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Abstract

Nonparametric Bayesian mixture models, in partic-
ular Dirichlet process (DP) mixture models, have
shown great promise for density estimation and
data clustering. Given the size of today’s datasets,
computational efficiency becomes an essential in-
gredient in the applicability of these techniques to
real world data. We study and experimentally com-
pare a number of variational Bayesian (VB) ap-
proximations to the DP mixture model. In partic-
ular we consider the standard VB approximation
where parameters are assumed to be independent
from cluster assignment variables, and a novel col-
lapsed VB approximation where mixture weights
are marginalized out. For both VB approximations
we consider two different ways to approximate the
DP, by truncating the stick-breaking construction,
and by using a finite mixture model with a sym-
metric Dirichlet prior.

1 Introduction
Mixture modeling remains one of the most useful tools in
statistics, machine learning and data mining for applications
involving density estimation or clustering. One of the most
prominent recent developments in this field is the application
of nonparametric Bayesian techniques to mixture modeling,
which allow for the automatic determination of an appropriate
number of mixture components. Current inference algorithms
for such models are mostly based on Gibbs sampling, which
suffer from a number of drawbacks. Most importantly, Gibbs
sampling is not efficient enough to scale up to the large scale
problems we face in modern-day data mining. Secondly, sam-
pling requires careful monitoring of the convergence of the
Markov chain, both to decide on the number of samples to
be ignored for burn-in and to decide how many samples are
needed to reduce the variance in the estimates. These con-
siderations have lead researchers to develop deterministic al-
ternatives which trade off variance with bias and are easily
monitored in terms of their convergence. Moreover, they can
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be orders of magnitude faster than sampling, especially when
special data structures such as KD trees are used to cache cer-
tain sufficient statistics[Moore, 1998; Verbeeket al., 2003;
Kuriharaet al., 2006].

[Blei and Jordan, 2005] recently applied the framework of
variational Bayesian (VB) inference to Dirichlet process (DP)
mixture models and demonstrated significant computational
gains. Their model was formulated entirely in the truncated
stick-breaking representation. The choice of this representa-
tion has both advantages and disadvantages. For instance,
it is very easy to generalize beyond the DP prior and use
much more flexible priors in this representation. On the flip
side, the model is formulated in the space of explicit, non-
exchangeable cluster labels (instead of partitions). In other
words, randomly permuting the labels changes the probabil-
ity of the data. This then requires samplers to mix over cluster
labels to avoid bias[Porteouset al., 2006].

In this paper we propose and study alternative approaches
to VB inference in DP mixture models beyond that proposed
in [Blei and Jordan, 2005]. There are three distinct contri-
butions in this paper: in proposing an improved VB algo-
rithm based on integrating out mixture weights, in comparing
the stick-breaking representation against the finite symmet-
ric Dirichlet approximation to the DP, and in the maintain-
ing optimal ordering of cluster labels in the stick-breaking
VB algorithms. These lead to a total of six different algo-
rithms, including the one proposed in[Blei and Jordan, 2005].
We experimentally evaluate these six algorithms and compare
against Gibbs sampling.

In Section 2.1 we explore both the truncated stick-breaking
approximation and the finite symmetric Dirichlet prior as fi-
nite dimensional approximations to the DP. As opposed to the
truncated stick-breaking approximation, the finite symmetric
Dirichlet model is exchangeable over cluster labels. Theoret-
ically this has important consequences, for example a Gibbs
sampler is not required to mix over cluster labels if we are
computing averages over quantities invariant to cluster label
permutations (as is typically the case).

In Section 2.2 we explore the idea of integrating out the
mixture weightsπ, hence collapsing the model to a lower di-
mensional space. This idea has been shown to work well for
LDA models[Tehet al., 2006] where strong dependencies ex-
ist between model parameters and assignment variables. Such
dependencies exist between mixture weights and assignment



variables in our mixture model context as well, thus collaps-
ing could also be important here. This intuition is reflectedin
the observation that the variational bound on the log evidence
is guaranteed to improve.

In Section 3 we derive the VB update equations corre-
sponding to the approximations in Section 2. We also con-
sider optimally reordering cluster labels in the stick-breaking
VB algorithms. As mentioned, the ordering of the cluster la-
bels is important for models formulated in the stick-breaking
representation. In the paper[Blei and Jordan, 2005] this issue
was ignored. Here we also study the effect of cluster reorder-
ing on relevant performance measures such as the predictive
log evidence.

