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1 Introduction

Consider a walk-through in a complex scene consisting of complex polyhe-
dral objects. As the viewpoint moves and as the viewing direction is altered,
the scene needs to be rendered over and over again. If the scene contains
hundreds of thousands to millions of polygons, the traditional depth buffer al-
gorithm, though equipped with hardware accelerations, can no longer achieve
interactive performance.

The major bottle-neck in a rendering algorithm for a highly complex scene
is the visibility computation. An obvious goal is to render as few polygons as
possible in each frame. To this end, fast visibility culling algorithms capable
of culling away a significant portion of the invisible polygons is desirable [7].
In most case, an object space bounding volume hierarchy can be used to
improve efficiency. Also, levels-of-detail techniques can be applied to reduce
the number of polygons in the scene while still maintaining satisfactory image
quality.

For most visibility culling algorithms, the number of polygons processed is
still large. The ultimate goal would be to process as few polygons as possible
in each frame, and locate these polygons as quickly as possible. To this end,
the intrinsic temporal coherence between successive frames in a walk-through
has to be exploited somehow. This is the focus of our current investigation.
Let us first motivate our study in more details.

1.1 Depth buffer vs. incremental visibility

In the depth buffer algorithm, after each recorded change of viewing pa-
rameters, depth tests are performed on every polygon in the scene. Several
observations suggest that this approach can be quite inefficient. First of all,
the percentage of visible polygons at each stage may be small, so a lot of
time is wasted in processing invisible polygons; this is especially costly when
sophisticated shading models are used in rendering. Secondly, the visibility
status of a polygon will likely remain the same after a small change to the
viewing parameters; repeated application of the depth buffer algorithm does
not exploit this temporal coherence. So many more polygons than necessary
are processed at each rendering step, which would make interactive viewing
difficult to achieve, especially for a complex scene with hundreds of thousands
to millions of polygons.



An alternate approach is to maintain the visibility information of the
scene dynamically, and take advantage of spatial and temporal coherence
between successive frames to update visibility incrementally. The visibility
information maintained may be just the set of visible polygons. As the
viewing parameters change, this set is incrementally updated in an efficient
way. Of course, there is extra time and storage cost involved. But the trade-
off appears to favor the latter approach as the scene becomes more complex,
as long as we have an efficient incremental update algorithm.

1.2 Exact visibility vs. conservative visibility

Exact visibility can be maintained, using aspect graphs, for example [3, 6].
An aspect graph partitions the 3D space into a set of regions using surfaces
of wvisual discontinuity, or visual events. When a viewpoint moves within
a region, visibility information does not change. The visibility information
stored in each region is a structural description, i.e., a set of boundary edges,
of the visible portion of each polygon in the scene. Such information changes
only when the viewpoint crosses a visual event.

To maintain visibility exactly, two kinds of visual events need to be con-
sidered. A wvertex-edge (VFE) event is formed by a vertex and an edge, as
shown in Figure 1.1(a), and a triple-edge (EFEFE) event is a ruled quadric
surface formed by three edges which intersect each other when viewed from
the view point, as shown in Figure 1.1(b).

@ (b)
FIGURE 1.1 A VE event and an EEE event.

The major drawback of aspect graph is its size. With EEE events, the
number of regions can reach ©(n?), where n is the size of the input scene.
Also, the visible portion of the scene can be of size ©(n?), e.g, consider a
scene with n vertically placed strips in front of n horizontally placed strips.



Hubscheman and Zucker [4] propose an algorithm for incremental update
of exact visibility in a scene consisting of closed, conver polyhedra. Much
time is spent in maintaining an exact structural description of the visible
portion of each polygon as the viewpoint moves. With hardware-accelerated
polygon rendering, we believe it is more efficient to simply maintain a set of
visible polygons and render all of them, especially for complex scenes.

Coorg and Teller [1] adopts the notion of conservative visibility. They
overestimate visibility by maintaining a superset of the visible polygons. Af-
ter each change of viewing parameters, the depth buffer algorithm is used to
render the set of polygons maintained. As long as all the visible polygons
are included, correctness is guaranteed.

1.3 Convex vs. non-convex occluders

One way to make conservative visibility an efficient approach is to ignore EEE
events. So only a linearized version of the aspect graph is considered, which
reduces the computational complexity significantly. Coorg and Teller [1]
achieves this by considering occlusion by single conver objects only.

