
inating partition where each data point in D is in its
own component of the partition.

We interpret a rose tree T as a mixture over partitions
in P(T') of the data points at its leaves D = leaves(T):

p(DIT) =

o €P(T)

p(¢r)p(Dlér) (2)

where p(¢r) is the mixing proportion of partition ¢r,
and p(D|¢r) is the probability of data D given a par-
titioning by ¢p. In general the number of partitions
consistent with T' can be exponentially large. To make
computations tractable, we define the mixture model
in such a way that p(D|T) can be computed using dy-
namic programming over 7":

p(DIT) =71 f (D) + (1—mr)[ [ plleaves(T3)|T;) (3)
T;€ch(T)
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Figure 2: The BRT mixing proportions are defined such that mass associated with the partition {a b|c|d} missing
from the collapsed rose tree R is re-assigned to the complete partition {abc|d}.

where f(D) is the marginal probability of the data
D under an exponential family, with the parameters
marginalized out under a conjugate prior with hyper-
parameters (3, and 7 is a mixing proportion. Com-
paring (3) and (2), we find that

p(Dlor) = [ £ (4)

D’'e¢pr
pler)= ] (-=a) ] 7 (5)
Acany (ér) Sefrontr (1)

The probability of D under partition ¢7 is simply the
probability of each cluster D’ of data points in ¢ un-
der the exponential family, while 7 is the prior prob-
ability that the leaves under 7T are kept in one cluster
rather than subdivided by the recursive partitioning
process. We define mr as follows:

mp=1-(1-9)"""" (6)

where 0 < v < 1is a hyperparameter of the model con-
trolling the relative proportion of coarser partitions of
the data as opposed to finer ones. When restricting to
binary trees only, 7 = v and the model reduces to the
constant 7 version in Heller and Ghahramani (2005).
This choice of 77 is intimately related to our maxim
that the maximum likelihood tree should be simple if
the data is unstructured, and will be explained in the
next two subsections.

In summary, the marginal probability of D under a
rose tree T, p(D|T), is a mixture over the partitions
consistent with 7', with the probability of D under a
partition ¢ € P(T") being a product [[ ¢, f(D) of the
probabilities of clusters in ¢. We call our mixture a
Bayesian rose tree (BRT) mixture model.

2.1 Avoiding needless cascades

In this section we explain our choice of 7w given in
equation 6. We will start with a simple situation con-
sisting of four data points a, b, ¢ and d depicted in
Figure 2.

Consider the two rose trees in Figure 2 over the data
points D, consisting of a, b, ¢ and d. Suppose that the

data points a, b, ¢ are similar to each other but are oth-
erwise indistinguishable, i.e. they should be in just one
cluster, yet are distinguishable from d. We should pre-
fer the collapsed rose tree R over the cascading binary
tree B. The figure also shows the set of partitions and
their mixing proportions under BHC-v, for B, and un-
der BRT, for R. Because the data points a, b, ¢ belong
together in one cluster, we can expect the following in-
equalities among the marginal likelihoods of the data
under the partitions (recall p(D|¢) = [[pe, f(D) is
the likelihood of partition ¢):

p(PHabeld}) > p(D{ablc|d}) (7)
p(PHabcld}) > p(D{aclbld}) (8)
p(PHabcld}) > p(D{bclald}) (9)

We want, where possible, the model to prefer R over
B, and so also require

p(D|R) > p(D|B) (10)

Expanding the marginal likelihoods under R and B as
a mixture of the likelihoods under each partition, and
using the inequality among the partition likelihoods
we can guarantee (10) if we set the mixing proportion
Tape Of the subtree R with leaves a, b, ¢, to be 1 —mgp. =
(1 — v)%. Here the mass of missing partitions from B
are re-assigned to the collapsed partition in R. This is
shown in figure 2.

In the general case, if we have a cluster of indistin-
guishable data points, we can guarantee preferring a
rose tree R consisting of a single internal node over
any binary tree if the mixing proportion of the com-
plete partition in R is the sum over the mixing propor-
tions of all partitions consistent with the binary tree
except the most discriminating partition. Fortunately,
this sum turns out to be the same regardless of the
structure of the binary tree (if 7 = v for each binary
tree B), and equals:

mr=1—(1—~)"r! (11)

where ng is the number of children of R.

As in BHC-DP, mp parameterised as in equation 11
also tends to one as the number of children becomes



large but it does so much more slowly (compared to the
BHC mixture proportion assignment). When ng = 2,
this assignment agrees with BHC-~.