The above considerations lead us to six VB inference meth-
ods, which we evaluate in Section 4. The methods are: 1)
the truncated stick-breaking representation with standard VB
(TSB), 2) the truncated stick-breaking representation with
collapsed VB (CTSB), 3) the finite symmetric Dirichlet rep-
resentation with standard VB (FSD), 4) the finite symmetric
Dirichlet presentation with collapsed VB (CFSD), and 5) and
6) being TSB and CTSB with optimal reordering (O-TSB and
O-CTSB respectively).

2 Four Approximations to the DP

We describe four approximations to the DP in this section.
These four approximations are obtained by a combination of
truncated stick-breaking/finite symmetric Dirichlet approxi-
mations and whether the mixture weights are marginalized
out or not. Based on these approximations we describe the
six VB inference algorithms in the next section.

The most natural representation of DPs is using the Chi-
nese restaurant process, which is formulated in the space of
partitions. Partitions are groupings of the data independent
of cluster labels, where each data-point is assigned to exactly
1 group. This space of partitions turns out to be problem-
atic for VB inference, where we wish to use fully factorized
variational distributions on the assignment variables,Q(z) =
∏

n q(zn). Since the assignmentsz1 = 1, z2 = 1, z3 = 2 rep-
resent the same partition(1, 2)(3) asz1 = 3, z2 = 3, z3 = 2,
there are intricate dependencies between the assignment vari-
ables and it does not make sense to use the factorization
above. We can circumvent this by using finite dimensional
approximations for the DP, which are formulated in the space
of cluster labels (not partitions) and which are known to
closely approximate the DP prior as the number of explic-
itly maintained clusters grows[Ishwaran and James, 2001;
Ishwaran and Zarepour, 2002]. These finite approximations
are what will we discuss next.

2.1 TSB and FSD Approximations

In the first approximation we use the stick-breaking represen-
tation for the DP[Ishwaran and James, 2001] and truncate it

afterT terms,

vi ∼ B(vi; 1, α) i = 1, ..., T − 1 (1)

vT = 1 (2)

πi = vi

∏

j<i

(1 − vj) i = 1, ..., T (3)

πi = 0 i > T (4)

whereB(v; 1, α) is a beta density for variablev with param-
eters 1 andα, and one can verify that

∑T

i=1 πi = 1. In-
corporating this into a joint probability over data itemsX =
{xn}, n = 1, ..., N , cluster assignmentsz = {zn}, n =
1, ..., N , stick-breaking weightsv = {vi}, i = 1, ..., T and
cluster parametersη = {ηi}, i = 1, ..., T we find

P (X, z,v, η) =
[

N
∏

n=1

p(xn|ηzn
) p(zn|π(v))

] [

T
∏

i=1

p(ηi)B(vi; 1, α)

]

(5)

whereπ(v) are the mixture weights as defined in (3). In this
representation the cluster labels are not interchangeable, i.e.
changing labels will change the probability value in (5). Note
also that asT → ∞ the approximation becomes exact.

A second approach to approximate the DP is by assuming
a finite (but large) number of clusters,K, and using a sym-
metric Dirichlet priorD onπ [Ishwaran and Zarepour, 2002],

π ∼ D(π; α
K

, ..., α
K

) (6)

This results in the joint model,

P (X, z, π, η) =
[

N
∏

n=1

p(xn|ηzn
) p(zn|π)

][

K
∏

i=1

p(ηi)

]

D(π; α
K

, ..., α
K

) (7)

The essential difference with the stick-breaking representa-
tion is that the cluster labels remain interchangeable under
this representation, i.e. changing cluster labels doesnot
change the probability[Porteouset al., 2006]. The limit
K → ∞ is somewhat tricky because in the transitionK →
∞ we switch to the space of partitions, where states that
result from cluster relabelings are mapped to the same par-
tition. For example, bothz1 = 1, z2 = 1, z3 = 2 and
z1 = 3, z2 = 3, z3 = 2 are mapped to the same partition
(1, 2)(3).

In figure 1 we show the prior average cluster sizes under
the truncated stick-breaking (TSB) representation (left)and
under the finite symmetric Dirichlet (FSD) prior (middle) for
two values of the truncation level and number of clusters re-
spectively. From this figure it is apparent that the cluster
labels in the TSB prior are not interchangeable (the proba-
bilities are ordered in decreasing size), while they are inter-
changeable for the FSD prior. As we increaseT andK these
priors approximate the DP prior with increasing accuracy.