DEFINITION 1 (Conservative visibility of Coorg and Teller [1])
A polygon is invisible if and only if all its vertices are occluded by a single
convex polyhedron.

In their visibility algorithm, a set of designated occluders are identified.
Only occlusions caused by these occluders are considered. They motivate
this by the observation that in many scenes, a few objects cause most occlu-
sions and checking other objects for occlusion increases the overhead without
increasing the number of polygons found to be occluded.

The major drawback of their algorithm lies in the assumption that all
occluders must be convex, plus their inability to handle occlusions by multiple
objects. In fact, they only describe the occlusion characteristics between two
convex polyhedra, that is, even the occludee is taken to be convex.

In most scenes, non-convex occluders exist. When non-convex objects
or combinations of small disjoint objects are the most significant occluders,
Coorg and Teller’s algorithm is not expected to perform much better than
depth buffering.



1.4 Conservative visibility with general occluders

In this paper, we investigate visibility with much more general occluders. An
occluder can have arbitrary shape and topology. For example, we are able
to handle occluders such as a bowl, a tea pot, or a pretzel. An occluder does
not even have to be of a connected structure. For example, in a scene of trees
with large leaves, occlusion by the set of leaves can be handled.

In other words, we are able to maintain occlusions by multiple objects.
At first it would appear that to do this, EEE events have to be included. To
avoid this, we consider the occluding objects as forming a single occluder.
We preemptively record a “potential” occlusion or emergence of an occludee
before they actually occur. This is motivated by the fact that before an
EEE event can occur the three edges involved have to overlap each other in
the image plane first. With conservative estimate of the occluder, we can
reduce the computational cost involved significantly. Note that the ability
to combine a “forest” of small, disjoint, and overlapping occluders is a key
feature of the hierarchical occlusion map algorithm [7]. We compare this
algorithm with ours in Section 7.1.

Our notion of visibility is conservative since there may be polygons, which
are completely occluded by single or multiple occluders, but still considered
visible by our algorithm. However, such cases are not expected to occur
often. Our algorithm is expected to cull away most invisible polygons. Of
course, if a polygon is truly visible, our algorithm will definitely render it.

For the scene model, we assume that all the objects are closed polyhedra
which are two-dimensional manifolds. Fach face is a triangle oriented out-
wards. All our algorithms apply to objects with arbitrary polygonal faces.
In terms of the movement of the viewpoint, we do not allow the view point
to penetrate a face of an object.

We present an incremental conservative visibility algorithm which com-
putes the set of visible polygons, taking advantage of the spatial and temporal
coherence between successive frames. In each frame, a set of visual events are
tested against the movement of the viewpoint. For each visual event crossed
by the viewpoint, relevant visibility information is updated. The spatial and
temporal coherence is reflected by the fact that the “wavefront” of visibility
(or invisibility) moves continuously on an occludee. So we can make use of
not only the previously computed results, but also the adjacency information
stored in the representation of the input objects.



2 Overview

In this section, we give an overview of our algorithm for incremental conser-
vative visibility and the relevant concepts.

First, let us fix some terminology. An occluder A is not necessarily a
single object; it can be a set of objects collectively playing the role of an
occluder. However, there is no need to do the same for occludees, so an
occludee is just a single object, or a face of an object.

For clarity, let us assume that an occluder and an occludee must be
separable by a plane. That is, there is a plane P such that the occluder and
the occludee lie entirely on opposite sides of P. This assumption makes the
occluder-occludee relationship unambiguous. In Section 6.1, we show how
this assumption can be enforced by selecting the occluders appropriately.

In our algorithm, all the relevant visibility information is dependent on
the position of the viewpoint. The viewpoint is not associated with a specific
viewing direction. So a projection is really onto a virtual image sphere,
instead of an image plane. But to appeal to our common intuition, we still
refer to the image plane in our discussion.

We denote the plane formed by a vertex V' and an edge e by (V,e). Two
edges or faces in 3D are said to overlap with respect to a viewpoint @), if their
projection with respect to () intersect in their respective interior. A vertex
from one object is said to be contained in a face from another object with
respect to a viewpoint @), if the projection of the vertex is contained in the
projection of the face with respect to ). Finally, we denote the projection
of an object A onto the image plane by P(A).

