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Abstract

We present a novel inference algorithm for
arbitrary, binary, undirected graphs. Unlike
loopy belief propagation, which iterates �xed
point equations, we directly descend on the
Bethe free energy. The algorithm consists
of two phases, �rst we update the pairwise
probabilities, given the marginal probabili-
ties at each unit, using an analytic expres-
sion. Next, we update the marginal proba-
bilities, by following the negative gradient of
the Bethe free energy. Both steps are guar-
anteed to decrease the Bethe free energy, and
since it is lower bounded, the algorithm is
guaranteed to converge to a local minimum.
We also show that the Bethe free energy is
equal to the TAP free energy up to second
order in the weights. In experiments we con-
�rm that when belief propagation converges
it usually �nds identical solutions as our be-
lief optimization method. The stable nature
of belief optimization makes it ideally suited
for learning graphical models from data.

1 INTRODUCTION

Belief propagation (BP) is an eÆcient local message
passing protocol for exact inference on trees (Pearl,
1988). Applying the same rules to graphs with cycles,
named loopy BP, has proven a successful strategy for
approximate inference (Murphy et al., 1999). In par-
ticular, it was shown that the celebrated method of
\turbo decoding" is equivalent to loopy BP on an ap-
propriate graphical model (McEliece et al., 1998),(Frey
and MacKay, 1997). Other applications can be found
in image analysis (Freeman and Pasztor, 1998), (Frey,
1999).

An important drawback of loopy BP is that it can eas-
ily fail to converge (e.g. it may get stuck in limit cy-

cles). Important progress in understanding the conver-
gence properties and the quality of the approximation
was made in (Weiss, 2000). But the most important
breakthrough came with the observation that the �xed
points of the loopy BP updates are exactly at the sta-
tionary points of the Bethe free energy (Yedidia et al.,
2000), (Yedidia, 2000) (see also (Kabashima and Saad,
1998)). This did not only clarify the nature of the ap-
proximation made, it also opened up a large body of
physics literature from which an interesting general-
ization could be derived (the generalized BP algorithm
which minimizes the Kikuchi free energy).

An attractive feature of loopy BP is the fact that it
performs local computations to �nd a solution which
is approximately optimal globally. Solutions to the
Bethe approximation can be understood as mean �eld
solutions, in that pairs of nodes are interacting with
a mean �eld generated from the rest of the system.
Since this must be true for any pair of nodes, this
leads to consistency equations equivalent to the BP
updates. Yet another way of deriving the BP equations
is through the \cavity method", where one computes
the e�ect of taking one node and its connections out
of the system (Opper and Winther, 2000).

The problem with a set of consistency equations is
that they are not guaranteed to converge. A more sta-
ble approach is to minimize an objective function if
there exists one. Since we know that BP converges
to the stationary points of the Bethe free energy, it
seems natural to derive an algorithm which minimizes
it directly. This is precisely the approach taken in this
paper. Progress can be made especially for binary net-
works, since they allow a convenient parameterization
which avoids the usual need for Lagrange multipliers.
Moreover, in the binary case we can �nd an analytic
expression for the correlations p(si = 1; sj = 1) in
terms of the marginals p(si = 1) and p(sj = 1). This
result can be used to formulate gradient descent or
�xed point updates for the marginals in terms of the
neighbouring marginals and the connecting weights.



In our framework, we are also able to show the equiva-
lence between the TAP free energy and the Bethe free
energy up to second order in the weights.

2 BELIEF OPTIMIZATION

In this section we will introduce the belief optimiza-
tion (BO) algorithm. The model is represented by an
undirected graphical model, where pairs of units are
connected by weights Wij . The units can take values
f0; 1g and have biases bi (i.e. a Boltzmann machine).
If a unit, say vj , is observed (v stands for \visible"), it
will add an amountWijvj to the bias of a neighbouring
unit i. We are interested in computing the marginal
probability table pi of each hidden unit hi, and the
joint probability table pij of each pair of neighbouring
units hi and hj .

