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Abstract

Iterative proportional fitting (IPF) on junc-
tion trees is an important tool for learn-
ing in graphical models. We identify the
propagation and IPF updates on the junc-
tion tree as fixed point equations of a single
constrained entropy maximization problem.
This allows a more efficient message updating
protocol than the well known effective IPF of
Jiroušek and Přeučil (1995). When the junc-
tion tree has an intractably large maximum
clique size we propose to maximize an ap-
proximate constrained entropy based on re-
gion graphs (Yedidia et al., 2002). To maxi-
mize the new objective we propose a “loopy”
version of IPF. We show that this yields ac-
curate estimates of the weights of undirected
graphical models in a simple experiment.

1 INTRODUCTION

Junction trees are widely used as efficient representa-
tions for probability models defined on graphs. For
instance, to perform exact inference in Bayesian net-
works one typically transforms the directed graph into
a junction tree and computes the posterior probability
over the cliques of the junction tree using local propa-
gation rules. Two out of many well known schemes for
this purpose are Hugin propagation (Jensen, 1996) and
Shafer-Shenoy propagation (Shafer & Shenoy, 1990).

Junction trees are also indispensable for learning
graphical models from data through the iterative pro-

portional fitting (IPF) procedure, otherwise known as
iterative scaling (Jiroušek & Přeučil, 1995). This ef-

fective IPF procedure represents the joint probabil-
ity distribution in terms of the clique marginals of the
junction tree, and alternates between updating the pa-
rameters of the model using IPF and propagating that
change to the rest of the model using the junction tree.

For structured problems, the junction tree representa-
tion reduces the space and time complexity of the IPF
procedure drastically.

The first result we present in this paper is a further
decrease in the time complexity of the effective IPF
procedure. It is shown that both the IPF and junction
tree propagation updates are fixed point equations of
a maximum entropy problem with certain constraints.
This unifying view lifts the strict separation in the
effective IPF procedure between IPF and junction tree
propagation, and allows for more efficient schedulings
of the IPF and junction tree propagation updates.

For some graphs the maximum clique size in the cor-
responding junction tree is still intractably large, and
the problem needs to be tackled through approxima-
tions. To this extent we propose a framework closely
related to an exciting recent technique for approximate
inference variously known as loopy belief propagation,
sum-product algorithm, or generalized distributive law
(Yedidia et al., 2002). Using knowledge of the close re-
lationship between propagation and IPF updates, we
propose a procedure that performs approximate IPF
on region graphs, which are natural extensions of junc-
tion trees that may contain cycles and be designed
to have smaller clique sizes. This loopy iterative scal-

ing procedure consists of running fixed point equations
which solve for stationary points of a constrained ap-
proximate entropy similar to the region graph free en-
ergies.

In section 2 we describe the maximum entropy prob-
lem that is the focus of the paper, as well as the clas-
sical iterative scaling algorithm. We also show the re-
lationship between maximum entropy and maximum
likelihood learning of graphical models. In section 3
we describe the effective IPF procedure. Section 4
then describes the unifying view, as well as our effi-
cient schedule. Section 5 deals with approximate IPF
on region graphs, and section 6 shows in a simple ex-
periment the efficacy of the approximation. Section 7
closes with some discussion and extensions.



2 MAXIMUM ENTROPY

Let V be a set of nodes. Each node i ∈ V is associated
with a variable Xi. Denote the finite domain of values
of Xi by Xi and let xi ∈ Xi be a value of Xi. For a
set of nodes v ⊂ V let Xv = (Xi)i∈v be the variable
associated with the nodes in v, Xv =

∏
i∈v Xi be the

domain of Xv, and xv ∈ Xv be values of Xv. For sim-
plicity we write XV = X and X\v = XV \v; similarly
for x and X.

Let A be a family of subsets (clusters) of V . On each
cluster α ∈ A we are given a joint distribution p̂α(xα)
over the random variables Xα

1. The family of distri-
butions {p̂α}α∈A is consistent if there is a distribution
P (x) satisfying the marginals P (xα) = p̂α(xα) for all
α ∈ A. In this paper we assume that {p̂α} is indeed
consistent. In such a case let the maximum entropy
extension be

argmax
P

{
H(P )

∣∣∣ P (xα) = p̂α(xα)∀α ∈ A
}

(1)

where the entropy is H(P ) = −
∑

x P (x) log P (x) and
the domain of maximization is over the probability
simplex.