2.1 Visual events

DEFINITION 2 (Visual event)
A wvisual event in 3D is a surface which, when crossed by the view point,
causes the visible portion of some polygon to change topologically.

Our algorithm ultimately involves the detection and response to visual
events. Qut of efficiency concerns, we handle only those visual events that
are planar. A visual event may or may not affect the visibility status, i.e.,
visible or invisible, of a polygon. We distinguish these two types of visual
events by the following definition.



DEFINITION 3 (Critical visual event)
A visual event is said to be critical if, when it is crossed by the viewpoint, the
visibility status of some polygon changes.

In Figure 2.1(a), the shaded occluder does not occlude the triangle com-
pletely. So the triangle is visible. As the viewpoint moves across the plane
(V,e) from above, the triangle will become invisible, as shown in Figure 2.1(b).
The reverse process occurs if the viewpoint crosses plane (V, e) from below.
The visual event (V) e) is critical.
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FIGURE 2.1 A critical visual event.

While in Figures 2.2(c) and (d), the visual event (V,e) is not critical,
since 1t does not change the visibility status of the triangle. But the visible
portion of the triangle changes topologically.
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FIGURE 2.2 A non-critical visual event.

2.2 Silhouettes and outlines

Let A be an occluder and B an occludee. It is quite obvious that visibility
changes on B can occur only near the outlines of the occluder A, as seen
from the viewpoint. So it is necessary to maintain the set of edges of A on



its outline. For an edge to be on the outline, it has to be a silhouette edge.

DEFINITION 4 (Silhouette edge)

An edge e is said to be a silhouette edge with respect to a viewpoint () if and
only if one face incident to e is facing (), and the other face incident to e is
facing away from Q). The silhouette of an object is the set of silhouelte edges
on that object.

A face is facing the viewpoint () if and only if ) is above the plane contain-
ing that face, where the “up” direction is the normal direction. Conversely,
a face 1s facing away from @) if and only if ) is below the plane containing
that face, as shown in Figure 2.3. For simplicity, we call the face facing )
forward-facing, and the face facing away from @) back-facing.

oQ

FIGURE 2.3 A silhouette edge e with respect to viewpoint ().

Clearly, not all silhouette edges of A appear on its outline if A is non-
convex; this is explained in more details in Section 3.1. But in order to
maintain A’s outline, we need to maintain its silhouette, since a silhouette
edge may emerge on the outline as the viewpoint moves. The silhouette of
the occludee B also needs to be maintained, since it contributes to various
visual events. To see this, we note that any emergence or disappearance
of B behind A must start at B’s silhouette. Section 3 is devoted to the
maintenance of silhouettes.

In Section 4.1, we define the actual outline of an occluder with respect
to a viewpoint. It turns out that it is very expensive computationally to
maintain the set of edges on the actual outline, since EEE events would have
to be considered, as we shall explain in Section 4.2. So we propose the notion
of conservative outline, which is described briefly in the next section, and the
maintenance of silhouette overlappings in Section 4.3, which is motivated by
the fact that before an EEE event can occur, the three edges involved have
to overlap in the image plane.
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2.3 Conservative outline

An occludee B, where B can be an object or a face of an object, is totally
occluded by an occluder A if, for all points P on B, A lies between the view
point () and P. Under the assumption that the occluder A and the occludee
B are separated by a plane, this is equivalent to

e the projection P(B) of B is contained in P(A); and

e there exists some point P on B such that A lies between the view point

@ and P, i.e. B is behind A.

This gives us a criterion to determine the visibility of any occludee with
respect to an occluder. If in the above criterion we replace P(A) by an
area contained in P(A), then we have a conservative visibility criterion. In
particular, we may use a conservative outline of A whose enclosed area is
contained in P(A). Conversely, we can use an area which contains P(B) as
an estimate of the occludee B to compute conservative visibility; for example,
a bounding volume of B may be used.

The conservative outline is obtained from the actual outline by adding
some necessary silhouette edges and deleting some actual outline edges. A
precise definition is given in Section 4.4.

