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Abstract

Belief propagation on cyclic graphs is an efficient algorithm for comput-
ing approximate marginal probability distributions over single nodes and
neighboring nodes in the graph. In this paper we propose two new al-
gorithms for approximating joint probabilities of arbitrary pairs of nodes
and prove a number of desirable properties that these estimates fulfill.
The first algorithm is a propagation algorithm which is shown to con-
verge if belief propagation converges to a stable fixed point. The second
algorithm is based on matrix inversion. Experiments compare a number
of competing methods.

1 Introduction

Belief propagation (BP) has become an important tool for approximate inference on graphs
with cycles. Especially in the field of “error correction decoding”, it has brought perfor-
mance very close to the Shannon limit. BP was studied in a number of papers which have
gradually increased our understanding of the convergence properties and accuracy of the
algorithm. In particular, recent developments show that the stable fixed points are local
minima of the Bethe free energy [10, 1], which paved the way for more accurate “general-
ized belief propagation” algorithms and convergent alternatives to BP [11, 6].

Despite its success, BP does not provide a prescription to compute joint probabilities over
pairs of non-neighboring nodes in the graph. When the graph is a tree, there is a single chain
connecting any two nodes, and dynamic programming can be used to efficiently integrate
out the internal variables. However, when cycles exist, it is not clear what approximate
procedure is appropriate. It is precisely this problem that we will address in this paper.
We show that the required estimates can be obtained by computing the “sensitivity” of the
node marginals to small changes in the node potentials. Based on this idea, we present two
algorithms to estimate the joint probabilities of arbitrary pairs of nodes.

These results are interesting in the inference domain but may also have future applications
to learning graphical models from data. For instance, information about dependencies be-
tween random variables is relevant for learning the structure of a graph and the parameters
encoding the interactions.



2 Belief Propagation on Factor Graphs

Let
�

index a collection of random variables ���������
	�� and let 
�� denote values of ��� . For
a subset of nodes ��� � let ��������� � � ��	 � be the variable associated with that subset, and
 � be values of � � . Let � be a family of such subsets of

�
. The probability distribution

over �������� is assumed to have the following form,

��� � �!�"
$#%� &'!(� 	*),+ �
� 
���#-(��	��.+ �

� 
 � # (1)

where
'

is the normalization constant (the partition function) and + �0/ + � are positive po-
tential functions defined on subsets and single nodes respectively. In the following we will
write

��� 
�# �� �1� � �2�3
�# for notational simplicity. The decomposition of (1) is consistent
with a factor graph with function nodes over � � and variables nodes ��� . For each 465 �
denote its neighbors by 78�9�:����5��<;=��>"4?� and for each subset � its neighbors are
simply 78������4@5A�%� .
Factor graphs are a convenient representation for structured probabilistic models and sub-
sume undirected graphical models and acyclic directed graphical models [3]. Further, there
is a simple message passing algorithm for approximate inference that generalizes the belief
propagation algorithms on both undirected and acyclic directed graphical models,
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where B � � � 
 � # represents a message from variable node 4 to factor node � and vice versa
for message L � �

� 
C��# . Marginal distributions over factor nodes and variable nodes are
expressed in terms of these messages as follows,
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where W � / W � are normalization constants. It was recently established in [10, 1] that stable
fixed points of these update equations correspond to local minima of the Bethe-Gibbs free
energy given by,
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with gh��� &ji"k 7l� k and the marginals are subject to the following local constraints:
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Since only local constraints are enforced it is no longer guaranteed that the set of marginals� V Y\Z� / V Y\Z� � are consistent with a single joint distribution o � 
�# .
3 Linear Response

In the following we will be interested in computing estimates of joint probability distri-
butions for arbitrary pairs of nodes. We propose a method based on the linear response
theorem. The idea is to study changes in the system when we perturb single node poten-
tials, ^p`*b + �

� 
��M#q�"^p`*b +
r� � 
C�D# d�s � � 
C��# (6)



The superscript
r

indicates unperturbed quantities in (6) and the following. Let s � � s �\�and define the cumulant generating function of
��� � # (up to a constant) as,��� s #%� i ^p`*b N P (� 	*),+ �
� 
$�C# (��	�� +

r� � 
 � #�� � I�� P I�� (7)

Differentiating
��� s # with respect to s gives the cumulants of
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where �C� / ��� U are single and pairwise marginals of
��� 
�# . Expressions for higher order

cumulants can be derived by taking further derivatives of
i ��� s # .