One should note however, that they live in different spaces.
The DP itself is most naturally defined in the space of parti-
tions, while both TSB and FSD are defined in the space over
cluster labels. However, TSB and FSD also live in different
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Figure 1:Average cluster size for three finite approximations to the DP prior. Left: Truncated stick-breaking prior (TSB) as given in (3).
Middle: Finite Symmetric Dirichlet prior (FSD). Right: Stick-breaking representation corresponding to the FSD prior. In each figure we
show results for two truncation levels:T/K = 6 (left bars) andT/K = 11 (right bars).

spaces! More precisely, one can transform a sample from
the FSD prior into the stick-breaking representation by per-
forming a size-biased permutation of the mixture weightsπ
(i.e. after every sample fromD(π) we sample an ordering
according toπ without replacement). As it turns out, for fi-
nite K this does not exactly recover the left hand figure in
1, but rather samples from a prior very closely related to it
shown in the right pane of figure 1. This prior is given by
a stick-breaking construction as in eqn.(3) with stick-lengths
sampled from,

vi ∼ B(vi; 1 +
α

K
, α −

iα

K
) (8)

Conversely, we can obtain samples from the FSD prior by
applying a random, uniformly distributed permutation on the
cluster weights obtained from eqn.(8). Although these two
stick-breaking constructions are slightly different, forlarge
enoughK, T they are very similar and we do not expect any
difference in terms of performance between the two.

2.2 Marginalizing out the Mixture Weights
The variational Bayesian approximations discussed in the
next section assume a factorized form for the posterior dis-
tribution. This means that we assume that parameters are in-
dependent of assignment variables. This is clearly a very bad
assumption because changes inπ will have a considerable
impact onz. Ideally, we would integrate out all the parame-
ters, but this is too computationally expensive. There is how-
ever a middle ground: we can marginalize outπ from both
methods without computational penalty if we make another
approximation which will be discussed in section 3.3. For
both TSB and FSD representations the joint collapsed model
overX, z, η is given by,

P (X, z, η) =

[

N
∏

n=1

p(xn|ηzn
)

]

p(z)

[

∞
∏

i=1

p(ηi)

]

(9)

with different distributions over cluster labelsp(z) in both
cases. For the TSB representation we have,

pTSB(z) =
∏

i<T

Γ(1 + Ni)Γ(α + N>i)

Γ(1 + α + N≥i)
(10)

with

Ni =

N
∑

n=1

I(zn = i) N>i =

N
∑

n=1

I(zn > i) (11)

andN≥i = Ni + N>i. For FSD we find instead,

pFSD(z) =
Γ(α)

∏K

k=1 Γ(Nk + α
K

)

Γ(N + α)Γ( α
K

)K
(12)

3 Variational Bayesian Inference
The variational Bayesian inference algorithm[Attias, 2000;
Ghahramani and Beal, 2000] lower bounds the log marginal
likelihood by assuming that parameters and hidden variables
are independent. The lower bound is given by,

L(X) ≥ B(X) =
∑

z

∫

dθ

Q(z)Q(θ) log
P (X, z, θ)

Q(z)Q(θ)
(13)

whereθ is either{η,v}, {η, π} or {η} in the various DP
approximations discussed in the previous section. Approxi-
mate inference is then achieved by alternating optimization
of this bound overQ(z) andQ(θ). In the following we will
spell out the details of VB inference for the proposed four
methods. For the TSB prior we use,

QTSB(z, η,v) =

[

N
∏

n

q(zn)

] [

T
∏

i=1

q(ηi)q(vi)

]

(14)

whereq(v) is not used in the TSB model withv marginalized
out. For the FSD prior we use,

QFSD(z, η, π) =

[

N
∏

n

q(zn)

] [

K
∏

k=1

q(ηk)

]

q(π) (15)

As well, q(π) is left out for the collapsed version.

3.1 Bounds on the Evidence
Given the variational posteriors we can construct bounds on
the log marginal likelihood by insertingQ into eqn.(13). Af-



ter some algebra we find the following general form,

B(X) =

N
∑

n=1

∑

zn

∫

dηzn

q(zn)q(ηzn
) log p(xn|ηzn

)

+
∑

i

∫

dηi

q(ηi) log
p(ηi)

q(ηi)
−

N
∑

n=1

∑

zn

q(zn) log q(zn)

+ Extra Term (16)

where the “extra term” depends on the particular method. For
the TSB prior we have,

TermTSB =

N
∑

n=1

T
∑

zn=1

q(zn)

∫

dv

[

zn
∏

i=1

q(vi)