We use Lagrange multipliers λα(xα) to impose the
marginal constraints and γ to enforce normalization
(
∑

x P (x) = 1). The Lagrangian is

L = H(P )−
∑

α,xα

λα(xα)
(
p̂α(xα)−

∑
x\α

P (x)
)

− γ
(
1−

∑
x P (x)

)
(2)

Zeroing derivatives of L with respect to P (x) and γ,

P (x) = e
P

α
λα(xα)+γ−1 (3)

γ = 1− log
∑

x

e
P

α
λα(xα) (4)

This expresses the primal variables P (x) in terms of
the dual variables λα(xα). Finally, to solve for λα(xα),
we substitute (3,4) into (2) to obtain the dual cost

L′ = −
∑

α,xα

λα(xα)p̂α(xα) + log
∑

x

e
P

α
λα(xα) (5)

Because the original cost function H(P ) is concave, its
maximum coincides with the minimum of the dual cost
function, and the maximum entropy extension is given
in terms of the optimal λα(xα). Now the dual cost
function L′ is convex and can be solved by coordinate-
wise descent in λα(xα). This is the classical iterative

1The extension to being given feature expectations bfα =
〈fα(x)〉 is straight-forward and described in section 7.

scaling algorithm (Deming & Stephan, 1940), given by
the following updates:

λα(xα)← λα(xα) + log
p̂α(xα)

P (xα)
(6)

where P (x) is given by (3,4). In terms of the primal
variables P (x), we can understand each update of (6)
as setting the marginal P (xα) to be p̂α(xα). In fact,
(6) is equivalent to the following primal update:

P (x)← P (x)
p̂α(xα)

P (xα)
(7)

The maximum entropy framework is intimately related
to maximum likelihood learning of undirected graphi-
cal models (Della Pietra et al., 1997). Let the clusters
of the graphical model be given by A. The distribution
expressed by the graphical model has the form

P (x) =
1

Z
exp (

∑
α λα(xα)) (8)

where λα(xα) are the parameters of the model and
Z is the normalizing partition function. Let p̂(x) be
an empirical distribution obtained from a set of fully
observed training data. The average log likelihood of
the data is then

∑

x

p̂(x) log P (x) =
∑

α

p̂(xα)λα(xα)− log Z (9)

which is easily seen to be the negative of the maximum
entropy dual cost function (5). Further, the distribu-
tion (8) is equivalent to (3,4), hence the form of the
graphical model can be derived from maximum en-
tropy considerations with marginal constraints. Note
that in this case the given distributions p̂α(xα) are sim-
ply the marginal distributions p̂(xα) of the empirical
distribution, hence they are always consistent.

3 JUNCTION TREES

The straight forward implementation of iterative scal-
ing uses a simple probability table to represent P (x).
As |X| grows exponentially with |V | the computational
cost of the algorithm is high: each iterative scaling up-
date requires O(|X|) time and O(|X|) space.

An improved implementation, known as effective IPF,
uses a junction tree to represent P (x) (Jiroušek &
Přeučil, 1995). At each step of iterative scaling, our
distribution P is given by (8), which has the structure
of an undirected graphical model with nodes V and
clusters A. The corresponding graph has an edge be-
tween two nodes if both are in the same cluster α ∈ A.
After triangulating this graph, the maximal cliques
C form a junction tree with separators S separating
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Figure 1: An ordering satisfying the running intersec-
tion property to distribute the iterative scaling change
at c1 to the rest of the graph.

them. By construction, each cluster α ∈ A is con-
tained in some maximal clique c ∈ C, therefore P (x)
is decomposable with respect to the junction tree, i.e.

P (x) =

∏
c∈C P (xc)∏
s∈S P (xs)

(10)

Rather than representing P (x) as a straight proba-
bility table, we represent it as a set of smaller tables
{Pc(xc)}c∈C on the cliques2. These tables have to be
consistent, i.e. if c1, c2 are neighbouring cliques with
s separating them, then Pc1(xs) = Pc2(xs)

3.

