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Abstract

A wide variety of Dirichlet-multinomial ‘topic’ models have found interesting ap-
plications in recent years. While Gibbs sampling remains an important method of
inference in such models, variational techniques have certain advantages such as
easy assessment of convergence, easy optimization without the need to maintain
detailed balance, a bound on the marginal likelihood, and side-stepping of issues
with topic-identifiability. The most accurate variational technique thus far, namely
collapsed variational latent Dirichlet allocation, did not deal with model selection
nor did it include inference for hyperparameters. We address both issues by gen-
eralizing the technique, obtaining the first variational algorithm to deal with the
hierarchical Dirichlet process and to deal with hyperparameters of Dirichlet vari-
ables. Experiments show a significant improvement in accuracy.

1 Introduction

Many applications of graphical models have traditionally dealt with discrete state spaces, where
each variable is multinomial distributed given its parents [1]. Without strong prior knowledge on
the structure of dependencies between variables and their parents, the typical Bayesian prior over
parameters has been the Dirichlet distribution. This is because the Dirichlet prior is conjugate to
the multinomial, leading to simple and efficient computations for both the posterior over parameters
and the marginal likelihood of data. When there are latent or unobserved variables, the variational
Bayesian approach to posterior estimation, where the latent variables are assumed independent from
the parameters, has proven successful [2].

In recent years there has been a proliferation of graphical models composed of a multitude of multi-
nomial and Dirichlet variables interacting in various inventive ways. The major classes include the
latent Dirichlet allocation (LDA) [3] and many other topic models inspired by LDA, and the hier-
archical Dirichlet process (HDP) [4] and many other nonparametric models based on the Dirichlet
process (DP). LDA pioneered the use of Dirichlet distributed latent variables to represent shades
of membership to different clusters or topics, while the HDP pioneered the use of nonparametric
models to sidestep the need for model selection.

For these Dirichlet-multinomial models the inference method of choice is typically collapsed Gibbs
sampling, due to its simplicity, speed, and good predictive performance on test sets. However there
are drawbacks as well: it is often hard to access convergence of the Markov chains, it is harder still
to accurately estimate the marginal probability of the training data or the predictive probability of
test data (if latent variables are associated with the test data), averaging topic-dependent quantities
based on samples is not well-defined because the topic labels may have switched during sampling
and avoiding local optima through large MCMC moves such as split and merge algorithms are tricky
to implement due to the need to preserve detailed balance. Thus there seems to be a genuine need to
consider alternatives to sampling.

For LDA and its cousins, there are alternatives based on variational Bayesian (VB) approximations
[3] and on expectation propagation (EP) [5]. [6] found that EP was not efficient enough for large



scale applications, while VB suffered from significant bias resulting in worse predictive performance
than Gibbs sampling. [7] addressed these issues by proposing an improved VB approximation based
on the idea of collapsing, that is, integrating out the parameters while assuming that other latent
variables are independent. As for nonparametric models, a number of VB approximations have
been proposed for DP mixture models [8, 9], while to our knowledge none has been proposed for
the HDP thus far ([10] derived a VB inference for the HDP, but dealt only with point estimates for
higher level parameters).

In this paper we investigate a new VB approach to inference for the class of Dirichlet-multinomial
models. To be concrete we focus our attention on an application of the HDP to topic modeling [4],
though the approach is more generally applicable. Our approach is an extension of the collapsed
VB approximation for LDA (CV-LDA) presented in [7], and represents the first VB approximation
to the HDP1. We call this the collapsed variational HDP (CV-HDP). The advantage of CV-HDP
over CV-LDA is that the optimal number of variational components is not finite. This implies, apart
from local optima, that we can keep adding components indefinitely while the algorithm will take
care removing unnecessary clusters. Ours is also the first variational algorithm to treat full posterior
distributions over the hyperparameters of Dirichlet variables, and we show experimentally that this
results in significant improvements in both the variational bound and test-set likelihood. We expect
our approach to be generally applicable to a wide variety of Dirichlet-multinomial models beyond
what we have described here.