]

log p(zn|v)

+
T
∑

i=1

∫

dvi

q(vi) log
p(vi)

q(vi)
(17)

On the other hand for the FSD prior we find,

TermFSD =
∑

n

K
∑

zn=1

∫

dπ

q(zn)q(π) log p(zn|π)

+

∫

dπ

q(π) log
p(π)

q(π)
(18)

For both collapsed versions these expressions are replacedby,

TermCTSB/CFSD =
∑

z

[

N
∏

n=1

q(zn)

]

log p(z) (19)

3.2 VB Update Equations
Given these bounds it is now not hard to derive update equa-
tions for the various methods. Due to space constraints we
will refer to the papers[Blei and Jordan, 2005; Ghahramani
and Beal, 2000; Penny, 2001; Yuet al., 2005] for more details
on the update equations for the un-collapsed methods and fo-
cus on the novel collapsed update equations.

Below we will provide the general form of the update
equations where we do not assume anything about the par-
ticular form of the priorp(ηi). The equations become par-
ticularly simple when we choose this prior in the conju-
gate exponential family. Explicit update equations forq(ηi)
can be found in the papers[Ghahramani and Beal, 2000;
Blei and Jordan, 2005; Penny, 2001; Yuet al., 2005].

For q(ηi) we find the same update for both methods,

q(ηi) ∝ p(ηi) exp

(

∑

n

q(zn = i) log p(xn|ηi)

)

(20)

while for q(zn) we find the update

q(zn) ∝ exp





∑

z¬n

∏

m 6=n

q(zm) log p(zn|z¬n)





× exp

(

∫

dηzn

q(ηzn
) log p(xn|ηzn

)

)

(21)

where the conditionalp(zn|z¬n) is different for the FSD and
TSB priors. For the TSB prior we use (10), giving the condi-
tional

p(zn = i|z¬n) =
1 + N¬n

i

1 + α + N¬n
≥i

∏

j<k

α + N¬n
>i

1 + α + N¬n
≥i

(22)

whereN¬n
i = Ni − I(zn = i), N¬n

>i = N>i − I(zn > i) are
the corresponding counts withzn removed. In contrast, for
the FSD prior we have,

p(zn = k|z¬n) =
N¬n

k + α
K

N¬n + α
(23)

3.3 Gaussian Approximation
The expectation required to compute the update (21) seems
intractable due to the exponentially large space of all assign-
ments forz. It can in fact be computed in polynomial time
using convolutions, however this solution still tended to be
too slow to be practical. A much more efficient approximate
solution is to observe that both random variablesNi andN>i

are sums over Bernoulli variables:Ni =
∑

n I(zn = i) and
N>i =

∑

n I(zn > i). Using the central limit theorem these
sums are expected to be closely approximated by Gaussian
distributions with means and variances given by,

E[Ni] =

N
∑

n=1

q(zn = i) (24)

V[Ni] =

N
∑

n=1

q(zn = i)(1 − q(zn = i)) (25)

E[N>i] =
N
∑

n=1

∑

j>i

q(zn = j) (26)

V[N>i] =

N
∑

n=1

∑

j>i

q(zn = j)
∑

k≤i

q(zn = k) (27)

To apply this approximation to the computation of the average
in (21), we use the following second order Taylor expansion,

E[f(m)] ≈ f(E(m)] +
1

2
f

′′

(E[m])V[m] (28)

This approximation has been observed to work extremely
well in practice, even for small values ofm.

3.4 Optimal Cluster Label Reordering
As discussed in section 2.1 the stick-breaking prior assumes a
certain ordering of the clusters (more precisely, a size-biased
ordering). Since a permutation of the cluster labels changes
the probability of the data, we should choose the optimal per-
mutation resulting in the highest probability for the data.The
optimal relabelling of the clusters is given by the one that or-
ders the cluster sizes in decreasing order (this is true since
the average prior cluster sizes are also ordered). In our ex-
periments we assess the effect of reordering by introducing
algorithms O-TSB and O-CTSB which always maintain this
optimal labelling of the clusters. Note that optimal ordering
was not maintained in[Blei and Jordan, 2005].



Figure 2:Average log probability per data-point for test data as a
function ofN .

Figure 3: Relative average log probability per data-point for test
data as a function ofN .