Notice from (9) that the covariance estimates are obtained by studying the perturbations in� U � 
 U # as we vary s � � 
 � # . This is not practical in general since calculating � U � 
 U # itself is
intractable. Instead, we consider perturbations of approximate marginal distributions � V U � .
In the following we will assume that

V U � 
 U#" s # (with the dependence on s made explicit)
are the beliefs at a local minimum of the BP-Gibbs free energy (subject to constraints).

In analogy to (9), let $ � U � 
C� / 
 U # � 	&% 
 � P 
�' � �	 � I�� P I�� �� ��� r be the linear response estimated covari-
ance, and define the linear response estimated joint pairwise marginal asV)(�*� U � 
C� / 
 U #q� V r � � 
C��# V rU � 
 U # d $J� U � 
C� / 
 U # (10)

where
V r � � 
 � # �� V � � 
 � " s �,+c# . We will show that

V (�*� U and $ � U satisfy a number of important
properties which make them suitable as approximations of joint marginals and covariances.

First we show that $ � U � 
C� / 
 U # can be interpreted as the Hessian of a well-behaved convex
function. Let - be the set of beliefs that satisfy the constraints (5). The approximate
marginals � V r � � along with the joint marginals � V r � � form a local minimum of the Bethe-
Gibbs free energy (subject to

V r �� � V r � / V r � � 5.- ). Assume that
V r

is a strict local minimum
of
X Y\Z

(the strict local minimality is in fact attained if we use loopy belief propagation [1]).
That is, there is an open domain / containing

V r
such that
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is a strict local minimum when s �E+ , small perturbations in swill result in small perturbations in
V r

, so that
X 7

is well-behaved on an open neighborhood
around s �F+ . Differentiating
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In essence, we can interpret
X 7 � s # as a local convex dual of

X Y\Z � V # (by restricting attention
to / ). Since

X Y[Z
is an approximation to the exact Gibbs free energy [8], which is in turn

dual to
��� s # [4],

X 7 � s # can be seen as an approximation to
��� s # for small values of s . For

that reason we can take its second derivatives $j� U � 
�� / 
 U # as approximations to the exact
covariances (which are second derivatives of

i ��� s # ).
Theorem 1 The approximate covariance satisfies the following symmetry:
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Proof: The covariances are second derivatives of
i X 7 � s # at s � + so we can interchange

the order of the derivatives since
X 7 � s # is well-behaved on a neighborhood around s �+ .

�
Theorem 2 The approximate covariance satisfies the following “marginalization” condi-
tions for each 
 � / 
 U :
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As a result the approximate joint marginals satisfy local marginalization constraints:
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Proof: Using the definition of $ � U � 
 � / 
 U # and marginalization constraints for
V rU ,
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The constraint
D P��I $J� U � 
 �� / 
 U # � + follows from the symmetry (13), while the corre-

sponding marginalization (15) follows from (14) and the definition of
V (�*� U . �

Since
i ��� s # is convex, its Hessian matrix with entries given in (9) is positive semi-definite.

Similarly, since the approximate covariances $ � U � 
 � / 
 U # are second derivatives of a convex
function

i X 7 � s # , we have:

Theorem 3 The matrix formed from the approximate covariances $ � U � 
 � / 
 U # by varying4 and 
 � over the rows and varying � / 
 U over the columns is positive semi-definite.

Using the above results we can reinterpret the linear response correction as a “projection”
of the (only locally consistent) beliefs � V r � / V r � � onto a set of beliefs � V r � / V (�*� U � that is both
locally consistent (theorem 2) and satisfies the global constraint of being positive semi-
definite (theorem 3)1.

4 Propagating Perturbations for Linear Response

Recall from (10) that we need the first derivative of
V � � 
 � " s # with respect to s U � 
 U # at s �,+ .

This does not automatically imply that we need an analytic expression for
V � � 
C� " s # in terms

of s . In this section we show how we may compute these first derivatives by expanding all
quantities and equations up to first order in s and keeping track of first order dependencies.

First we assume that belief propagation has converged to a stable fixed point. We expand
the beliefs and messages up to first order as2

V � � 
 � " s #@� V
r � � 
 � #

� & d NU ! 
 
�� � U � 
 � /�� U # s U � � U #�� (17)

B � � � 
 � #@� B r � � � 
 � #
� & d N� ! 
���� � � ! � � 
 � /�� � # s � � � � #�� (18)

L � �
� 
��M#@� L

r � � � 
C�D#
� & d N� ! 
���� � � ! � � 
�� /�� � # s � � � � #�� (19)

1In extreme cases it is however possible that some entries of ���! " # become negative.
2The unconventional form of this expansion will make subsequent derivations more transparent.