We will use the following parameterization of the prob-
ability tables, which turns out to be convenient for
binary variables,

pij(hi = 1; hj = 1) = �ij (1)

pi(hi = 1) = qi (2)

All the other entries of the probability tables can be
expressed in terms of this set of independent parame-
ters,

pij(hi = 1; hj = 0) = qi � �ij (3)

pij(hi = 0; hj = 1) = qj � �ij (4)

pij(hi = 0; hj = 0) = �ij + 1� qi � qj (5)

pi(hi = 0) = 1� qi (6)

It can also easily be checked that all marginalization
constraints are satis�ed, e.g.X

hi=0;1

pij(hi; hj = 1) = qj (7)

X
hi=0;1

pij(hi; hj = 0) = 1� qj (8)

X
hi;hj=0;1

pij(hi; hj) = 1 (9)

The main idea is now to write the Bethe free energy
directly in terms of the above variables and minimize.
Using the general expression for the Bethe free energy
(see (Yedidia, 2000)) and the de�nitions above, we ar-
rive at

Fb = E � S1 � S2 (10)

E = �
X
(ij)

Wij�ij �
X
i

biqi

�S1 =
X
i

(1� zi) [qi ln(qi) + (1� qi) ln(1� qi)]

�S2 =
X
(ij)

�ij ln(�ij )

+ (�ij + 1� qi � qj) ln(�ij + 1� qi � qj)

+ (qi � �ij) ln(qi � �ij)

+ (qj � �ij) ln(qj � �ij)

where zi denotes the number of neighbours of node i,
and (ij) denotes a link from node i to node j.

We will �rst consider all the marginals qi �xed and
equate the derivatives with respect to �ij to zero,

@Fb

@�ij
= �Wij + ln

�
�ij(�ij + 1� qi � qj)

(qi � �ij)(qj � �ij)

�
= 0 (11)

This can be rewritten as a simple quadratic equation,

�ij�
2
ij � (1 + �ijqi + �ijqj)�ij + (1 + �ij)qiqj (12)

where we have de�ned,

�ij = eWij � 1 (13)

In addition to this equation we have to make sure that
�ij satis�es the following bounds,

max(0; qi + qj � 1) � �ij � min(qi; qj) (14)

These bounds can be understood by noting that prob-
abilities can not become negative. In appendix (A) we
will prove the following lemma:

Lemma 1 There is exactly one solution to the
quadratic equation (12) which satis�es the bounds
(14). The analytic expression is given by,

�ij =
1

2�ij

�
Qij �

q
Q2
ij � 4�ij(1 + �ij)qiqj

�
Qij = 1 + �ijqi + �ijqj (15)

Moreover, �ij will never actually saturate one of the
bounds.

Note that for �ij ! 0 we have �ij = qiqj which is the
correct limit1. This lemma is interesting since it allows
one to estimate the correlations in a binary network
given the marginals qi.

In the other phase of the algorithm, we update the qi,
such that the free energy is guaranteed to decrease.

1For computational reasons it is sometimes convenient
to use the following equivalent expression,

�ij =
1

2

�
Rij � sign(�ij)

q
R2

ij � 4(1 + �ij)qiqj

�
Rij = �ij + qi + qj and �ij =

1

�ij



One way to achieve this, is to �x all �ij and all neigh-
bouring qj of the marginal qi which is currently under
consideration. It can be shown again that this is a
convex optimization problem, with a (unique) solution
inside the following bounds,

max
j2N(i)

(�ij) < qi < min
j2N(i)

(�ij + 1� qj) (16)

where N(i) denotes the set of all neighbours of node i.
However, there are regimes where the bounds become
tight, and only little progress can be made at each step
by alternating the � and q updates.