2.2 Relation to BHC and DP mixture models

Bayesian rose trees are a strict generalisation of
BHC—if every node is restricted to have just two chil-
dren we will recover BHC. Heller and Ghahramani
(2005) described two parametrisation of mp which we
shall refer to as BHC-y and BHC-DP. BHC-v sets
mr = 7, v being a fixed hyperparameter, and the
BRT model we just described is a generalisation of
this model. On the other hand BHC-DP sets up nr
such that it produces a lower bound on the marginal
likelihood of a corresponding Dirichlet process (DP)
mixture. A similar set-up can allow BRT to produce
a lower bound as well, though we will now argue that
this is in fact undesirable.

Recall that the marginal probability of data under a
DP mixture model is a convex combination of expo-
nentially many terms, each of which is the probability
of the data under a different partition of the data items
into clusters. BHC-DP produces a lower bound on this
marginal probability by including only the terms cor-
responding to partitions which are consistent with the
constructed binary tree. A similar setting of 77’s in
BRT allows it to also produce a lower bound on the
DP mixture marginal likelihood. However, BRT's gen-
erally correspond to much smaller sets of partitions
than binary trees—if we replace each non-binary in-
ternal node of the rose tree with a cascade of binary
nodes we will get a superset of partitions (see also Fig-
ure 1 and Section 4). This implies that the BRT lower
bound will be no higher than the BHC lower bound.

The above argument obviates the use of Bayesian rose
trees as an approximate inference method for DP mix-
tures since they correspond to smaller sets of partitions
of the data. In fact our reason for using rose trees is
precisely because the sets of partitions are smaller—if
there is no structure in the data to support a more
complex model, by Occam’s Razor we should prefer a
simpler model (reflected in terms of a smaller number
of partitions). This view of hierarchical clustering is
very different from the one expounded by Heller and
Ghahramani (2005).

3 Greedy construction of Bayesian
rose tree mixtures

We take a model selection approach to finding a rose
tree structure given data. Ideally, we wish to find a
rose tree 1™ maximising the marginal probability of
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Figure 3: Merges considered during greedy search.

the data D:

T* = argmax p(D|T) (12)
T

This is intractable since there is a super-exponential
number of rose trees.

Instead, rose trees can be constructed in a greedy ag-
glomerative fashion as follows. Initially every data
point is assigned to its own rose tree: T; = {x;} for all
data points x;. At each step of our algorithm we pick
two rose trees T; and T} and merge them into one tree
T,. This procedure repeats until just one tree remains
(for n data points this will occur after n — 1 merges).

To allow for nodes with more than two children, we
consider three types of merges which we call a join,
an absorb, and a collapse (Figure 3). In all operations
the merged rose tree T, has leaves(T,,) = leaves(T;) U
leaves(T}), the difference being the resulting structure
at the root of the merged tree. For a join, a new
node is created with children 7, = {7;,7;}. For an
absorb T, = ch(T;) U{T}}, that is, tree T} is absorbed
as a child of T;. This operation is not symmetric so
we also consider the converse (T, = {T;} U ch(T})).
Finally, a collapse merges the roots of both trees T;,, =
ch(T;) U ch(T}).

Each step of the algorithm then consists of picking a
pair of trees as well as one of four possible merge oper-
ations (there are two absorb possibilities). The pair of
trees and merge operation picked are the combination
that maximises the likelihood ratio:

p(leaves(T,,)|Tom)

LiTm) = p(leaves(T;)|T;)p(leaves(T})|T}) "

We use the likelihood ratio rather than
p(leaves(T,,)|Tm) because the denominator makes
L(T,,) comparable across different choices with trees
T; and T; of differing sizes (Friedman, 2003; Heller
and Ghahramani, 2005).



Choosing a join to construct T;, means that the chil-
dren of T; and T are related according to f(Dy,)
but are sufficiently distinguishable that the two sub-
trees T; and T; should stay separated. Picking absorb
(T, = ch(T;) U{T};}) means that the leaves are simi-
lar but there exists some finer distinguishing structure
already captured by 7. A collapse is performed when
the children of T; and T} are indistinguishable and so
may be combined and treated similarly. These intu-
itions in the complexity of the data are reflected in
the partition structure of the resulting T,,: collapse
produces the fewest partitions, join produces the most
partitions in 7;,, while absorbs are in between.