The “response matrices” � � U / � � � ! U / � � � ! U measure the sensitivities of the corresponding
logarithms of beliefs and messages to changes in the log potentials ^a`cb + U

� � U # at node � .

Next, inserting the expansions (6,18,19) into the belief propagation equations (2) and
matching first order terms, we arrive at the following update equations for the “super-
messages” � � � ! � � 
�� /�� � # and � � � ! � � 
C� /�� � # ,
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The super-messages are initialized at � � � ! � � � � � ! � � + and updated using (20,21)
until convergence. Just as for belief propagation, where messages are normalized to avoid
numerical over or under flow, after each update the super-messages are “normalized” as
follows,
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and similarly for � � � ! � . After the above fixed point equations have converged, we compute
the response matrix � � U � 
 � / 
 U # by again inserting the expansions (6,17,19) into (3) and
matching first order terms,
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The constraints (14) (which follow from the normalization of
V � � 
C� " s # and

V r � � 
��M# ) translate
into

D P I V r � � 
��M# � � U � 
C� /�� U #6� + and it is not hard to verify that the following shift can be
applied to accomplish this,
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Finally, combining (17) with (12), we get
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Theorem 4 If the factor graph has no loops then the linear response estimates defined in
(25) are exact. Moreover, there exists a scheduling of the super-messages such that the
algorithm converges after just one iteration (i.e. every message is updated just once).

Sketch of Proof: Both results follow from the fact that belief propagation on tree structured
factor graphs computes the exact single node marginals for arbitrary s . Since the super-
messages are the first order terms of the BP updates with arbitrary s , we can invoke the
exact linear response theorem given by (8) and (9) to claim that the algorithm converges to
the exact joint pairwise marginal distributions.

�
For graphs with cycles, BP is not guaranteed to converge. We can however still prove the
following strong result.

Theorem 5 If the messages � L
r � � � 
 � # / B r � � � 
 � # � have converged to a stable fixed point,

then the update equations for the super-messages (20,21,22) will also converge to a unique
stable fixed point, using any scheduling of the super-messages.

Sketch of Proof3: We first note that the updates (20,21,22) form a linear system of equa-
tions which can only have one stable fixed point. The existence and stability of this fixed

3For a more detailed proof of the above two theorems we refer to [9].



point is proven by observing that the first order term is identical to the one obtained from
a linear expansion of the BP equations (2) around its stable fixed point. Finally, the Stein-
Rosenberg theorem guarantees that any scheduling will converge to the same fixed point.

�
5 Inverting Matrices for Linear Response

In this section we describe an alternative method to compute
	&% I�� P I��	 � ��� P � � by first computing	 � I � P I �	&% ��� P � � and then inverting the matrix formed by flattened ��4 / 
0�\� into a row index and� � / 
 � � into a column index. This method is a direct extension of [2]. The intuition is

that while perturbations in a single s � � 
C��# affect the whole system, perturbations in a singleV � � 
C��# (while keeping the others fixed) affect each subsystem � 5 � independently (see
[8]). This makes it easier to compute

	 � I�� P I��	&% ��� P � � then to compute
	�% I�� P I��	 � �&� P ��� .

First we propose minimal representations for
V � , s � and the messages. We assume that for

each node 4 there is a distinguished value 
 � � + . Set s � � +�#J� + while functionally defineV � � +c#@� &-i D P I��� r V � � 
��M# . Now the matrix formed by
	 � I�� P I��	�% � � P ��� for each 4 / � and 
�� / 
 � ��E+

is invertible and its inverse gives us the desired covariances for 
0� / 
 � ��,+ . Values for 
����+ or 
 � � + can then be computed using (14). We will also need minimal representations
for the messages. This can be achieved by defining new quantities � � � � 
 � #6� ^a`cb�� I Q � P I��� I Q � r �for all 4 and 
�� �� + . The �C� � ’s can be interpreted as Lagrange multipliers to enforce the
consistency constraints (5) [10]. We will use these multipliers instead of the messages in
this section.