2.4 Relevant planes

As the viewpoint moves, we want to make sure that no “emerging” polygon
(from invisible to partially visible) is missed. Moreover, we should detect
most polygons which disappear (from partially visible to invisible).

To keep track of these visibility changes, we maintain a set of relevant
planes, a term adopted from Coorg and Teller [1]. When the view point
crosses one of these relevant planes, either there is a visibility change or the
set of relevant planes needs to be updated, or both. For example, in both
Figure 2.1 and 2.2, the plane (V, €) is relevant.

There are various types of relevant planes. In Section 5.2, we introduce
them in details and classify them according to how they are formed and their
functionality. In Section 5.3, we compare our definition of relevant planes to
that of Coorg and Teller [1], and point out an error in their definition.

11



2.5 Visibility maintenance
2.5.1 The “belt” of partially visible triangles

Let us focus on one occluder A and one occludee B. Each cyecle on the outline
of A corresponds to a “belt” of triangles on B, as shown in Figure 2.4. To see
why there must be a cycle of edges on the outline, refer to Section 4.1. This
belt of triangles act as the “wavefront” of visibility (or invisibility) of the
occludee. Since visibility changes occur only near the outline of the occluder,
maintaining them can be accomplished by simply keeping track of changes
to this belt of triangles.

FIGURE 2.4 There are two belts on the occludee. The boundary of each belt
is traced out by arrowed lines. The belt containing vertex V' corresponds to
the outside outline. The “inner” belt, corresponding to the inside outline, is
just a triangle W XY . Note that the inner outline does not overlap any edge
of WXY.

If a triangle f of B, with edges di,d,,ds and vertices Uy, Uy, Us, is on
the belt, then either an outline vertex V' of A is contained in f, as shown
in Figure 2.5(a), or an outline edge e of A overlaps two edges of f, as in
Figure 2.5(b). In the former case, if f “leaves” the belt, then one of the
planes (V,dy), (V,dz), or (V,ds) must be crossed by the viewpoint. In the
latter case, the plane (Ui, e) must be crossed. Note that all these afore-
mentioned planes will be relevant planes, which we shall define in Section 5.

12



The same holds for a face “entering” the belt, in which case other types of
relevant planes will be involved.

d
@ (0)
FIGURE 2.5 A face leaving the belt.

2.5.2 Updating visibility status of a face

Let f be a face from an occludee B and let A be the occluder. The visibility
status of f with respect to A has something to do the number of outline
primitives (edges or vertices) overlapping f.

Denote the set of outline edges from A by OE(A) and the set of outline
vertices by OV(A). If no edge from O&(A) overlaps an edge of f, and no ver-
tex from OV(A) is contained in f, then f is either completely occluded by A
or it is completely visible with respect to A. The “in-between” configuration
is a partial occlusion.

DEFINITION 5 With respect to a viewpoint (), an occluder A, and a face f
from an occludee B, denote the number of edges in OE(A) overlapping some
edge of [ by Ng(f,A), and the number of vertices from OV(A) contained in
f oy Nv(f,A). The sum of Ng(f, A) and Nv(f, A) is denoted by N(f, A).

The number N (f, A) records the number of outline primitives from A
overlapping f. When a visual event occurs, N'(f, A) is updated accordingly.
If N(f, A)is positive, we consider f to be visible with respect to the occluder
A; if it is zero, then its visibility status can be determined by the nature of
the latest visual event. A face is visible if it is visible with respect to all the
occluders; otherwise, it is invisible, and is not rendered.

Let us consider an example. Refer to Figures 2.6. In all figures, the visual
event is identified by V and e. In (a), we have N (f1, A) =1 and N (fy, A) =
3, and both faces are visible. In (b), N(fi, A) = 2 and N (f2, A) = 3, and no

13



visibility changes. In (c), N(f1,A) = 3 and N(fz, A) = 0, and f, becomes
invisible; f; is still visible. In (d), N(fi,A) = 4 and N(f;, A) = 1, and
f2 becomes visible again. In (e), N(fi,A) = 4 and N(fy,A) = 1, and no
visibility changes.

fy

@ (b) ©

@ ©
FIGURE 2.6 Example of visibility update.

There are cases where Nz is 0 and what matters is Ny, as shown in
Figure 2.7, where the occludee triangle reveals itself through a hole in the
occluder.