Binary hierarchical clustering algorithms only need to
consider the join operation. To be able to construct
every possible rose tree the absorb operation is nec-
essary as well. The collapse operation is not techni-
cally necessary, however we found that including it al-
lowed us to find better rose trees and we include it as
a result. The resulting algorithm has O(n?logn) time

input: data D = {2 ... z(")
prior p(6|5)
initialise: number of clusters ¢ = n, and
Ti={zW}fori=1...n

while ¢ > 1 do
Find the pair of trees 7; and 7}, and merge
operation m with the highest likelihood
ratio:

}, model p(x|6),

) Tm)
T:)|T;)p(leaves(

p(leaves(T,,

L(Tm) = p(leaves(

T)|T;)

Merge T; and T} into T}, using operation m
Delete T; and T, c < c— 1
end while

Figure 4: Bayesian rose tree algorithm

and space complexity where n is the number of data
points, ignoring complexity due to the particular clus-
ter marginal likelihood f(D) used. The logn factor is
due to searching for the best pair of trees to merge.

3.1 Hyperparameter optimisation

The hyperparameters § of the exponential family dis-
tribution for each cluster can be optimised by using
gradient ascent. From (3), the gradient of the log like-

lihood p(D|T) can easily be computed recursively:

dlogp(D|T)  Olog f(leaves(T))
7aﬁ =Trr 85 (14)
IS 510gp(162\§8(Ti)|T%)
Ty €ch(T)
where rp = W (15)

A similar gradient can be found for «, however in our
experiments v is optimised using Brent’s method.

After optimising these hyperparameters on a particu-
lar tree, one option is to find another tree that max-
imises p(D|T) using these hyperparameters in an EM-
like algorithm: in the E-step, greedily find T then in
the M-step find the best hyperparameters, and repeat.

4 Results

In this section we present several experiments using
BRT. We compare our results to BHC-y and in most
cases BHC-DP as well. For BHC-DP we report its
marginal likelihood p(D|T'), not the lower bound on
the DP mixture, which is p(D|T") multiplied by a fac-
tor that is less than one. Except for the last exper-
iment, the data we used are binary vectors. We as-
sumed f(D) is factorised across dimensions, with di-
mension ¢ modelled by a Bernoulli distribution with
beta(w;, 8;) prior. Integrating out the parameters,

d
H/fD|9 (01]cvi, 3:)d0

d O‘z +ng, B + N — )
H amﬁz)

(16)

=1

where d is the number of dimensions, IV is the number
of data points in D, n; is the number of 1s in dimension
¢ and B(x,y) is the beta function.

Optimality of tree structure. The agglomerative
scheme described in Section 3 is a greedy algorithm
that is not guaranteed to find the optimal tree. Here
we compare the trees found by BRT, BHC-y and
BHC-DP against the optimal (maximum likelihood)
Bayesian rose tree T found by exhaustive search. We
generated data sets of sizes ranging from 2 to 8, each
consisting of binary vectors of dimension 64, from a
BRT mixture with randomly chosen rose tree struc-
tures. On each of the N data sets we compare the
performances in terms of the average log probability
of the data assigned by the three greedily found trees
T relative to the maximum likelihood Bayesian rose



0.35

03l —e—BRT |
—&— BHC (fixed)
BHC (DP)

021 1

015 1

011 1

A Bits per Data Point

0.05- 4

I I I I I
1 2 3 4 5 6 7 8 9
Data Set Size

Figure 5: Per data item log probability of trees found
greedily by BRT, BHC-vy and BHC-DP, relative to the
optimal Bayesian rose tree. Error bars are one stan-
dard error. Lower in graph is better. Log in base 2.

tree T,

N
1 *
A=y > 108, p(DylT;;) — log, p(Dn|T,)  (17)
n=1

where [ is the number of data vectors in the data set.
A; measures the average number of bits required to
code for a data vector under 7', in excess of the same
under T*. The results, averaged over 100 data sets per
data set size are shown in Figure 5. We see that BRT
finds significantly better trees than either BHC algo-
rithms. We also found that BRT frequently finds the
optimal tree, e.g. when [ = 8 BRT found the optimum
70% of the time. Note that when [ = 2 BHC-DP pro-
duced higher log probability than the optimal BRT T*,
although it performed significantly worse than BHC-~
and BRT for larger [. This is because the BHC-DP
and BRT models are not nested so BHC-DP need not
perform worse than 7.

Psychological hierarchies. The data set of Fig-
ure 6 is from Cree and McRae (2003) and consists of 60
objects, each with 100 binary attributes (such as used
for transportation, has legs, has seeds, is cute). Figure 6
shows the trees found by BRT and BHC-v. This fig-
ure shows how BRT not only finds simpler, easier to
interpret hierarchies than BHC-v but also more prob-
able explanations of the data. The features of the data
set include is it ferocious?, does it roar? which only li-
ons and tigers have, whilst they share few attributes
common to other animals in this data set: this is why
they lie on a distinct branch. For space reasons we did
not include BHC-DP, which obtained lower likelihood
(log p(D|T) = —1419) with 468,980, 051 partitions.