Consider the primal iterative scaling update (7). Let
c1 ∈ C be a clique containing α. The iterative scaling
update can be performed on c1 rather than over all V :

Pc1(xc1)← Pc1(xc1)
p̂α(xα)

Pc1(xα)
(11)

This changes the distribution Pc1(xc1) and makes it
inconsistent with the other tables. To maintain consis-
tency, we propagate this change to the rest of the junc-
tion tree using a standard DistributeEvidence phase4.
This is illustrated in figure 1. Let c1, c2, . . . be an or-
dering of the cliques satisfying the running intersection

property: for each t there is a unique σ(t) < t with
st

.
= ct ∩ cσ(t) = ct ∩ (∪t′<tct′). DistributeEvidence

then amounts to

Pct
(xct

)← Pct
(xct

)
Pcσ(t)

(xst
)

Pct
(xst

)
(12)

for t = 2, 3, . . .. In essence, we are replacing the
marginal Pct

(xst
) with the new marginal Pcσ(t)

(xst
)

and the information carried in the marginals flows out-
ward from the original cluster α.

2The tables on the separators are not required as they
can be computed by marginalizing a neighbouring clique.

3Because the cliques form a tree, this local consistency
is equivalent to the global consistency we encountered for
{bpα(xα)}. This is unfortunately not true if the cliques do
not form a tree (see section 5).

4Equivalently, we can use a CollectEvidence phase be-
fore each iterative scaling update to compute the required
marginal Pc1(xc1) (Bach & Jordan, 2002).

When the cliques are relatively small, the junction tree
representation of P (x) is much more efficient than a
straight probability table. Let M = maxc∈C |Xc| ≪
|X|. Each iterative scaling update is followed by |S|
propagation updates. So both the time and storage
requirements are O(|S|M) per iterative scaling update.

4 UNIFYING PROPAGATION AND

SCALING

In section 3 we introduced junction trees as simply a
computational tool to improve the efficiency of the it-
erative scaling procedure. We will show in this section
that both the propagation updates (12) and the itera-
tive scaling updates (11) can be derived as fixed point
equations of a constrained maximization problem. A
consequence of this is that any intermixed schedule
of iterative scaling and junction tree propagation up-
dates will converge to the maximum entropy solution.
This allows us more flexibility in designing efficient
schedules of the updates. In particular, we propose a
particular scheduling which requires only 2|S| propa-
gation updates to perform all |A| iterative scaling up-
dates once. This is more efficient than the algorithm
in section 3.

4.1 CONSTRAINED MAXIMIZATION

Consider the following constrained maximization
problem:

argmax
{Pc,Ps}

{∑

c

H(Pc)−
∑

s

H(Ps)
∣∣∣ Pc(xα) = p̂α(xα),

Pc(xs) = Ps(xs)∀α, s, c with α, s ⊂ c
}

(13)

where the domains of Pc and Ps are probability sim-
plexes. When the constraints are satisfied, the distri-
butions on the cliques and separators are consistent
hence they can be combined into a single distribution
P (x) using (10). Then the cost function is

∑

c

H(Pc)−
∑

s

H(Ps) = H(P ) (14)

This means that (13) is a specific case of the original
maximum entropy problem (1) where P is assumed
decomposable with respect to the junction tree. But
section 3 shows that the maximum entropy extension is
itself decomposable with respect to the same junction
tree. Hence the marginal distributions of the maxi-
mum entropy extension form a solution to (13) and
the two problems are actually equivalent.

Again we will use Lagrange multipliers to solve (13).
Let λcs(xs) impose the marginal consistencies and let
γc, γs make sure Pc and Ps are normalized. We identify
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Figure 2: (A) Shafer-Shenoy propagation updates. (B) Computing clique distributions from messages. (C)
Computing separator distributions from messages.

each α ∈ A with a clique cα ∈ C and let λα(xα) impose
the given constraint that Pcα

(xα) = p̂α(xα). Let Ac =
{α ∈ A|cα = c}. The Lagrangian is then

L=
∑

c

H(Pc)−
∑

s

H(Ps)−
∑

v∈S∪C

γv

(∑
xv

Pv(xv)− 1
)