A more attractive procedure is to consider the �ij 's as
a function of the qi's and insert them back into the
free energy, and then update the qi's. The advantage
is that we do not need to consider the bounds (16), but
simply have to make sure all qi lie between 0 and 1 (i.e.
they de�ne a probabilities). This can be achieved by
reparameterizing,

qi = �(yi) (17)

where � stands for the sigmoid function and yi is un-
bounded. Taking derivatives with respect to yi, we
arrive at,

dFb

dyi
=

0
@@Fb

@qi
+
X

j2N(i)

@Fb

@�ij

@�ij

@qi

1
A qi (1� qi) (18)

@Fb

@qi
= �bi + ln

"
(1� qi)

zi�1
Q

j2N(i)(qi � �ij)

qzi�1i

Q
j2N(i)(�ij + 1� qi � qj)

#

and @Fb

@�ij
= 0 because �ij is at a minimum of Fb.

We can now use any gradient based optimization al-
gorithm to minimize the free energy. Notice, that we
can do gradient steps for all nodes i simultaneously,
instead of the sequential updates in the coordinate de-
scent algorithm described before.

Alternatively, we can iterate the following set of �xed
point equations for qi,

q�i = �

 
bi + ln

"
qzii
Q

j2N(i)(�ij + 1� qi � qj)

(1� qi)zi
Q

j2N(i)(qi � �ij)

#!

(19)
As we will show in the next section, these �xed point
equations exactly reduce to mean �eld updates if we
retain terms linear in Wij , and to TAP-updates if we
retain terms quadratic in Wij . They can therefore be
understood a generalization of MF and TAP updates,
which include higher order terms in Wij . Unfortu-
nately, �xed point equations are not guaranteed to
converge and sometimes need a considerable amount
of damping to avoid oscillations.

3 RELATION TO TAP AND THE

SMALL WEIGHT EXPANSION

In this section we answer the question of whether there
is a relationship between the Bethe free energy and the
TAP free energy, given by,

Ftap = E � S1� T (20)

E = �
X
(ij)

Wijqiqj �
X
i

biqi (21)

�S1 =
X
i

[qi ln(qi) + (1� qi) ln(1� qi)]

�T = �
1

2

X
(ij)

W 2
ij qi(1� qi)qj(1� qj) (22)

where T is the TAP-correction to the mean �eld free
energy.

Using the general expression @F
@Wij

= �E [hihj ], valid

at the minimum of the free energy, the correlations
become,

�
tap
ij = qiqj +Wij qi(1� qi)qj(1� qj) (23)

The �xed point equations can be derived by taking
derivatives with respect to qi,

@F tap

@qi
= �

X
j2N(i)

Wijqj � bi + log

�
qi

1� qi

�

+
1� 2qi

2

X
j2N(i)

W 2
ij qj(1� qj) (24)

which can be used for gradient descent directly or from
which the following �xed point equation can be de-
rived,

q�i = �

0
@ X

j2N(i)

Wijqj + bi

+
1� 2qi

2

X
j2N(i)

W 2
ij qj(1� qj)

1
A (25)

We will now formulate the following result,

Lemma 2 The TAP free energy is equal to the Bethe
free energy up to order O(W 2

ij ) i.e.

Fbethe = Ftap+O(W 3
ij ): (26)

The proof proceeds as follows. Since we have an an-
alytic expression for the pairwise probabilities �betheij

as a function of the marginals qi and qj (see 15), we
can simply insert that expression into the Bethe free
energy and expand the result in powers of Wij . After
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Figure 1: Absolute value of the di�erence between the
exact means computed with the junction tree algorithm
and MF, TAP, BP and BO respectively, averaged over all
nodes. The network has 100 nodes placed on a square
lattice (i.e. each node, except the boundary nodes has
4 neighbours). The scale of the weights varies over the
horizontal axis from 0:1 to 10, sampled at intervals of 0:5.
The scale of the biases varies similarly over the vertical
axis.

some algebra the above claim follows (see also (Bow-
man and Levin, 1982) and (Nakanishi, 1981) for simi-
lar results). Since we have shown that the free ener-
gies are equal up to second order in the weights, it is
also clear that the �xed point equations (19) and (25)
are equal up to second order, since they are derived
from their respective free energies by taking deriva-
tives with respect to qi. By a similar argument we can
show that the correlations (15) and (23) are equal up
to �rst order in the weights. When only terms linear in
the weights are retained, the Bethe free energy reduces
to the mean �eld free energy.