FIGURE 2.7 Ng(f,A) =0 and Ny (f, A) =4.



2.6 Overview of algorithm

Our algorithm maintains a superset of the visible polygons as the viewpoint
moves. A set of occluders is selected according to certain criteria. The
selection criteria may vary with the movement of the view point, as we will
explain in Section 6.1.

In the initialization stage, we make preparations for our incremental up-
date algorithm. More specifically, we do the following.

1. Select a set of occluders;

2. Initialize the set S of silhouette edges of all the objects, the set O of
outline edges of the occluders, and the set R of relevant planes;

3. Cull away all the back-facing polygons with respect to the initial view-
point;

4. Initialize the set P of visible polygons and render them using depth
buffer algorithm.

For each recorded movement of the viewpoint, we

1. Detect all the relevant planes crossed by the movement;
2. Update &, R, O, and P;
3. Use depth buffer algorithm to render all polygons in P;

4. Reselect the set of occluders if necessary.

15



3 Dynamic maintenance of silhouettes

3.1 Silhouettes of convex and non-convex objects

We observe that the set of silhouette edges of an object form a graph, possibly
disconnected, in which every vertex has even degree; the graph is Eulerian. So
the silhouette of any close polyhedral object is composed of a set of silhouette
cycles.

For a convex object, the notion of silhouette agrees with our intuition of
an outline of the object. When projected onto the image plane, the silhouette
form a convex polygon.

For non-convex objects however, it is not so simple. Even if the scene
contains just one object, a silhouette edge may not even be visible. In fact,
an edge of an object can be a silhouette edge, but it never appears on the
outline of the object no matter where the object is viewed from. For such an
edge, the dihedral angle made by the two adjacent faces is obtuse (> 7/2).
We call such an edge concave; all other edges are convex.

When projected onto the image plane, the silhouette of a non-convex ob-
ject may be self-intersecting. Even a silhouette cycle may be self-intersecting
in the image plane; for example, consider the silhouette of a donut.

3.2 Difficulty in silhouette maintenance

Let us call a face incident to a silhouette edge a silhouette face, and the plane
containing such a face a silhouette plane. Unless absolutely needed, we do
not distinguish between a face and the plane containing the face. If all the
objects are convex, we observe the following.

o The set of silhouette edges need to be updated only when the view
point crosses a current silhouette plane.

o [f the movement of the viewpoint is sufficiently small, only edges adja-
cent to a current silhouette edge can become new silhouette edges.

These two observations together make efficient incremental update of the
set of silhouette edges for convex objects possible. The first observation
ensures that the number of planes we have to test as the viewpoint moves is
small, since the complexity of the silhouette of an object is in general much

16



less than that of the object itself [5]. The second observation ensures that
the number of candidates for new silhouette edges is small. When only one
face is crossed by the viewpoint, we only need to test two edges, since all
faces are triangles.

When non-convex objects are included however, we can no longer make
the same claim. The following example shows that when the viewpoint moves
in small increments, that is, one face is crossed at a time, an edge may become
a silhouette edge “abruptly”, meaning that such an edge is not adjacent to
any current silhouette edge, and no current silhouette plane is crossed.

In Figure 3.1(a), we have part of an object; it is like a small tetrahedron
placed on a horizontal square. The viewpoint is above the face ABC. All
the triangles in Figure 3.1(a) are visible. The view point is to move in the
direction indicated by the solid arrow. Figure 3.1(b) shows a top view of the
situation.

€Y (b)

(© (d)
FIGURE 3.1 Abrupt appearance of silhouette edges.

When the viewpoint crosses plane ABC', face ABC becomes invisible
(back-facing). Edges AC, AB, and BC all become silhouette edges all of
a sudden. Figure 3.1(c) shows what the object looks like from this new

17



viewpoint. Now when the viewpoint crosses plane ABD, face ABD becomes
invisible. Edges AD and B D become silhouette edges, while edge AB ceases
to be a silhouette edge, as shown in Figure 3.1(d).

In order to maintain silhouettes in a scene with general occluders, we
have to test more planes than just the current silhouette planes. This leads
to the notion of saddle faces.

3.3 Saddle faces and silhouette maintenance

DEFINITION 6 (Saddle face)
A face is called a saddle face if one of its edges is convex, and one of its edges
is concave. The plane containing a saddle face is called a saddle plane.