−
∑

c,s,xs

λcs(xs)
(
Ps(xs)−

∑
xc\s

Pc(xc)
)

−
∑

α,xα

λα(xα)
(
p̂α(xα)−

∑
xcα\α

Pcα
(xcα

)
)

(15)

Solving the Lagrangian as before, we find that the
marginal distributions are

Pc(xc) ∝ e
P

s
λcs(xs)+

P
α∈Ac

λα(xα) (16)

Ps(xs) ∝ e
P

c
λcs(xs) (17)

while λα and λcs are updated with the fixed point
equations

λα(xα)← λα(xα) + log
p̂α(xα)

Pcα
(xα)

(18)

eλc′s(xs) ←∝
∑

xc\s

e
P

s′ 6=s
λcs′ (xs′)+

P
α

λcα(xα) (19)

where c′ and c are the two cliques separated by s, and
s′ are other separators neighbouring c. We see that
iterative scaling updates (6) are fixed point equations
(18) to solve the Lagrangian. Also identifying mes-
sages and potentials as

Mcs(xs)
.
= eλcs(xs) φc(xc)

.
= e

P
α

λcα(xα) (20)

(19) is easily shown to be

Mc′s(xs)←∝
∑

xc\s

φc(xc)
∏

s′ 6=s

Mcs′(xs′ ) (21)

which can be identified as a Shafer-Shenoy propagation
update for junction trees (Shafer & Shenoy, 1990). The
marginal distributions are then given by

Pc(xc) ∝ φc(xc)
∏

s

Mcs(xs) (22)

Ps(xs) ∝
∏

c

Mcs(xs) (23)

The Shafer-Shenoy updates are depicted in figure 2.

Sometimes, it is more intuitive and effective to perform
iterative scaling using the primal updates of (7) rather
than the dual updates of (6). Similarly, sometimes
propagation updates which deal directly with clique
marginals are more desirable. One of these is Hugin
propagation, given by

Pc′(xc′)← Pc′(xc′)
Pc(xs)

Ps(xs)
Ps(xs)← Pc(xs) (24)

which can be shown to be equivalent to Shafer-Shenoy.

4.2 EFFICIENT SCHEDULING

The previous subsection shows that both iterative scal-
ing and Shafer-Shenoy propagation updates are fixed
point equations to solve the maximum entropy prob-
lem (13). Because the cost function of (13) is con-
cave in the space where the constraints are satisfied,
the fixed point equations are guaranteed to converge
to the global optimum. However this does not imply
anything about the efficiency of various schedules. We
now propose a particular class of schedules which will
be efficient in the sense to be defined below.

We can understand the iterative scaling update (18) as
changing the Lagrange multiplier λcα(xα), given the
current estimate Pc(xc) of the true marginal distribu-
tion P (xc), so as to satisfy the constraint P (xα) =
p̂α(xα). On the other hand, the propagation updates
(19) or (21) compute the required marginal distribu-
tions P (xc) and store them in Pc(xc) from the current
Lagrange multipliers. If the propagation updates are
run until convergence after every iterative scaling up-
date, then the given Pc(xc) will be the true P (xc).
This is the schedule of the effective IPF procedure.
However it is clear that this schedule is inefficient since
it calculates all the marginal distributions exactly even
though only one is needed for the next iterative scal-
ing update. On the other hand, if the propagation
updates have not converged before an iterative scaling
update is performed, then the calculated marginal dis-
tribution Pc(xc) might not be exact. As a result the
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Figure 3: The dashed lines are the messages which are
still correct, while the solid line denotes the message
that is updated to become correct.

iterative scaling update might not be as effective.

In view of the above issues, we shall show that our
proposed schedule, unified propagation and scaling for
junction trees (UPS-JT), is efficient in that it satis-
fies the following properties: (1) whenever an iterative
scaling update is performed, the current estimate of
the required marginal Pc(xc) is exact; (2) between any
two iterative scaling updates, only at most one prop-
agation update is performed to ensure Pc(xc) is exact
for the second iterative scaling update.

Unified Propagation and Scaling for Junction Trees

1. Initialize the junction tree so that each Pc and Ps

is uniform.
2. Initialize messages or Lagrange multipliers to uni-

form as well.
3. Initialize c1 to some clique in C.
4. For t = 1, 2, . . . until convergence criterion is met:
5. Perform iterative scaling updates for those clus-

ters α ∈ Act
identified with ct.

