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Abstract

Nonparametric Bayesian mixture models, in partic-
ular Dirichlet process (DP) mixture models, have
shown great promise for density estimation and
data clustering. Given the size of today’s datasets,
computational efficiency becomes an essential in-
gredient in the applicability of these techniques to
real world data. We study and experimentally com-
pare a number of variational Bayesian (VB) ap-
proximations to the DP mixture model. In partic-
ular we consider the standard VB approximation
where parameters are assumed to be independent
from cluster assignment variables, and a novel col-
lapsed VB approximation where mixture weights
are marginalized out. For both VB approximations
we consider two different ways to approximate the
DP, by truncating the stick-breaking construction,
and by using a finite mixture model with a sym-
metric Dirichlet prior.
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be orders of magnitude faster than sampling, especiallynwhe
special data structures such as KD trees are used to cache cer
tain sufficient statisticMoore, 1998; Verbeekt al,, 2003;
Kuriharaet al., 2004.

[Blei and Jordan, 20QFecently applied the framework of
variational Bayesian (VB) inference to Dirichlet proceB®}
mixture models and demonstrated significant computational
gains. Their model was formulated entirely in the truncated
stick-breaking representation. The choice of this represe
tion has both advantages and disadvantages. For instance,
it is very easy to generalize beyond the DP prior and use
much more flexible priors in this representation. On the flip
side, the model is formulated in the space of explicit, non-
exchangeable cluster labels (instead of partitions). heiot
words, randomly permuting the labels changes the probabil-
ity of the data. This then requires samplers to mix over elust
labels to avoid biafPorteoust al, 2004.

In this paper we propose and study alternative approaches
to VB inference in DP mixture models beyond that proposed
in [Blei and Jordan, 2045 There are three distinct contri-
butions in this paper: in proposing an improved VB algo-
rithm based on integrating out mixture weights, in comparin
the stick-breaking representation against the finite sytnme

Mixture modeling remains one of the most useful tools inyic pirichlet approximation to the DP, and in the maintain-
statistics, machine learning and data mining for appliceti

involving density estimation or clustering. One of the mosty/g algorithms. These lead to a total of six different algo-

prominent recent developments in this field is the applcati rithms, including the one proposedBlei and Jordan, 2045

of nonparametric Bayesian techniques to mixture modelingye experimentally evaluate these six algorithms and coenpar
which allow for the automatic determination of an approteria against Gibbs sampling.

number of mixture components. Currentinference algorsthm
for such models are mostly based on Gibbs sampling, whic
suffer from a number of drawbacks. Most importantly, Gibbs
sampling is not efficient enough to scale up to the large scal
problems we face in modern-day data mining. Secondly, sa
pling requires careful monitoring of the convergence of th
Markov chain, both to decide on the number of samples tQ
be ignored for burn-in and to decide how many samples arg
needed to reduce the variance in the estimates. These co

siderations have lead researchers to develop determialsti

ternatives which trade off variance with bias and are easily
monitored in terms of their convergence. Moreover, they ca

ing optimal ordering of cluster labels in the stick-breakin

In Section 2.1 we explore both the truncated stick-breaking

Ié\pproximation and the finite symmetric Dirichlet prior as fi-

nite dimensional approximations to the DP. As opposed to the
fruncated stick-breaking approximation, the finite synmoet

rQf)irichlet model is exchangeable over cluster labels. Téeor

ically this has important consequences, for example a Gibbs
ampler is not required to mix over cluster labels if we are
omputing averages over quantities invariant to clusteella
ﬂérmutations (as is typically the case).

In Section 2.2 we explore the idea of integrating out the

rmixture weightsr, hence collapsing the model to a lower di-

mensional space. This idea has been shown to work well for
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ist between model parameters and assignment variablels. Suc
dependencies exist between mixture weights and assignment



variables in our mixture model context as well, thus collaps afterT" terms,
ing could also be important here. This intuition is refledted

the observation that the variational bound on the log exiden vi ~ B(vi; 1, ) i=L..T-1 (1)
is guaranteed to improve. vp =1 (2)