Since �ij is a function ofWij only, it is easy to see that
the only terms which can contribute to the general ex-
pansion of Fbethe are of the form (Wij)

n. Cross-terms,
like WijWjk , are not included. This result is consis-
tent with the claim in (Yedidia, 2000) and (Georges
and Yedidia, 1991) that the only terms contributing
to the exact free energy of a binary undirected graph
are \strongly irreducible". The latter means that if
one draws a diagram for each term in the expansion,
with a node for every index i; j; k; :::, and a link be-
tween nodes i and j for every Wij in the term, then
removing one node does not split the diagram in two.
Since the Bethe free energy is exact on a tree, it must
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Figure 2: Absolute value of the di�erence between the ex-
act covariances computed with the junction tree algorithm
and MF, TAP, BP and BO respectively, averaged over all
edges. Network speci�cs as in �gure (1).

therefore sum up all strongly irreducible terms which
connect two nodes together. The remaining ignored di-
agrams must then be all strongly irreducible diagrams
which contain cycles2.

4 EXPERIMENTS

To assess the quality of the approximation provided by
BO, we compared the BO algorithm with 3 alternative
inference methods, namely mean �eld (MF), TAP, and
BP. The MF, TAP and BP �xed point equations were
damped with a damping factor slowly increasing until
0:9. For BO we implemented an adaptive gradient de-
scent algorithm. If no convergence was reached after
1000 updates for any of the methods, the program was
halted. In the �rst experiment the units were placed
on a 10 � 10 square grid for which the exact means
and covariances (�ij � qiqj) can be computed using
the junction tree algorithm. In a second experiment
we used a 5�5�5 cubic lattice with periodic boundary
conditions, for which we used annealed Gibbs sampling
(10000 samples) to compare our results against. The
weights were drawn from a slightly super-Gaussian dis-
tribution to simulate the histogram one often observes
when a Boltzmann machine has been trained on data.
The biases were drawn from a Gaussian distribution
and shifted by an amount � 1

2

P
j2N(i)Wij , such that

in a network with no external evidence, a unit with

2We thank Jonathan Yedidia for pointing this out to us.
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Figure 3: (top left) Convergence diagnosis of BP for the
experiment on the 10 � 10 square lattice: black squares
indicate failure to converge.(top right) Di�erence in the
Bethe free energy between BO and BP. Cases for which BP
did not converge are located on the left of the dashed line.
(bottom) Scatterplots of the BP estimates (horizontal) and
BO estimates (vertical) for the means (bottom left) and
covariances (bottom right).

zero (shifted) bias will have a mean of 1
2 . The scales

of the weights and biases varied over a range from 0:1
to 10.

Figures (1) and (2) show the errors in the estimated
means and covariances for the 4 di�erent methods. It
is evident that all methods become inaccurate when
the weights are large and the biases are small. In this
limit the strong correlations between the nodes are not
modelled adequately by either of the methods since (1)
MF does assume independence (2) TAP assumes small
weights (3) the Bethe approximation assumes no cycles
within the correlation distance (see the next section
for a more detailed discussion). In �gure (3) (top left)
we show all instances where BP failed to converge,
which are situated in the diÆcult regime mentioned
above. The top right plot of �gure (3) shows the di�er-
ences between the Bethe free energies of BP versus BO.
The bottom left and right �gures show the scatterplots
for the means and covariances respectively. Although
most points populate the diagonal, these plots provide
interesting information about the outliers which corre-
spond to the diÆcult cases. While BP and BO usually
agree on the sign of qi �

1
2 , the BO estimates seem to

be more biased towards 1
2 . Also in the case of the co-

variances BO and BP agree on the sign, but now the
BP estimates are almost always smaller than the BO
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Figure 4: Absolute value of the di�erence between Gibbs
sampling and 1 =MF, 2 =TAP, 3 =BP and 4=BO for
the means (left) and covariances (right), averaged over all
nodes and edges respectively. The network has 125 units
placed on a cubic lattice with periodic boundary conditions
(i.e. each node has 6 neighbours). The scale of the weights
varies in the horizontal direction over f0:1; 1; 10g (left to
right). The size of the biases vary over the same values
in the vertical direction (top to bottom). Arrows indicate
that after 1000 updates there was no convergence. Notice
that the smallest bar does not automatically correspond
to the most accurate estimate, since results are compared
with Gibbs sampling.

estimates in absolute value. Surprisingly, the relative
free energies never di�er by more than 0:02. For all
converged cases (right of the dashed line) BP seems
to have done slightly better in locating the minimum,
but even for the non-convergent cases the di�erences
are relatively small.

Figure (4) shows the results for the 5 � 5 � 5 lattice
with periodic boundaries. The results are qualitatively
similar, although the problem is more challenging due
to the increased number of loops. Notice that in this
case the smallest bar in �gure (4) does not necessarily
correspond to the best result, since Gibbs sampling is
not necessarily the most accurate method.

From the above experiments we could not conclude a
signi�cant di�erence in performance between BP and
BO. In the regime with large weights and small biases
both methods fail, probably because the Bethe free
energy is no longer an accurate approximation.

5 DISCUSSION

A notable di�erence between BP and BO is the fact
that BP need not satisfy the marginalization con-
straints before it has converged. In contrast, BO is pa-
rameterized such that it will satisfy these constraints
automatically. The above implies that the dynam-
ics by which BP and BO try to minimize the Bethe
free energy are of a very di�erent nature. An undesir-
able property of BP, namely its failure to converge un-
der certain circumstances, is certainly avoided by BO.
However, the general conclusion from our experiments



is that the Bethe approximation probably breaks down
before any signi�cant di�erence between the two meth-
ods shows up.

A situation where the freedom to violate the marginal-
ization constraints before convergence may be crucial
is when random variables are deterministically related.
In this case probabilities turn into delta functions, en-
ergy barriers become in�nitely high and the energy
surface may become discontinuous. It is not hard to
imagine how gradient desent could fail in these spaces.
However, the success of turbodecoding proves that BP
can e�ectively deal with these situations. More re-
search is needed to �nd out whether direct minimiza-
tion methods can be applied to this case as well.

The techniques discussed in this paper can also be ap-
plied to the Gaussian case. The details are worked out
in appendix (B). For Gaussian BP (GaBP) it is im-
portant to notice that message updates do not neces-
sarily maintain positive de�niteness of the covariance
matrix . This does not come as a surprise since it is a
global constraint, while BP only performs local com-
putations. As a consequence, the Bethe free energy is
not always bounded from below and we have observed
that exactly in these cases both GaBP and Gaussian
BO (GaBO) do not converge. In all other cases GaBP
and GaBO �nd the same answer experimentally. For
a certain class of interactions (diagonally dominant) it
was proved in (Weiss and Freeman, 1999) that GaBP
always converges.