6. Choose a clique ct+1 neighbouring ct.
7. Perform the propagation update from ct to ct+1.

Note that UPS-JT does not prescribe the ordering in
which we visit the cliques except for the implicit re-
quirement that all cliques are visited enough times.
One possible ordering is to visit the cliques in a depth
first search manner on the junction tree. This guar-
antees that every Lagrange multiplier is updated once
for a total of 2|S| propagation updates. This is much
more efficient than the ordering in the effective IPF
procedure (Jiroušek & Přeučil, 1995), which takes |S|
propagation updates for every iterative scaling update.

Compared with the effective IPF procedure, we see
that UPS-JT performs multiple iterative scaling up-
dates on each clique, and, more importantly, substi-
tuted a full DistributeEvidence phase with a single
propagation update. Hence it satisfies condition 2
above. We now prove by induction that condition 1 is
satisfied when using Shafer-Shenoy propagation. The
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Figure 4: (A) An example of a graphical model. (B)
A junction graph for the model. (C) A region graph
constructed using the cluster variational method.

inductive hypothesis is that at each iteration all in-
coming messages to ct are correct. At time t = 1 this
is trivially true. In figure 3 we depict one step of the
UPS-JT algorithm for time t ≥ 1. we have updated
the Lagrange multipliers λα(xα) in clique ct. Next, as
required by step 7 of the UPS-JT algorithm, we choose
a neighboring clique in the tree, ct+1, to perform our
next scaling update. As required by condition 1, we
need the exact marginal P (xct+1). To compute that we
collect evidence to the clique ct+1, by propagating in-
ward from the leaves. But note that all messages (e.g.
dashed arrows in figure 3), except message Mct+1s(xs)
(solid arrow), are unchanged by the scaling update at
node ct. Hence, we only recompute the latter and use
(16) to get the correct marginal at clique ct+1.

5 LOOPY ITERATIVE SCALING

UPS-JT is an efficient algorithm for entropy maximiza-
tion if the cliques of the junction tree are small. How-
ever, its complexity scales exponentially with the size
of the maximal clique. To combat this, we propose an
approximate algorithm named loopy iterative scaling

based on region graphs.

5.1 REGION GRAPHS

After Yedidia et al. (2002) we define a region graph
as an acyclic directed graph where the vertices are la-
belled with subsets of nodes, or regions. The top layer
consists of a family of large regions which cover the
original graph, such that each cluster α ∈ A is con-
tained in at least one of them. A directed edge can
only exist between a parent and a child if the nodes
associated with the child are a subset of the nodes as-
sociated with its parent. With each vertex (or region)
we will also associate a “counting number” cr,

cr = 1−
∑

r′∈Super(r)

cr′ (25)

where Super(r) consists of all regions which strictly
contain r, and cr = 1 for the top layer regions. A valid



region graph should fulfill the following two conditions:
(1) for each node, the subgraph induced by the vertices
containing that node must be connected; (2) the sum
of the counting numbers of each such subgraph must
add up to one.

With each region graph we can associate an approxi-
mate entropy

H({Pr}) =
∑

r

cr H(Pr) ≈ H(P ). (26)

and generalized belief propagation algorithms to max-
imize it (see Yedidia et al. (2002) for details). The
collection {Pr} are now approximate marginals satis-
fying local consistency constraints5: Pr(xs) = Ps(xs)
for every child s of region r. The region-based entropy
maximization problem is then given by

argmax
{Pr}

{
H({Pr})

∣∣∣Pr(xα) = p̂α(xα),

Pr(xs) = Ps(xs)∀α, s, r with α, s ⊂ r
}

(27)

The solutions to (27) are approximations to the
marginals of the true maximum entropy distribution.
Further, the optimal Lagrange multipliers are approx-
imate solutions to the maximum likelihood parame-
ters, if we are doing maximum likelihood training of a
graphical model.