In Section 3 we derive the VB update equations corre- = 'UiH(l — ;) i=1,...T (3)
sponding to the approximations in Section 2. We also con- i<i

sider optimally reordering cluster labels in the stickdkiag =0 i>T (4
VB algorithms. As mentioned, the ordering of the cluster la- v
bels is important for models formulated in the stick-breaki whereB(v; 1, o) is a beta density for variablewith param-

representation. In the papl@lei and Jordan, 20Q%his issue eters 1 andh, and one can verify thaZ-T,l m = 1. In-

was ignored. Here we also study the effect of cluster reerdercorporating this into a joint probability over data itedis=

ing on relevant performance measures such as the predicti\{g(n}’ n = 1,.., N, cluster assignments = {z,}, n =

log evidence. 1,..., N, stick-breaking weights = {v;}, i = 1,...,T and
The above considerations lead us to six VB inference metheluster parameteng = {n;}, i = 1, ..., T we find

ods, which we evaluate in Section 4. The methods are: 1)

the truncated stick-breaking representation with stachdf&@ P(X,z,v,n) =

(TSB), 2) the truncated stick-breaking representatiorh wit N T

collapsed VB (CTSB), 3) the finite symmetric Dirichlet rep- H p(Xn|nz,) p(zn|7r(v))] [Hp(m)lg(vi; 1, oz)‘| (5)

resentation with standard VB (FSD), 4) the finite symmetric  [n=1 i=1

Dirichlet presentation with collapsed VB (CFSD), and 5) and

6) being TSB and CTSB with optimal reordering (O-TSB and

O-CTSB respectively).

wherer(v) are the mixture weights as defined in (3). In this
representation the cluster labels are not interchangeiable
changing labels will change the probability value in (5).t&lo
also that a§” — oo the approximation becomes exact.

A second approach to approximate the DP is by assuming

2 Four Approximationstothe DP a finite (but large) number of clusterk;, and using a sym-
metric Dirichlet priorD on [Ishwaran and Zarepour, 2002

We describe four approximations to the DP in this section. ™~ D(m; %y ) (6)
These four approximations are obtained by a combination
truncated stick-breaking/finite symmetric Dirichlet apygr
mations and whether the mixture weights are marginalized P(X,z, w,n) =
out or not. Based on these approximations we describe the -

. . . . ; K
six VB inference algorithms in th_e next sectpn. _ _ H p(%n|72.) p(anW)l [Hp(m)] D(m; 2, ..., 2) (7)
The most natural representation of DPs is using the Chi- [,=1 i=1

nese restaurant process, which is formulated in the space
partitions. Partitions are groupings of the data indepehde
of cluster labels, where each data-point is assigned talgxac
1 group. This space of partitions turns out to be problem
atic for VB inference, where we wish to use fully factorized
variational distributions on the assignment variablg&;) =

O{'his results in the joint model,

?tne essential difference with the stick-breaking represen
tion is that the cluster labels remain interchangeable unde
this representation, i.e. changing cluster labels doeats
change the probabilityPorteouset al, 2006. The limit

K — oo is somewhat tricky because in the transitish—

oo we switch to the space of partitions, where states that

11, ¢(z.). Since the assignmenis = 1, 2z, = 1, z3 = 2 rep- g

resent the same partitidnt, 2)(3) asz1 = 3,22 = 3,23 = 2, ,[ﬁiséﬂt frg(r)r: gl)l(J:rtnerlgeI%t())(tekILngs;arle maﬁpeld to tfe;zrrr:g par-
there are intricate dependencies between the assignmentva, =7 " " =70 b€, 5 aré ma ’gé to thézgan_qe artition
ables and it does not make sense to use the factorizati 2_ 3’22 = 9hE = PP P
above. We can circumvent this by using finite dimensional*™ )(3).

o : : In figure 1 we show the prior average cluster sizes under
approximations for the DP, which are formulated in the spac . X .
of cluster labels (not partitions) and which are known to‘cfhe truncated stick-breaking (TSB) representation (lefi)

closely approximate the DP prior as the number of explic—under the finite symmetric Dirichlet (FSD) prior (middle)fo

itly maintained clusters growishwaran and James, 2001; two values of the truncation level and number of clusters re-

Ishwaran and Zarepour, 2002These finite approximations spectiv_ely. From thi_s figure it i_s apparent that the cluster
are what will we discuss,next labels in the TSB prior are not interchangeable (the proba-

bilities are ordered in decreasing size), while they arerint
changeable for the FSD prior. As we incredsand K these
: : priors approximate the DP prior with increasing accuracy.
21 TSB and FSD Approximations One should note however, that they live in different spaces.
The DP itself is most naturally defined in the space of parti-
In the first approximation we use the stick-breaking represe tions, while both TSB and FSD are defined in the space over
tation for the DF{Ishwaran and James, 2JQdnd truncate it  cluster labels. However, TSB and FSD also live in different
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Figure 1: Average cluster size for three finite approximations to tiefdior. Left: Truncated stick-breaking prior (TSB) as givie (3).
Middle: Finite Symmetric Dirichlet prior (FSD). Right: $k-breaking representation corresponding to the FSD .ptioeach figure we
show results for two truncation level$:/ K = 6 (left bars) andl’/ K = 11 (right bars).

spaces! More precisely, one can transform a sample fromith

the FSD prior into the stick-breaking representation by per N N

forming a size-biased permutation of the mixture weights o . o .