Clearly, a convex object does not have any saddle face. On the other
hand, the number of saddle faces on an object can be proportional to the
total number of faces. For the latter point, consider again a donut-shaped
object; there should be a lot of saddle faces along the inside ring of the donut.

It turns out that to keep track of silhouette changes, the set of silhouette
planes plus the set of saddle planes are sufficient, as the following theorem
shows.

THEOREM 1 Starting from the initial viewing position (), move the viewpoint
continuously. The first face in the scene (or plane containing a face in the
scene) crossed by the viewpoint is either a saddle face or a silhouetle face
with respect to ().

Proof: See Appendix 8.1. O

As soon as a face crossed by the viewpoint is detected, updating the
silhouettes is easy, as shown by the next two propositions.

PROPOSITION 1 Any new silhouette edge must be incident to a face just
crossed by the viewpoint; the same holds for any edge which just ceases to be
a silhouette edge.

Proof: Let e be a new silhouette edge with incident faces f; and fs.
Without loss of generality, let f; be forward-facing and f; back-facing. Since
e was not a silhouette edge, either both f; and f; were forward-facing or

18



both were back-facing. Therefore, either f; or f; has just been crossed by
the viewpoint. The case where e ceases to be a silhouette edge is similar. [

PROPOSITION 2 [f e is a silhouette edge and one face incident to e is just
crossed by the viewpoint, then e is no longer a silhouette edge. Similarly, if
e 1s not a silhouette edge and one face incident to e is just crossed by the
viewpoint, then e will become a silhouette edge.

Proof: Similar to the previous proof. O

Now given a short path traced out by the viewpoint, we can update the
set S of silhouette edges as follows.

1. Detect all the faces crossed by the viewpoint and sort them by crossing
time.

2. For each face f crossed in order
For each edge e of f
Ifee S, then § =8 —{e};
Ife¢ S, then S = S U {e}.

19



4 Dynamic maintenance of outlines

4.1 Actual outlines

With respect to a view point @), the actual outline of an occluder A is the
boundary of the projection P(A) of A onto the image plane. Since A is
polyhedral its actual outline is a number of non-intersecting polygons, as
shown in Figure 4.1. Each edge on the actual outline is a segment of the
projection of some silhouette edge of A. Such a silhouette edge is called an
actual outline edge. Note that sometimes not the whole actual outline edge
is on the actual outline, as depicted in Figure 4.1.

FIGURE 4.1 Projection of actual outline edges. The thick edges form the
actual outline. The thin edges are segments on the actual outline edges that
are not on the actual outline.

An actual outline edge has an orientation on the image plane which tells
on which side of the edge the object lies. We call the “object side” the inside
of the edge, while the other side the outside. Clearly, we can organize the
actual outline edges into a number of cycles each of which trace out one
polygon of the actual outline. Note that an actual outline edge may appear
multiple times on such a cycle.

In a general scene in which the only restriction is that the objects are com-
posed of two-dimensional manifolds and the manifolds do not inter-penetrate,
the actual outline does not capture all the subtleties of occlusion. For ex-
ample, in Figure 4.2, the partial occlusion of the “wedge” K by L cannot be
detected, since L’s silhouette (depicted by a thick edge) does not appear on
the actual outline of the object; at the same time, the occlusion of an object
G by L where (G lies between [ and K cannot be detected.

20



K eQ

FIGURE 4.2 Occlusion missed by using actual outlines only.

The inability to detect these occlusions is really not a big problem. The
self-occlusion of an object can simply be ignored, meaning that we simply
render all the forward-facing polygons on an occluder. With the assumption
that any occluder and any occludee are separable by a plane, there cannot
be an object GG lying between wedges K and L, as in Figure 4.2. Moreover,
by virtue of conservative visibility, an undetected occlusion does not affect
the correctness of rendering.

4.2 Difficulty in maintenance of actual outlines

Maintaining the set of outline edges precisely proves to be difficult, since it
requires the consideration of EEE events, as illustrated in Figure 4.3: When
e is below the crossing V, as shown in (a), it is not an actual outline edge.
As the viewpoint moves and e crosses V', it becomes an actual outline edge,
as shown in (b). The event at which e crosses V is an EEE event, and the
set of viewpoints at which such an event occurs form a quadric surface. The
detection of such events is too costly computationally.