Solving the above region-based entropy maximiza-
tion problem, it is not hard to show that the fixed
point equations are given again by the scaling updates
(18) for the Lagrange multipliers, and the fixed point
equations of generalized belief propagation. Here the
Lagrange multipliers associated with the constraints
Prα

(xα) = p̂α(xα) are λrα
(xα), and the potentials for

the top layer regions r are φr(xr)
.
= e

P
α∈Ar

λrα(xα),
where rα is some top layer region containing α, and
Ar = {α|rα = r}. These loopy iterative scaling up-
dates can be performed using any convenient schedul-
ing, but convergence is unfortunately not guaranteed.

Although region graphs conveniently translate into
loopy iterative scaling algorithms, it has not been
made clear how to construct a valid region graph given
a family of large regions. There are two distinct meth-
ods described in the literature, one based on junction
graphs, the other called the cluster variation method.

5.2 JUNCTION GRAPH METHOD

A junction graph is a two layer region graph with
large regions called cliques and their children, called

5Note that since the region graph can contain cycles
there might not be a distribution which is consistent with
all {Pr} , i.e. they may not be globally consistent.

separators. Since the region graph has such a simple
structure, we typically ignore the directionality of the
edges. For each node we require that the subgraph
constructed from all cliques and separators contain-
ing that node should form an undirected tree. Note
that this condition is stronger than the region graph
condition, and automatically ensures that all counting
numbers in that subgraph sum to one. This property
is the equivalent of the running intersection property
for junction trees and guarantees that junction graphs
“look like” junction trees locally. An example of a
junction graph is shown in figure 4.

Given a cluster set A, there is a variety of junction
graphs that are consistent with A. On one end of the
spectrum, there are junction trees, on which we can
perform exact entropy maximization. On the other
end, we have junction graphs with small cliques that
are poor approximations but admit efficient algorithms
to maximize the approximate entropy. In fact, Aji and
McEliece (2001) show that for any collection of subsets
of nodes (in particular, for A) it is easy to construct
a junction graph whose cliques consist precisely of the
subsets in the collection: first define the separators
as the intersections of pairs of cliques, then for every
node construct the subgraph induced by the cliques
and separators containing that node and delete nodes
from separators as well as remove separators which are
empty until the subgraph is a tree.

Junction graphs are particularly convenient because
the propagation updates reduce precisely to the junc-
tion tree updates (19). Moreover, the approximate
entropy (26) reduces to the following Bethe entropy,

H({Pc, Ps}) =
∑

c

H(Pc)−
∑

s

H(Ps) (28)

5.3 CLUSTER VARIATION METHOD

An alternative road to constructing valid region graphs
is provided by the cluster variation method. We start
again with a family of large regions such that each
cluster is contained in at least one of them. Next,
the children of the large regions are defined as their
intersections6, and the children of those are given by
the intersections of the intersections. This process
is repeated until no further (non-trivial) region can
be added. The resultant layered region graph, with
counting numbers assigned to regions using (25) is
automatically valid, and the corresponding approxi-
mate entropy is known as the Kikuchi entropy. The
corresponding loopy iterative scaling algorithm is now
based on the generalized belief propagation algorithms
as described in Yedidia et al. (2002).

6For each layer we do not include regions which are
subsets of other regions in that layer.
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Figure 5: (A) Some examples of the images of ‘8’s. (B) Average log likelihoods over training data as a function
of junction graph clique size. Each curve is averaged over all models with a certain maximal clique size of
the corresponding junction tree. For models of treewidth 9, we also plotted the standard deviation of the log
likelihoods. (C) Average L1 distances of the various models.

6 EXPERIMENT

We explored the behaviour of loopy iterative scaling
on junction graphs on a simple task of learning the
weights of pairwise Markov networks. The training
data consists of 8×8 binary images of hand-written
‘8’s preprocessed from the CEDAR dataset (see figure
5A).

Thirty models are generated by randomly sampling 5%
of the edges connecting nodes a distance of at most 6
apart on the maximum likelihood tree. Junction trees
are constructed by triangulating the resulting graphs
using node elimination, where at each stage the node
with the least neighbors is chosen. The maximal clique
sizes of these junction trees vary between 7 and 11. For
each model, starting with the edges as the cliques of
the junction graph, a range of junction graphs is con-
structed by growing its cliques one node at a time, and
making sure that the resulting cliques are contained
within the cliques of the corresponding junction tree.
At each stage a node is added to a clique such that the
increase in the total mutual information7 is largest,
and removing cliques which are subsumed by other
cliques. On all the junction graphs so constructed
we used loopy iterative scaling to learn the parame-
ters, where both scaling and propagation updates were
damped in the log-domain. Propagation updates were
iterated until convergence before the scaling updates
were performed once.