(i.e. after every sample fro®(w) we sample an ordering Ni = ;H('Z" =) N>i= 2;1]1(2” > i) (11)
according tor without replacement). As it turns out, for fi- "= "

nite K this does not exactly recover the left hand figure inandN>; = N; + N;. For FSD we find instead,
1, but rather samples from a prior very closely related to it K

shown in the right pane of figure 1. This prior is given by I() [Temn TNk + %)

a stick-breaking construction as in eqn.(3) with stickgfhrs I(N + a)T()K
sampled from,

Prsp(z) = (12)

a i 3 Variational Bayesian Inference
v~ Blugl+ —,a— —=

K K ) ®) The variational Bayesian inference algoritthiAttias, 2000;
Conversely, we can obtain samples from the FSD prior byGhahramani and Beal, 20p@wer bounds the log marginal
applying a random, uniformly distributed permutation oa th likelihood by assuming that parameters and hidden vasable
cluster weights obtained from eqn.(8). Although these twoare independent. The lower bound is given by,
stick-breaking constructions are slightly different, farge P(X,2,0)

enoughK, T they are very similar and we do not expectany ,(x) > B(X) = Q(z)Q(0)log ———~ (13
difference in terms of performance between the two. (02BX0 =2 do (=)Q(6) log Q(2)Q(6) (13)
2.2 Marginalizing out the Mixture Weights where@ is either{n, v}, {n,w} or {n} in the various DP

The variational Bayesian approximations discussed in th@pproximations discussed in the previous section. Approxi
next section assume a factorized form for the posterior dismate inference is then achieved by alternating optiminatio
tribution. This means that we assume that parameters are if this bound over)(z) andQ(6). In the following we will
dependent of assignment variables. This is clearly a vedy baspell out the details of VB inference for the proposed four
assumption because changesrinwill have a considerable methods. For the TSB prior we use,

impact onz. ldeally, we would integrate out all the parame- N T

ters, but this is too computationally expensive. There i8-ho _ , ,

ever a middle ground: we can marginalize aufrom both Qrsa(z,m, V) = lH q('z")] [qu)q(%)] (14)
methods without computational penalty if we make another " =t

approximation which will be discussed in section 3.3. Forwhereg(v) is not used in the TSB model withmarginalized
both TSB and FSD representations the joint collapsed modelut. For the FSD prior we use,

over X, z,n is given by, N K
N 00 M, ) = " 15
11 p(xnmzn)] p(a) [Hp(nn] @ o lEW )] LU q(n’“)] S
n=1 = As well, () is left out for the collapsed version.

with different distributions over cluster labelgz) in both
cases. For the TSB representation we have,

P(X,z,m) =

3.1 Boundson the Evidence

pres(z) = H P+ Ni)T(a + N>i) (10)  Given the variational posteriors we can construct bounds on
I'l+a+ N>;) the log marginal likelihood by inserting into eqn.(13). Af-

i<T



ter some algebra we find the following general form, where the conditional(z,, |z-,) is different for the FSD and
TSB priors. For the TSB prior we use (10), giving the condi-

tional
Z > q(n-,) log p(Xnl12,,)

1+ N o+ NP
n=1 z 77zn : i >iq
n = 0|z,) = 22
Plen = il2n) 1+a+N;;.L1:[k1+a+N;y (22)
>i >
+ / q(mi) 1o 4(2n)log q(zn)
Xi: dn; ;; whereN;” = N; — (2, = i), NJ7 = N>; — (2, > i) are

(16) the corresponding counts with, removed. In contrast, for
the FSD prior we have,

where the “extra term” depends on the particular method. For

the TSB prior we have, p(2n = klz—y) =

+ Extra Term
N+ %
N 4+«

Termrsg _Z Z (2n / lH q(vi)] 1og p(zn|v) 3.3 Gaussian Approximation
i— The expectation required to compute the update (21) seems

(23)

n=1z,=1
intractable due to the exponentially large space of allgassi
+ Z/ (vs 1Og (vi) (17)  ments forz. It can in fact be computed in polynomial time
(vi) using convolutions, however this solution still tended & b
too slow to be practical. A much more efficient approximate
solution is to observe that both random variab\ésand N, ;
are sums over Bernoulli variables; = " 1(z, = i) and