2 A Nonparametric Hierarchical Bayesian Topic Model

We consider a document model where each document in a corpus is modelled as a mixture over
topics, and each topic is a distribution over words in the vocabulary. Let there be D documents in
the corpus, and W words in the vocabulary. For each document d = 1, . . . , D, let θd be a vector of
mixing proportions over topics. For each topic k, let φk be a vector of probabilities for words in that
topic. Words in each document are drawn as follows: first choose a topic k with probability θdk,
then choose a word w with probability φkw. Let xid be the ith word token in document d, and zid
its chosen topic. We have,

zid | θd ∼ Mult(θd) xid | zid, φzid ∼ Mult(φzid) (1)

We place Dirichlet priors on the parameters θd and φk,

θd |π ∼ Dir(απ) φk | τ ∼ Dir(βτ) (2)

where π is the corpus-wide distribution over topics, τ is the corpus-wide distribution over the vo-
cabulary, and α and β are concentration parameters describing how close θd and φk are to their
respective prior means π and τ .

If the number of topics K is finite and fixed, the above model is LDA. As we usually do not know
the number of topics a priori, and would like a model that can determine this automatically, we
consider a nonparametric extension reposed on the HDP [4]. Specifically, we have a countably infi-
nite number of topics (thus θd and π are infinite-dimensional vectors), and we use a stick-breaking
representation [11] for π:

πk = π̃k
∏k−1
l=1 (1− π̃l) π̃k|γ ∼ Beta(1, γ) for k = 1, 2, . . . (3)

In the normal Dirichlet process notation, we would equivalently have Gd ∼ DP(α,G0) and G0 ∼
DP(γ,Dir(βτ)), where Gd =

∑∞
k=1 θdkδφk and G0 =

∑∞
k=1 πkδφk are sums of point masses, and

Dir(βτ) is the base distribution. Finally, in addition to the prior over π, we place priors over the
other hyperparameters α, β, γ and τ of the model as well,

α ∼ Gamma(aα, bα) β ∼ Gamma(aβ , bβ) γ ∼ Gamma(aγ , bγ) τ ∼ Dir(aτ ) (4)

The full model is shown graphically in Figure 1(left).

1In this paper, by HDP we shall mean the two level HDP topic model in Section 2. We do not claim to have
derived a VB inference for the general HDP in [4], which is significantly more difficult; see final discussions.
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Figure 1: Left: The HDP topic model. Right: Factor graph of the model with auxiliary variables.

3 Collapsed Variational Bayesian Inference for HDP

There is substantial empirical evidence that marginalizing out variables is helpful for efficient infer-
ence. For instance, in [12] it was observed that Gibbs sampling enjoys better mixing, while in [7] it
was shown that variational inference is more accurate in this collapsed space. In the following we
will build on this experience and propose a collapsed variational inference algorithm for the HDP,
based upon first replacing the parameters with auxiliary variables, then effectively collapsing out the
auxiliary variables variationally. The algorithm is fully Bayesian in the sense that all parameter pos-
teriors are treated exactly and full posterior distributions are maintained for all hyperparameters. The
only assumptions made are independencies among the latent topic variables and hyperparameters,
and that there is a finite upper bound on the number of topics used (which is found automatically).
The only inputs required of the modeller are the values of the top-level parameters aα, bα, ....

3.1 Replacing parameters with auxiliary variables

In order to obtain efficient variational updates, we shall replace the parameters θ = {θd} and φ =
{φk} with auxiliary variables. Specifically, we first integrate out the parameters; this gives a joint
distribution over latent variables z = {zid} and word tokens x = {xid} as follows:

p(z,x|α, β, γ, π, τ) =
D∏
d=1

Γ(α)
Γ(α+nd··)

∏K
k=1

Γ(απk+ndk·)
Γ(απk)

K∏
k=1

Γ(β)
Γ(β+n·k·)

∏W
w=1

Γ(βτw+n·kw)
Γ(βτw) (5)

with ndkw = #{i : xid = w, zid = k}, dot denoting sum over that index, and K denoting an index
such that zid ≤ K for all i, d. The ratios of gamma functions in (5) result from the normalization
constants of the Dirichlet densities of θ and φ, and prove to be nuisances for updating the hyperpa-
rameter posteriors. Thus we introduce four sets of auxiliary variables: ηd and ξk taking values in
[0, 1], and sdk and tkw taking integral values. This results in a joint probability distribution over an
expanded system,

p(z,x,η, ξ, s, t|α, β, γ, π, τ)

=
D∏
d=1

ηα−1
d (1−ηd)nd··−1 QK

k=1[ndk·sdk ](απk)sdk

Γ(nd··)