BRT
1,441 partitions,
logp(D|T) = —1258

BHC-v
908,188,506 partitions,
log p(D|T) = —1266

duck
ise| chicken
&
seal
| yiil dolphin
SCiSsOrs mouse
3 ral
,Iedgengmm r squirrel
Wi cat
screwdfiver oo
crowbar shee
tomahawk plg
oo it
0
shoveel 5_
rake tiger
. ion | J—————
helicopter
i lettuce
su%maswe :— cucumber
T Soiato
0
tr%%ﬁ ’rjadish
bus onions
motorcyc_lei tar}]ﬂggng
e
- o
)
wheelbag&vev apaplg
tricycle straw%e_ﬁg
nectarin
pineapple
cucumber drill
I%E?rco% clﬁ(rang
‘I');é?stg scissors
onions chisel
tarSendg tomah%wﬁ
it crowbar
gra?ee Ton screwaﬁveg
apple iR
S{,lg%;grg%e sledgehammer
. shovel
pineapple r?éﬁg ]
dol%;iar] acht
chig EE yshlp
uc ubmarine
deet elicopter
squirfe traleq
ehes \,éa'
cgi\g tri %E
horse motorcgpﬂz
Il
lion wheelbarrow
tiger tricycle
Jeep

Figure 6: Hierarchies found by BHC-v and BRT on 60
objects (with 100 binary features) data set.

Table 1: Characteristics of data sets.

Data set Attributes Classes Binarisation

toy 12 3 handcrafted

spambase 57 2 Z€ero or non-zero
newgroups 485 4 word presence/absence
digits 64 10 threshold at 32
digits024 64 3 threshold at 32

Hierarchy likelihoods. We compared the marginal
likelihoods of trees found by BHC-DP, BHC-y and
BRT on five other data sets. The characteristics of the
data sets are summarised in Table 1. toy is a synthetic
data set constructed where 1s only appear in three
disjoint parts of the binary vector, with each class
having 1s in a different part. The hierarchies in Fig-
ure 1 are found by BHC-v and BRT on this data set.
spambase is the UCI repository data set. newsgroups
is the CMU 20newsgroups data set restricted to
the news groups rec.autos, rec.sport.baseball,
rec.sport.hockey, and sci.space, constructed us-
ing Rainbow (McCallum, 1996). digits is a subset
of the CEDAR Buffalo digits data set, and digits024
is the same data set with only samples corresponding
to the digits 0, 2, and 4. Each data set consists of



Table 2: Log likelihoods and standard errors

Data set BHC-DP BHC-~ BRT
toy -192+£0 —-169 £ 0 —166 £ 0
spambase  —2354 £4.7 —2000 £ 4.5 —1991 £ 4.5
digits024 —4154 £5.2 —3759 £ 4.6 —3748 £ 4.6
digits —4429 £ 3.3 —3966 £+ 3.1 —3954 £+ 3.1

newsgroups—11602 + 104 —10833 + 106—10827 £ 105

0.54
0.48
0.42
0.36
0.30
0.24
0.18
0.12
0.06

2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00

Figure 7: A Gaussian process expert (top) with
marginal log likelihood: —1037, on synthetic data of
two interlaced curves. Observations are crosses, and
line is the posterior mean function pf the GP. Back-
ground grey scale indicates the predictive density of
the GP (scale on left of top plot). On the bottom, a
BRT mixture of GP experts (bottom) with marginal
log likelihood: 59. Background grey scale indicates
corresponding density p(y|z, D) (as defined in Heller
(2008)) via scale on corresponding left of plot. Each
internal node is uniquely coloured, and its posterior
mean function drawn in that colour. Data items
(crosses) are coloured according to their parent node.

120 data vectors split equally among the classes, ex-
cept for toy which has only 48 data vectors. When
the original data sets are larger the 120 data vectors
are subsampled from the original. The log likelihoods
log p(D|T) of the found trees are shown in Table 2. In
all of our experiments we found that BRT finds higher
log likelihoods than BHC-v, which in turn finds higher
log likelihoods than BHC-DP.

BRT mixture of Gaussian process experts.
Rasmussen and Ghahramani (2002) proposed a DP
mixture of Gaussian process (GP) experts where a
data set is partitioned, via the DP mixture, into
clusters each of which is modelled by a GP. Such a
model can be used for nonparametric density regres-
sion, where a full conditional density over an output

space is estimated for each value of input. This allows
generalisation of GPs allowing for multi-modality and
non-stationarity. The original model in Rasmussen
and Ghahramani (2002) had mixing proportions which
do not depend on input values; this was altered in the
paper in an ad hoc manner using radial basis func-
tion kernels. Later Meeds and Osindero (2006) ex-
tended the model by using a full joint distribution over
both inputs and outputs, allowing for properly defined
input dependent mixing proportions. With both ap-
proaches MCMC sampling was required for inference,
which might be slow in convergence.