4 Experiments
In the following experiments we compared the six algorithms
discussed in the main text in terms of their log-probabilityon
held out test data. The probability for a test point,xt, is then
given by,

p(xt) =
∑

zt

∫

dηzt

p(xt|ηzt
)q(ηzt

)E[p(zt|ztrain)]q(ztrain)

where the expectationE[p(zt|ztrain)]q(ztrain) is computed using
the techniques introduced in section 3.3. All experiments
were conducted using Gaussian mixtures with vague priors
on the parameters.

In the first experiment we generated synthetic data from a
mixture of 10 Gaussians in 16 dimensions with a separation

Figure 4:Average log probability per data-point for test data as a
function ofT (for TSB methods) orK (for FSD methods).

Figure 5: Relative average log probability per data-point for test
data as a function ofT (for TSB methods) orK (for FSD methods).

coefficient1 c = 2. We studied the accuracy of each algorithm
as a function of the number of data cases and the truncation
level of the approximation. In figures 2 and 3 we show the
results as we vary N (keeping T and K fixed at 30) while in
figures 4 and 5 we plot the results as we vary T and K (keep-
ing N fixed at 200). We plot both the absolute value of the log
probability of test data and the value relative to a Gibbs sam-
pler (GS). We 50 iterations for burn-in, and run another 200
iterations for inference. Error bars are computed on the rela-
tive values in order to subtract variance caused by the differ-
ent splits (i.e. we measure variance on paired experiments).

1Following [Dasgupta, 1999], a Gaussian mixture isc-separated
if for each pair(i, j) of components we have||mi − mj ||

2 ≥
c2D max(λmax

i , λmax

j ) , whereλmax denotes the maximum eigen-
value of their covariance.



Figure 6: 15 most populated clusters found by the various al-
gorithms in descending order ofE[Ni]. Algorithms were trained
on a random subset of 10,000 images from MNIST and dimen-
sionality reduced to 50 dimensions using PCA. Log probability of
10,000 test images are given by,L = −574.05 ± 0.52 (TSB),
L = −574.03 ± 0.53 (O-TSB),L = −573.90 ± 0.54 (CTSB),
L = −573.89 ± 0.54 (O-CTSB),L = −574.06 ± 0.50 (FSD),
andL = −573.89 ± 0.51 (CFSD). Standard error over differences
relative to O-CTSB are given by:dL = −0.17 ± 0.13 (TSB),
dL = −0.14 ± 0.11 (O-TSB), dL = −0.01 ± 0.05 (CTSB),
dL = −0.17 ± 0.13 (FSD), anddL = −0.00 ± 0.10 (CFSD).

Results were averaged over 30 independently sampled train-
ing/testing datasets, where the number of test instances was
always fixed at 1000.2

In the second experiment we have run the algorithms on
subsets of MNIST. Images of size28 × 28 were dimension-
ality reduced to 50 PCA dimensions as a preprocessing step.
We trained all algorithms on 30 splits of the data, each split
containing 5000 data-cases for training and 10,000 data-cases
for testing. Truncation levels were set to80 for all algorithms.
Unfortunately, the dataset was too large to obtain results with
Gibbs sampling. All algorithms typically find between32 and
36 clusters. Results are shown in figure 4.

4.1 Discussion
In this paper we explored six different ways to perform vari-
ational Bayesian inference in DP mixture models. Besides an
empirical study of these algorithms our contribution has been
to introduce a new family of collapsed variational algorithms
where the mixture weights are marginalized out. To make
these algorithms efficient, we used the central limit theorem
to approximate the required averages.

We can draw three conclusions from our study. Firstly,
there is very little difference between variational Bayesian in-
ference in the reordered stick-breaking representation and the
finite mixture model with symmetric Dirichlet priors. Sec-
ondly, label reordering is important for the stick-breaking
representation. Thirdly, variational approximations aremuch

2For N=200 and T or K=40, TSB, O-TSB, CTSB, O-CTSB,
FSD, CFSD and GS took 0.48, 0.70, 0.84, 1.22, 0.67, 1.16 and 1,019
seconds on average, respectively. Note that the computational com-
plexities of the variational algorithms are the same.

more efficient computationally than Gibbs sampling, with al-
most no loss in accuracy.

We are currently working towards models where the pa-
rametersη are marginalized out as well. We expect this to
have a more significant impact on test accuracy than the cur-
rent setup which only marginalizes overπ, especially when
clusters are overlapping. Unfortunately, it seems this will
come at the cost of increased computation.

Collapsed variational inference has also been applied to
LDA models [Teh et al., 2006], where preliminary results
indicate significant performance improvement. We are cur-
rently also exploring collapsed variational inference forhier-
archical DP models[Tehet al., 2004].
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