K∏
k=1

ξβ−1
k (1−ξk)n·k·−1 QW

w=1[
n·kw
tkw ](βτw)tkw

Γ(n·k·)
(6)

where [nm] are unsigned Stirling numbers of the first kind, and bold face letters denote sets of the
corresponding variables. It can be readily verified that marginalizing out η, ξ, s and t reduces (6)
to (5). The main insight is that conditioned on z and x the auxiliary variables are independent and
have well-known distributions. Specifically, ηd and ξk are Beta distributed, while sdk (respectively
tkw) is the random number of occupied tables in a Chinese restaurant process with ndk· (respectively
n·kw) customers and a strength parameter of απk (respectively βτw) [13, 4].

3.2 The Variational Approximation

We assume the following form for the variational posterior over the auxiliary variables system:

q(z,η, ξ, s, t, α, β, γ, τ, π) = q(α)q(β)q(γ)q(τ)q(π)q(η, ξ, s, t|z)
D∏
d=1

nd··∏
i=1

q(zid) (7)

where the dependence of auxiliary variables on z is modelled exactly. [7] showed that modelling
exactly the dependence of a set of variables on another set is equivalent to integrating out the first



set. Thus we can interpret (7) as integrating out the auxiliary variables with respect to z. Given the
above factorization, q(π) further factorizes so that the π̃k’s are independent, as do the posterior over
auxiliary variables.

For computational tractability, we also truncated our posterior representation to K topics. Specif-
ically, we assumed that q(zid > K) = 0 for every i and d. A consequence is that observations
have no effect on π̃k and φk for all k > K, and these parameters can be exactly marginalized out.
Notice that our approach to truncation is different from that in [8], who implemented a truncation
at T by instead fixing the posterior for the stick weight q(vT = 1) = 1, and from that in [9], who
assumed that the variational posteriors for parameters beyond the truncation level are set at their
priors. Our truncation approximation is nested like that in [9], and unlike that in [8]. Our approach
is also simpler than that in [9], which requires computing an infinite sum which is intractable in the
case of HDPs. We shall treat K as a parameter of the variational approximation, possibly optimized
by iteratively splitting or merging topics (though we have not explored these in this paper; see dis-
cussion section). As in [9], we reordered the topic labels such that E[n·1·] > E[n·2·] > · · · . An
expression for the variational bound on the marginal log-likelihood is given in appendix A.

3.3 Variational Updates

In this section we shall derive the complete set of variational updates for the system. In the following
E[y] denotes the expectation of y, G[y] = eE[log y] the geometric expectation, and V[y] = E[y2] −
E[y]2 the variance. Let Ψ(y) = ∂ log Γ(y)

∂y be the digamma function. We shall also employ index
summation shorthands: · sums out that index, while >l sums over i where i > l.

Hyperparameters. Updates for the hyperparameters are derived using the standard fully factorized
variational approach, since they are assumed independent from each other and from other variables.
For completeness we list these here, noting that α, β, γ are gamma distributed in the posterior, π̃k’s
are beta distributed, and τ is Dirichlet distributed:

q(α) ∝ αaα+E[s··]−1e−α(bα−
P
d E[log ηd])

q(β) ∝ βaβ+E[t··]−1e−β(bβ−
P
k E[log ξk])

q(γ) ∝ γaγ+K−1e−γ(bγ−
PK
k=1 E[log(1−π̃k)]

q(π̃k) ∝ π̃E[s·k]
k (1− π̃k)E[γ]+E[s·>k]−1

q(τ) ∝
∏W
w=1 τ

aτ+E[t·w]−1
w

(8)

In subsequent updates we will need averages and geometric averages of these quantities which can be
extracted using the following identities: p(x) ∝ xa−1e−bx ⇒ E[x] = a/b, G[x] = eΨ(a)/b, p(x) ∝∏
k x

ak−1
k ⇒ G[xk] = eΨ(ak)/eΨ(

P
k ak). Note also that the geometric expectations factorizes:

G[απk] = G[α]G[πk], G[βτw] = G[β]G[τw] and G[πk] = G[π̃k]
∏k−1
l=1 G[1− π̃l].