Here we consider using Bayesian rose trees instead. Let
the data points D = {(z;, y;)} Y, where x; is the input
and y; is the output. The joint distribution of each
cluster is modelled using a Gaussian over the inputs
and a GP over the outputs given the inputs:

f(D) =f({z; € D})f({y: € D}{z; € D})  (18)

where f({z; € D}) is the marginal probability of the
inputs under a Gaussian with a conjugate Gaussian-
inverse-Wishart prior, and f({y; € D}|{z; € D}) is
the marginal probability of the outputs given inputs
under a GP. We used a squared exponential kernel for
the GPs, with length scale, signal variance, and noise
variance optimised by gradient ascent in log likelihood.

Once the rose tree has been constructed, given a new
input = the posterior probabilities over clusters can be
computed as in Heller (2008). The predictive distri-
bution over output y is then a mixture of Gaussians,
with mixing proportions given by the posterior over
clusters, while each Gaussian is the distribution of y
under the GP in the corresponding cluster, conditional
on the other input/output pairs in the cluster.

Figure 7 shows the BRT

estimated conditional den-

sities as well as the con- / \
ditional densities under a .
single GP, on a synthetic

multi-modal data set. BRT / l \ / l \
constructs the rose tree in
Figure 8. Each internal
nodes is represented in Fig-
ure 7 with the mean of its
GP component. Two of in-
ternal nodes correspond to
the two modalities in the data set (these are coloured
yellow and red). The third node (the root; green) is
the parent of these nodes. The BRT mixture of GP
experts has a higher likelihood than that of the GP for
this data set.

Figure 8: Bayesian
rose tree of Gaussian
process experts shown
of figure 7.



5 Discussion

We have described a model and developed an algo-
rithm for performing efficient, non-binary hierarchical
clustering. Our Bayesian rose tree approach is based
on model selection: each tree is associated with a mix-
ture of partitions of the data set, and a greedy agglom-
erative algorithm finds trees that have high marginal
likelihood under the data.

Bayesian rose trees are a departure from the common
binary trees for hierarchical clustering. The flexibil-
ity implied by a mixture model over partitions with
tree consistency is used in Bayesian rose trees to al-
low mixture models with fewer components, and thus
simpler explanations of the data, than those afforded
by BHC. The BRT mixture proportions are designed
so that simpler models which explain the data are
favoured over more complicated ones: this is in con-
trast to BHC-DP where forced binary merges create
extra, spurious structure which is not supported by
the data.

We have demonstrated in our experiments that this al-
gorithm finds simple models which explain both syn-
thetic and real-world data. On all data sets consid-
ered, our Bayesian rose tree algorithm found a rose
tree with higher marginal likelihood under the data
than Bayesian hierarchical clustering (BHC) (Heller
and Ghahramani, 2005). We built BRTs using two
likelihood models, a beta-Bernoulli and a Gaussian
process expert. In both cases the model yielded rea-
sonable mixtures of partitions of the data.

Our use of BRT for nonparametric conditional den-
sity estimation is a proof of concept. BRT offers an
attractive means of fitting a mixture of GP experts
compared to sampling (Rasmussen and Ghahramani,
2002; Meeds and Osindero, 2006): with sampling one
is never sure when the stationary distribution is at-
tained, while the BRT algorithm is guaranteed to ter-
minate after a greedy pass through the data set, con-
structing a reasonably good estimate of the conditional
density. Note however that the run time of the cur-
rent algorithm is O(n®logn) where n is the number
of data points. The additional O(n3) factor is due to
the unoptimised GP computations. An interesting fu-
ture project would be to make the computations more
efficient using recent advanced approximations.

There are many related methods to the Bayesian rose
trees presented here. These include recent methods
based on probabilistic or Bayesian hierarchical clus-
tering which operate agglomeratively (Friedman, 2003;
Heller and Ghahramani, 2005; Teh et al., 2008), but
are restricted to binary merges. Others (Neal, 2003;
Roy et al., 2007; Teh et al., 2008) describe Bayesian

nonparametric priors and propose to compute poste-
riors over binary trees. These are desirable since they
result in uncertainty over tree structures, but are less
computationally efficient as a result. Nonparametric
priors also exist over rose trees (Pitman, 1999) and
could be used for hierarchical clustering as well. This
is an avenue for future exploration.
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