On the other hand for the FSD prior we find,

Termesp _Z Z / (2n)q(7) log p(zn| ) Ns; =), I(z, > 1). Using the central limit theorem these
e sums are expected to be closely approximated by Gaussian
distributions with means and variances given by,
p(m)
+ (m) log (18) N
o o BN = 3 a(zn = ) (24)
i = Zn =1
For both collapsed versions these expressions are refigced ot ¢
N N
Termerses crsp = » [H Q(Zn)] logp(z)  (19) VIN] =Ygz = D)(1 = g(z0 = 1)) (25)
Zz =1 n=1
. N
3.2 VB Update Equations
. paate =qu | BN- = 32l (26)
Given these bounds it is now not hard to derive update equa- et
tions for the various methods. Due to space constraints we N
will refer to the paper$Blei and Jordan, 2005; Ghahramani - . -
and Beal, 2000; Penny, 2001; ¥ual, 2009 for more details V[N =D Z 4(2n = 7) Z 4 =k)  (27)
on the update equations for the un-collapsed methods and fo- n=1g>i k<i
cus on the novel collapsed update equations. To apply this approximation to the computation of the averag

Below we will provide the general form of the update in (21), we use the following second order Taylor expansion,
equations where we do not assume anything about the par- .

ticular form of the priorp(n;). The equations become par- E[f(m)] ~ f(E(m)] + f (E[m])V[m] (28)
ticularly simple when we choose this prior in the conju-

gate exponential family. Explicit update equationsdon;)  This approximation has been observed to work extremely
can be found in the papef&hahramani and Beal, 2000; well in practice, even for small values of.
Blei and Jordan, 2005; Penny, 2001; &ual., 2004.

For q(n;) we find the same update for both methods, 3.4 Optimal Cluster Label Reordering

As discussed in section 2.1 the stick-breaking prior assiane
(20) certain ordering of the clusters (more precisely, a sizeséi
ordering). Since a permutation of the cluster labels change

q(mi) o< p(n;) exp (Z q(zn = i) log p(xs|n;)

i i the probability of the data, we should choose the optimal per
while for ¢(z,,) we find the update mutation resulting in the highest probability for the datae
optimal relabelling of the clusters is given by the one that o
! ders the cluster sizes in decreasing order (this is trueesinc
q(zn) cexp [ D T a(zm)logp(zn|z-n) the average prior cluster sizes are also ordered). In our ex-
Zon m#n periments we assess the effect of reordering by introducing
algorithms O-TSB and O-CTSB which always maintain this
X exp </ q(n2,) logp(xnmzn)) (21)  optimal labelling of the clusters. Note that optimal orderi
dn=r was not maintained ifBlei and Jordan, 2045
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Figure 3: Relative average log probability per data-point for test Figure 5: Relative average log probability per data-point for test
data as a function V. data as a function df (for TSB methods) o (for FSD methods).

4 Experiments coefficient ¢ = 2. We studied the accuracy of each algorithm
as a function of the number of data cases and the truncation

Sevel of the approximation. In figures 2 and 3 we show the

results as we vary N (keeping T and K fixed at 30) while in
figures 4 and 5 we plot the results as we vary T and K (keep-

ing N fixed at 200). We plot both the absolute value of the log

probability of test data and the value relative to a Gibbs-sam

p(z) = Z/ p(@¢[n2.)a(n=, ) E[p(2¢|Ztrain) ] g (zan) pler (GS). We 50 iterations for burn-in, and run another 200

PR iterations for inference. Error bars are computed on the rel

where the expectatiaB[p( 2 zzin)] gz IS COMpUted using tive val_ueslln order to subtract variance caqsed by th(_ardlffe
the techniques introduced in section 3.3. All experimentsent splits (i.e. we measure variance on paired experiments)

were conducted using Gaussian mixtures with vague priors LFollowing [Dasgupta, 1999 a Gaussian mixture isseparated

on the parameters. _ if for each pair (i, j) of components we havgm; — m;||> >
In the first experiment we generated synthetic data from &2 D max(\"*, \"**) | whereA™** denotes the maximum eigen-

mixture of 10 Gaussians in 16 dimensions with a separatiomalue of their covariance.

In the following experiments we compared the six algorithm
discussed in the main text in terms of their log-probabdity
held out test data. The probability for a test point,is then
given by,



more efficient computationally than Gibbs sampling, with al
most no loss in accuracy.

TSB Ennﬂmm We are currently working towards models where the pa-

rameters) are marginalized out as well. We expect this to

O-TSB Hnnﬁmmﬁ have a more significant impact on test accuracy than the cur-

rent setup which only marginalizes over especially when

cs OOBOANBRNEEBEAER e fomerne, o, oo v
ocrss BEANBNEBNRRARAR 5 e S o e e ©
s DEONANEENERERAEAEN e o petomane mpoienert vie ae cu:
CFSD H nﬂnﬂmnm archical DP modelfTehet al, 2004.
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