Auxiliary variables. The variational posteriors for the auxiliary variables depend on z through the
counts ndkw. ηd and ξk are beta distributed. If ndk· = 0 then q(sdk = 0) = 1 otherwise q(sdk) > 0
only if 1 ≤ sdk ≤ ndk·. Similarly for tkw. The posteriors are:

q(ηd|z) ∝ ηE[α]−1
d (1− ηd)nd··−1 q(sdk = m|z) ∝ [ndk·m ] (G[απk])m (9)

q(ξk|z) ∝ ξE[β]−1
k (1− ξk)n·k·−1 q(tkw = m|z) ∝ [n·kwm ] (G[βτw])m

To obtain expectations of the auxiliary variables in (8) we will have to average over z as well. For
ηd this is E[log ηd] = Ψ(E[α]) − Ψ(E[α] +nd··) where nd·· is the (fixed) number of words in
document d. For the other auxiliary variables these expectations depend on counts which can take
on many values and a naı̈ve computation can be expensive. We derive computationally tractable
approximations based upon an improvement to the second-order approximation in [7]. As we see in
the experiments these approximations are very accurate. Consider E[log ξk]. We have,

E[log ξk|z] = Ψ(E[β])−Ψ(E[β] + n·k·) (10)
and we need to average over n·k· as well. [7] tackled a similar problem with log instead of Ψ using
a second order Taylor expansion to log. Unfortunately such an approximation failed to work in our
case as the digamma function Ψ(y) diverges much more quickly than log y at y = 0. Our solution
is to treat the case n·k· = 0 exactly, and apply the second-order approximation when n·k· > 0. This
leads to the following approximation:

E[log ξk] ≈ P+[n·k·]
(
Ψ(E[β])−Ψ(E[β] + E+[n·k·])− 1

2V+[n·k·]Ψ′′(E[β] + E+[n·k·])
)

(11)



where P+ is the “probability of being positive” operator: P+[y] = q(y > 0), and E+[y],V+[y] are
the expectation and variance conditional on y > 0. The other two expectations are derived similarly,
making use of the fact that sdk and tkw are distributionally equal to the random numbers of tables
in Chinese restaurant processes:

E[sdk] ≈ G[απk]P+[ndk·]
(

Ψ(G[απk]+E+[ndk·])−Ψ(G[απk])+ V+[ndk·]Ψ
′′(G[απk]+E+[ndk·])

2

)
(12)

E[tkw] ≈ G[βτw]P+[n·kw]
(

Ψ(G[βτw]+E+[n·kw])−Ψ(G[βτw])+ V+[n·kw]Ψ′′(G[βτw]+E+[n·kw])
2

)
As in [7], we can efficiently track the relevant quantities above by noting that each count is a sum of
independent Bernoulli variables. Consider ndk· as an example. We keep track of three quantities:

E[ndk·] =
∑
i q(zid=k) V[ndk·] =

∑
i q(zid=k)q(zid 6=k) Z[ndk·] =

∑
i log q(zid 6=k) (13)

Some algebraic manipulations now show that:

P+[ndk·] = 1− eZ[ndk·] E+[ndk·] = E[ndk·]
P+[ndk·]

V+[ndk·] = V[ndk·]
P+[ndk·]

− eZ[ndk·]E+[ndk·] (14)

Topic assignment variables. [7] showed that if the dependence of a set of variables, say A, on
another set of variables, say z, is modelled exactly, then in deriving the updates for z we may
equivalently integrate out A. Applying to our situation with A = {η, ξ, s, t}, we obtain updates
similar to those in [7], except that the hyperparameters are replaced by either their expectations
or their geometric expectations, depending on which is used in the updates for the corresponding
auxiliary variables:

q(zid = k) ∝G
[
G[απk] + n¬iddk·

]
G
[
G[βτxid ] + n¬id·kxid

]
G
[
E[β] + n¬id·k·

]−1

≈∝
(
G[απk] + E[n¬iddk· ]

)(
G[βτxid ] + E[n¬id·kxid ]

)(
E[β] + E[n¬id·k· ]

)−1

exp
(
− V[n¬iddk· ]

2(G[απk]+E[n¬iddk· ])
2 −

V[n¬id·kxid
]

2(G[βτxid ]+E[n¬id·kxid
])2 + V[n¬id·k· ]

2(E[β]+E[n¬id·k· ])2

)
(15)

4 Experiments

We implemented and compared performances for 5 inference algorithms for LDA and HDP: 1)
variational LDA (V-LDA) [3], collapsed variational LDA (CV-LDA) [7], collapsed variational HDP
(CV-HDP, this paper), collapsed Gibbs sampling for LDA (G-LDA) [12] and the direct assignment
Gibbs sampler for HDP (G-HDP) [4].