After loopy iterative scaling has converged, we assessed
the accuracy of the results using two measures. In fig-
ure 5B we plot the log likelihoods of the data under
the learned models, while in figure 5C we show the L1

7Total mutual information is defined as the sum of the
mutual informations between all pairs of nodes within the
same cliques.

distances between the empirical marginal distributions
p̂α(xα) and those of the learned models P (xα), aver-
aged over the edges α. The approximation is reason-
ably accurate, and its accuracy improves as we increase
the maximum clique size of the junction graph.

7 DISCUSSION

In this paper we have shown that propagation and it-
erative scaling on junction trees can be unified as fixed
point equations for solving a certain constrained maxi-
mum entropy problem. From this insight we have pro-
posed a more efficient scheduling for iterative scaling
on junction trees. For graphs with a maximal clique
size which is prohibitively large, we have proposed
a loopy iterative scaling algorithm, based on region
graphs.

There are a number of important extensions of the
methods discussed in this paper. Firstly, rather than
finding a distribution with maximum entropy we can
find a distribution with minimum relative entropy (KL
divergence) to a given distribution P0. The relative
entropy from P to P0 is defined to be

D(P |P0) =
∑

x

P (x) log
P (x)

P0(x)
(29)

When P0 is the uniform distribution, minimizing
D(P |P0) is equivalent to maximizing the entropy of P .
This extension is useful when we would like to learn
undirected graphical models where certain potentials
are fixed. These potentials are cast into P0 in the
minimum relative entropy framework. Our results on
unifying junction tree propagation and iterative scal-
ing carry through if P0 is decomposable with respect
to the junction tree as well.



Secondly, the results are straightforwardly extended
to constraints on feature expectations, rather than on
marginals. Here each cluster α ∈ A is associated with a
vector-valued feature fα : Xα → R

dα , and P (x) is con-

strained to have
∑

x P (x)fα(xα) = f̂α ∈ R
dα . When

dualized, the maximum entropy problem becomes a
maximum likelihood problem for an undirected graph-
ical model where fα are the features. The Lagrange
multipliers λα ∈ R

dα imposing the expectation con-
straints become the weights corresponding to the fea-
tures in the undirected graphical model

P (x) =
1

Z
e

P
α

λT

α
fα(xα) (30)

The required expectations f̂α are obtained by averag-
ing over a training set. The algorithms discussed in
this paper therefore open the way for more efficient
training of maximum entropy models (Della Pietra
et al., 1997), conditional maximum entropy models
(Lafferty et al., 2001) and thin junction trees (Bach
& Jordan, 2002).

There is an interesting link between minimum diver-
gence problems and inference. If the marginal con-
straints put all the probability mass on a single state,
i.e. p̂i(xi) = δxi,bxi

for some x̂i, then the two problems
become equivalent (Teh & Welling, 2002). This im-
plies that the generalized distributive law of Aji and
McEliece (2001) and the generalized belief propagation
algorithms are in fact special cases of loopy iterative
scaling on junction graphs and region graphs respec-
tively. We are currently studying the possibility of
extending the convergent version of UPS described in
(Teh & Welling, 2002) to the more general approxima-
tions discussed in this paper.

In this paper we have proposed novel algorithms for
learning fully observed undirected graphical models.
When the models are partially observed, a standard
method to train them is the EM algorithm. When
the posterior distribution is intractable, a number of
researchers have looked at approximating the E steps
with loopy belief propagation (Frey & Kannan, 2001).
Because there is no global cost function which both
the E and M steps are minimizing, we cannot make
any statements on the accuracy or convergence proper-
ties of such algorithms. An exciting research direction
is to extend our framework to the partially observed
case, where we now have an approximate EM algo-
rithm where both E and M steps are derived as fixed
point equations minimizing a region-based free energy.
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