In this paper we have con�rmed that both BP and
BO perform poorly when the weights are large (strong
correlations) but the biases remain small (little exter-
nal evidence). One reason could be that the posterior
energy surface has many modes in this regime, which
may cause the lack of convergence for BP, and conver-
gence to bad local minima for BO. It begs the question
however whether the global minimum of Fbethe is just
hard to �nd or whether the Bethe approximation itself
breaks down. There are at least three regimes where
the Bethe approximation should be accurate: for trees
(exact), for small weights and for very large weights.
For small weights, we can understand why loops do
not have a signi�cant inuence, because they can at
most contribute third order terms, e.g. WijWjkWki.
The larger the loop, the higher order the contribution
and therefore the less e�ect it has on the �nal approx-
imation. An alternative view on this is that evidence
cycles around in the loops and is double counted as
a consequence. When the weights are small, this in-
formation dies out before it has traversed a loop. In
addition, external evidence tends to decrease depen-
dencies between the units which will therefore soften
the double counting e�ect and increase the accuracy
of the Bethe approximation. As a rule of thumb one

could therefore use that the Bethe approximation is
probably reasonable when there are no loops with a
circumference longer than the the correlation distance
of the system. If this is not the case, one could use
larger clusters within the Kikuchi approximation and
the generalized BP algorithm (Yedidia et al., 2000) to
improve performance. Finally, for very large weights
(irrespective of the biases sizes), the energy term dom-
inates the entropy term and the Bethe approximation
should become exact. We have however not oberved
good performance of either BP or BO in this regime,
possible due to the many modes in the free energy sur-
face.

It is our hope that the stable nature of BO will be
usefull for learning graphical models from data, like
the Boltzmann machine (BM). A major diÆculty with
learning is the fact that as learning progresses, the
weights increase, and the usual approximations break
down. Especially in the sleep phase of the BM, there
is no evidence clamped on the nodes, and we enter
the regime which was identi�ed as the regime where
Fbethe becomes a bad approximation. The introduc-
tion of the contrastive divergence learning objective
(Hinton, 2000) has alleviated this problem at least
partially, since the sleep phase is replaced by a phase
where there is always a subset of the units clamped.
In recent work, we have shown that the naive MF ap-
proximation works well in this case (Welling and Hin-
ton, 2001). We are therefore eager to apply BO as an
inference engine, inside the framework of contrastive
divergence BM learning.
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A PROOF OF LEMMA 1

We will �rst proof that there must be exactly one min-
imum inside the bounds (14) (i.e. not on the bounds).

First, we compute the second derivative with repect to
�ij ,

@2Fb

@�ij
(27)

=
1

�ij
+

1

�ij + 1� qi � qj
+

1

qi � �ij
+

1

qj � �ij

=
1

pij(1; 1)
+

1

pij(0; 0)
+

1

pij(1; 0)
+

1

pij(0; 1)
� 0

Also from @Fb

@�ij
in (11) we see that at the lower bound-

ary the derivative is �1 while at the upper boundary



it is +1. Since the second derivative is always posi-
tive between the bounds and since the free energy is
continuous between the bounds we infer that the free
energy has exactly one minimum inside the bounds.

Next we proof that the positive root,

�ij =
1

2�ij

�
Qij +

q
Q2
ij � 4�ij(1 + �ij)qiqj

�
Qij = 1 + �ijqi + �ijqj (28)

to the quadratic equation (12) is always located out-
side the bounds (except for �ij = 0 when the equation
is degenerate). We can assume without loss of gener-
ality that qi � qj .

For �ij = 0 we have that the quadratic equation re-
duces to,

��ij + qiqj = 0 (29)

with the obvious solution located between the bounds
(14). For �ij > 0 we will use the fact that,

Q2
ij � 4�ij(1 + �ij)qiqj

= 1 + 2�ijqi(1� qj) + 2�ijqj(1� qi) + �2ij(qi � qj)
2

� 1 + 2�ij [qi(1� qj) + qj(1� qi)]

� 0

(this result is actually valid for all possible �ij , i.e. in
the range (�1;1)) The above result can now be used
to prove,

�ij �
1

2�ij
(1 + �ijqi + �ijqj)

�
1

2�ij
+ qj

� qj (30)

which is always larger than the upper bound. Finally,
for �ij 2 (�1; 0), we will use the fact that,

Q2
ij � 4�ij(1 + �ij)qiqj � Qij (31)

with Qij de�ned in (28). This can be used to prove,

�ij �
1

�ij
+ qi + qj

� �1 + qi + qj

which is always smaller than the lower bound.