We report results on the following 3 datasets: i) KOS (W = 6906, D = 3430, number of word-
tokens N = 467, 714), ii) a subset of the Reuters dataset consisting of news-topics with a number
of documents larger than 300 (W = 4593, D = 8433, N = 566, 298), iii) a subset of the 20News-
groups dataset consisting of the topics ‘comp.os.ms-windows.misc’, ‘rec.autos’, ‘rec.sport.baseball’,
‘sci.space’ and ‘talk.politics.misc’ (W = 8424, D = 4716, N = 437, 850).

For G-HDP we use the released code at http://www.gatsby.ucl.ac.uk/∼ywteh/research/software.html.
The variables β, τ are not adapted in that code, so we fixed them at β = 100 and τw = 1/W
for all algorithms (see below for discussion regarding adapting these in CV-HDP). G-HDP was
initialized with either 1 topic (G-HDP1) or with 100 topics (G-HDP100). For CV-HDP we use
the following initialization: E[β] = G[β] = 100 and G[τw] = 1/W (kept fixed to compare with
G-HDP), E[α] = aα/bα, G[α] = eΨ(aα)/bα, E[γ] = aγ/bγ , G[πk] = 1/K and q(zij = k) ∝ 1 + u
with u ∼ U [0, 1]. We set2 hyperparameters aα, bα, aβ , bβ in the range between [2, 6], while aγ , bγ
was chosen in the range [5, 10] and aτ in [30 − 50]/W . The number of topics used in CV-HDP
was truncated at 40, 80, and 120 topics, corresponding to the number of topics used in the LDA
algorithms. Finally, for all LDA algorithms we used α = 0.1, π = 1/K.

2We actually set these values using a fixed but somewhat elaborate scheme which is the reason they ended
up different for each dataset. Note that this scheme simply converts prior expectations about the number of
topics and amount of sharing into hyperparameter values, and that they were never tweaked. Since they always
ended up in these compact ranges and since we do not expect a strong dependence on their values inside these
ranges we choose to omit the details.



Performance was evaluated by comparing i) the in-sample (train) variational bound on the log-
likelihood for all three variational methods and ii) the out-of-sample (test) log-likelihood for all five
methods. All inference algorithms were run on 90% of the words in each document while test-
set performance was evaluated on the remaining 10% of the words. Test-set log-likelihood was
computed as follows for the variational methods:

p(xtest) =
∏
ij

∑
k θ̄jkφ̄kxtest

ij
θ̄jk = απk+Eq [njk·]

α+Eq [nj··]
φ̄kw = βτw+Eq [n·kw]

β+Eq [n·k·]
(16)

Note that we used estimated mean values of θjk and φkw [14]. For CV-HDP we replaced all hy-
perparameters by their expectations. For the Gibbs sampling algorithms, given S samples from the
posterior, we used:

p(xtest) =
∏
ij

1
S

∑S
s=1

∑
k θ

s
jkφ

s
kxtest
ij

θsjk = αsπsk+nsjk·
αs+nsj··

φskw = βτw+ns·kw
β+ns·k·

(17)

We used all samples obtained by the Gibbs sampling algorithms after an initial burn-in period; each
point in the predictive probabilities plots below is obtained from the samples collected thus far.

The results, shown in Figure 2, display a significant improvement in accuracy of CV-HDP over
CV-LDA, both in terms of the bound on the training log-likelihood as well as for the test-set log-
likelihood. This is caused by the fact that CV-HDP is learning the variational distributions over the
hyperparameters. We note that we have not trained β or τ for any of these methods. In fact, initial
results for CV-HDP show no additional improvement in test-set log-likelihood, in some cases even
a deterioration of the results. A second observation is that convergence of all variational methods
is faster than for the sampling methods. Thirdly, we see significant local optima effects in our
simulations. For example, G-HDP100 achieves the best results, better than G-HDP1, indicating that
pruning topics is a better way than adding topics to escape local optima in these models and leads to
better posterior modes.