Re-expressing the fixed point equations (2,3) in terms of
V � ’s and �C� � ’s only, and introduc-

ing the perturbations s � , we get:� V � � 
C�D#V � � +c# � f
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Differentiating the logarithm of (26) with respect to
V � � 
 � # , we get
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remembering that
V � � +c# is a function of

V � � 
C��# , 
��1�� + . Notice that we need values for	 � I Q � P I��	&% � � P �)� in order to solve for
	 � I�� P I��	&% �&� P ��� . Since perturbations in

V � � 
 � # (while keeping otherV U ’s fixed) do not affect nodes not directly connected to
�

, we have
	 � I Q � P I��	&% � � P � � � + for� �5 � . When

� 5A� , these can in turn be obtained by solving, for each � , a matrix inverse.
Differentiating (27) by

V � � 
 � # , we obtain
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for each 4 / � 587 � and 
C� / 
 � �� + . Flattening the indices in (29) (varying 4 / 
$� over rows
and

� / 
 � over columns), the LHS becomes the identity matrix, while the RHS is a product
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Figure 1: ��� -error in covariances for MF+LR, BP, BP+LR and “conditioning”. Dashed line is
baseline ( ����� ). The results are separately plotted for neighboring nodes (a), next-to-nearest
neighboring nodes (b) and the remaining nodes (c).

of two matrices. The first is a covariance matrix $ � where the 4�� th block is $ �� U � 
C� / 
 U # ;
while the second matrix consists of all the desired derivatives

	 � 
 Q � P 
 �	&% ��� P � � . Hence the deriva-

tives are given as elements of the inverse covariance matrix $ � �� . Finally, plugging the
values of

	 � 
 Q � P 
 �	&% �&� P � � into (28) now gives
	 � I�� P I��	&% �&� P � � and inverting that matrix will now give

us the desired approximate covariances over the whole graph. Interestingly, the method
only requires access to the beliefs at the local minimum, not to the potentials or Lagrange
multipliers.

6 Experiment

The accuracy of the estimated covariances $j� U � 
�� / 
 U # in the LR approximation was stud-
ied on a 	�
�	 square grid with only nearest neighbors connected and 
 states per node. The
solid curves in figure 1 represent the error in the estimates for: 1) mean field + LR approx-
imation [2, 9], 2) BP estimates for neighboring nodes with

V
EDGE � V � in equation (3), 3)

BP+LR and 4) “conditioning”, where
V � U � 
C� / 
 U #9� V ��� U � 
�� k 
 U # V Y\ZU � 
 U # and

V ��� U � 
�� k 
 U # is
computed by running BP � ��� times with 
 U clamped at a specific state (this has the same
computational complexity as BP+LR). $ was computed as $ � U � V � U i V � V U , with � V � / V U �
the marginals of

V � U , and symmetrizing the result. The error was computed as the absolute
difference between the estimated and the true values, averaged over pairs of nodes and their
possible states, and averaged over ��� random draws of the network. An instantiation of a
network was generated by randomly drawing the logarithm of the edge potentials from a
zero mean Gaussian with a standard deviation ranging between � + / ��� . The node potentials
were set to

&
.

From these experiments we conclude that “conditioning” and BP+LR have similar accuracy
and significantly outperform MF+LR and BP, while “conditioning” performs slightly better
than BP+LR. The latter does however satisfy some desirable properties which are violated
by conditioning (see section 7 for further discussion).

7 Discussion

In this paper we propose to estimate covariances as follows: first observe that the log
partition function is the cumulant generating function, next define its conjugate dual – the
Gibbs free energy – and approximate it, finally transform back to obtain a local convex
approximation to the log partition function, from which the covariances can be estimated.

The computational complexity of the iterative linear response algorithm scales as � � � �



� � ��� # per iteration ( � ��� nodes,
� ��� edges, � ��� states per node). The non-

iterative algorithm scales slightly worse, � � � ������� # , but is based on a matrix inverse for
which very efficient implementations exist. A question that remains open is whether we
can improve the efficiency of the iterative algorithm when we are only interested in the
joint distributions of neighboring nodes.

There are still a number of generalizations worth mentioning. Firstly, the same ideas can
be applied to the MF approximation [9] and the Kikuchi approximation (see also [5]). Sec-
ondly, the presented method easily generalizes to the computation of higher order cumu-
lants. Thirdly, when applying the same techniques to Gaussian random fields, a propagation
algorithm results that computes the inverse of the weight matrix exactly [9]. In the case of
more general continuous random field models we are investigating whether linear response
algorithms can be applied to the fixed points of expectation propagation.

The most important distinguishing feature between the proposed LR algorithm and the
conditioning procedure described in section 6 is the fact that the covariance estimate is
automatically positive semi-definite. Indeed the idea to include global constraints such as
positive semi-definiteness in approximate inference algorithms was proposed in [7]. Other
differences include automatic consistency between joint pairwise marginals from LR and
node marginals from BP (not true for conditioning) and a convergence proof for the LR
algorithm (absent for conditioning, but not observed to be a problem experimentally). Fi-
nally, the non-iterative algorithm is applicable to all local minima in the Bethe-Gibbs free
energy, even those that correspond to unstable fixed points of BP.
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