Therefore, since we know one of the solutions must be
located at the minimum between the boundaries, and
the positive root is always located outside the bound-
aries, we have proven that the negative root is precisely
the valid solution, located at the minimum of the free
energy, inside the boundaries.

B GAUSSIAN BELIEF

OPTIMIZATION

Let �i denote the mean of node i, Vi denote the vari-
ance of node i, Vij denote the covariance between node
i and node j, bi the bias at node i and Wij the inter-
action strength between node i and node j. Up to
constant terms, the Bethe free energy is given by,

Fb = E � S1 � S2 (32)

E =
X
(ij)

Wij(Vij + �i�j)

+
1

2

X
i

Wii(Vi + �2i ) + bi�i

S1 =
X
i

1

2
(1� zi) log (Vi)

S2 =
X
(ij)

1

2
log
�
ViVj � V 2

ij

�

The problem of solving for the means �i decouples
from the problem of solving for the covariance-matrix.
The derivatives are given by,

@Fb

@�i
=
X

j2N(i)

Wij�j +Wii�i + bi (33)

which can be used in a simple gradient descent algo-
rithm to solve for the �i. Note that since the entropy,
which is the only approximate term in the free energy,
is independent of the �i, and since the covariances are
decoupled from the means in the energy, it follows im-
mediately that the means are exact at the minimum
of the free energy.

Taking derivatives with respect to the covariances Vij ,

@Fb

@Vij
=Wij +

Vij

(ViVj � V 2
ij)

(34)

we �nd the following quadratic equation,

WijV
2
ij � Vij �WijViVj = 0 (35)

This quadratic equation has exactly one solution in
the allowed region,

�
p
ViVj � Vij �

p
ViVj (36)

namely,

Vij =
1

2Wij

� sign(Wij)

s�
1

2Wij

�2

+ ViVj (37)

The proof that this is the only viable solution proceeds
as in appendix A. We will now eliminate Vij from the
free energy and insert Vij as a function of Vi into the



free energy and take derivatives with respect to Vi.
Since Vi has to remain positive we reparameterize,

Vi = eyi (38)

and take derivatives with respect to yi,

dFb

dyi
=

0
@@Fb

@Vi
+
X

j2N(i)

@Fb

@Vij

@Vij

@Vi

1
AVi (39)

@Fb

@Vi
=

1

2

0
@Wii +

zi � 1

Vi
�
X

j2N(i)

Vj

(ViVj � V 2
ij)

1
A

and @Fb

@Vij
= 0 since Vij is at a minimum of the Bethe

free energy. Any gradient based minimization algo-
rithm can then be used to solve for Vi.

We have found that this set of update equations will
give exactly the same solution as the Gaussian BP
(GaBP) �xed point iterations, derived in (Weiss and
Freeman, 1999), provided both algorithms converge.
Surprisingly, even Gaussian BO (GaBO) does not al-
ways converge, due to the fact that the Bethe free en-
ergy is not always bounded from below. This can be
understood by observing that the term

P
(ij)WijVij

can become arbitrary negative, while under certain
conditions the term 1

2

P
iWiiVi cannot make up for

this. The problem is that both GaBP and GaBO
cannot impose the positive de�niteness constraint on
the covariance matrix in general, since this is a global
constraint, while we are performing only local compu-
tations. From emperical studies we have found that
GaBP and GaBO either converge to the same answer,
or both fail to converge. This leads us to conjecture
the following,

Conjecture 1 Gaussian Belief Propagation con-
verges if and only if the free energy is bounded from
below.

It was shown in (Weiss and Freeman, 1999) that for
diagonally dominant weight matrices the free energy
is always bounded from below and GaBP always con-
verges.
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