In further experiments we have also found that the variational methods benefit from better initializa-
tions due to local optima. In Figure 3 we show results when the variational methods were initialized
at the last state obtained by G-HDP100. We see that indeed the variational methods were able to find
significantly better local optima in the vicinity of the one found by G-HDP100, and that CV-HDP is
still consistently better than the other variational methods.

5 Discussion

In this paper we have explored collapsed variational inference for the HDP. Our algorithm is the first
to deal with the HDP and with posteriors over the parameters of Dirichlet distributions. We found
that the CV-HDP performs significantly better than the CV-LDA on both test-set likelihood and the
variational bound. A caveat is that CV-HDP gives slightly worse test-set likelihood than collapsed
Gibbs sampling. However, as discussed in the introduction, we believe there are advantages to
variational approximations that are not available to sampling methods. A second caveat is that our
variational approximation works only for two layer HDPs—a layer of group-specific DPs, and a
global DP tying the groups together. It would be interesting to explore variational approximations
for more general HDPs.

CV-HDP presents an improvement over CV-LDA in two ways. Firstly, we use a more sophisticated
variational approximation that can infer posterior distributions over the higher level variables in the
model. Secondly, we use a more sophisticated HDP based model with an infinite number of topics,
and allow the model to find an appropriate number of topics automatically. These two advances are
coupled, because we needed the more sophisticated variational approximation to deal with the HDP.

Along the way we have also proposed two useful technical tricks. Firstly, we have a new truncation
technique that guarantees nesting. As a result we know that the variational bound on the marginal
log-likelihood will reach its highest value (ignoring local optima issues) when K → ∞. This fact
should facilitate the search over number of topics or clusters, e.g. by splitting and merging topics, an
aspect that we have not yet fully explored, and for which we expect to gain significantly from in the
face of the observed local optima issues in the experiments. Secondly, we have an improved second-
order approximation that is able to handle the often encountered digamma function accurately.

An issue raised by the reviewers and in need of more thought by the community is the need for better
evaluation criteria. The standard evaluation criteria in this area of research are the variational bound
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and the test-set likelihood. However both confound improvements to the model and improvements
to the inference method. An alternative is to compare the computed posteriors over latent variables
on toy problems with known true values. However such toy problems are much smaller than real
world problems, and inferential quality on such problems may be of limited interest to practitioners.

We expect the proliferation of Dirichlet-multinomial models and their many exciting applications to
continue. For some applications variational approximations may prove to be the most convenient
tool for inference. We believe that the methods presented here are applicable to many models of this
general class and we hope to provide general purpose software to support inference in these models
in the future.

A Variational lower bound
E[log p(z,x|α,π,τ)−log q(z)]−KL[q(α)‖p(α)]−KL[q(β)‖p(β)]−

PK
k=1 KL[q(π̃k)‖p(π̃k)]−KL[q(τ)‖p(τ)] (18)

=
P
d log

Γ(E[α])
Γ(E[α]+nd··)

+
P
dk F

h
log

Γ(G[α]G[πk]+ndk·)
Γ(G[α]G[πk])

i
+

P
k F

h
log

Γ(E[β])
Γ(E[β]+n·k·)

i
+

P
kw F

h
log

Γ(G[β]G[τw ]+n·kw)
Γ(G[β]G[τw ])

i
−log

(bα−
P
d E[log ηd])aα+E[s··]

b
aα
α

Γ(aα)
Γ(aα+E[s··])

G[α]E[s··]eE[α]
P
d E[log ηd]−

P
dk

Pnd
i=1 q(zid=k) log q(zid=k)

−log
(bβ−

P
k E[log ξk])

aβ+E[t··]

b
aβ
β

Γ(aβ)
Γ(aβ+E[t··])

G[β]E[t··]eE[β]
P
k E[log ξk]

−
P
k log

Γ(1+γ+E[s·k]+E[s·>k])
γΓ(1+E[s·k])Γ(γ+E[s·>k]) G[π̃k]E[s·k]G[1−π̃k]E[s·>k]−log

Γ(κ+E[t··])
Γ(κ)

Q
w

Γ(κτw)
Γ(κτw+E[t·w ]) G[τw]E[t·w ]

where F[f(n)]=P+[n](f(E+[n])+ 1
2 V+[n]f ′′(E+[n])) is the improved second order approximation.
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