@ (b)

FIGURE 4.3 Precise maintenance of outlines invovles EEE events.

A similar problem might arise at the “inside” outline, where a hole might
appear or disappear in the projection of the occluder onto the image plane,
and an EEE event is involved again. This is depicted in figure 4.4.
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FIGURE 4.4 A hole may appear or disppear after an KFEFE event.

As seen from these two examples, an EEE event occurs only when there
are three edges overlapping each other. This observation suggests that we
should keep track of triples of overlapping silhouette edges in our algorithm.
However, if we are to maintain only a conservative estimate of the actual
outline, then not all these triples have to be considered.

4.3 Silhouette overlappings

Recall that a conservative estimate of an actual outline encloses an area
contained in the area enclosed by the actual outline, on the image plane. Let
us refer to Figure 4.5. Consider the “outline” O traced out by edges ¢ and d.
It is the actual outline if e is below V| as shown in (a), while in (b), where
e is above V, it is a conservative outline. In either case, no triangle will be
found invisible if it is actually visible. However, in (b), occlusions at the
deeper-shaded region are not detected. This problem is fixed whenever the
edges e “splits” into two edges after a silhouette face incident to e is crossed
by the viewpoint and an outline vertex U emerges, as shown in (c¢). Note
that we are able to detect the emergence of U, since the corresponding visual

event is either (U, ¢) or (U, d).

@ (b) ©

FIGURE 4.5 Conservative estimate of outside outline.
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It is possible to obtain a conservative estimate of the actual outline from
the set of actual outline edges: Whenever there are three consecutive edges
on the actual outline, we could remove the middle edge, since the other two
edges also overlap, and thus “closes the gap” in the actual outline. However,
there is one exception. If these three edges alone form a cycle on the actual
outline, as shown in Figure 4.4, we operate differently. We shall explain this
a little bit later.

The removal of the “middle” edges can only be done sequentially, not in
parallel. Refer to Figure 4.6. The three edges ¢,d and e all overlap each
other, so do the three edges d,e and f. If we remove both d and e then
there will be a “gap” left in the actual outline. As a result, an occluded
polygon may “slip through the gap” undetected and remain occluded even
though it already becomes visible. But if we remove d first. Then e would
be “straddled” between ¢ and f, and they do not all overlap each other, so
e remains on the conservative outline.

?
@ (b)

FIGURE 4.6 Naively removing edges d and e wrecks havoc.

Using sequential removal, the set of conservative outline edges are still
guaranteed to form a cycle. Figure 4.7 shows two examples of conservative
outline, on the outside and the inside. The cyclic property of the conservative
outline is crucial, since the maintenance of visibility makes use of the belts
of triangles, which requires the outlines used to be cyclic.

) &

FIGURE 4.7 Conservative outlines still form cycles.
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New let us consider the case shown in Figure 4.4, where three overlapping
silhouette edges ¢, d, and e alone form a cycle on the actual outline. The three
edges have to overlap each other in such a way that the triangle formed by
the three points of intersection is either inside or outside all three edges. We
should not remove any of the three edges to form a conservative outline, since
we still want the conservative outline to be a cycle. A possible solution is to
preemptively add the three silhouette edges ¢, d, and e into the conservative
outline when we detect that they overlap each other in the interior of P(A)
and have their insides/outsides in the right configuration.

If there really is a hole, then the conservative outline would be the same as
the actual outline. If there is no hole, then the extra outline edges will do no
harm, because no visible triangle can ever be deemed invisible by the extra
edges. Although the set of triangles deemed visible might not be correct,
nevertheless it will contain the actual set of visible triangles—our algorithm
computes conservative visibility.

4.4 Conservative outline

In this section, we make the notion of conservative outline precise. There are
two types of vertices on the actual outline: a silhouette vertex, as shown in
Figure 4.8(a), and the intersection of two silhouette edges, as shown in (b)
and (¢). In (a), we want both a and b to be in the conservative outline. The
same is true in (b), while in (c), we do not want ¢ to be in the conservative
outline.

@ (b) (0

FIGURE 4.8 The thick line is the actual outline; the thin edges are the actual
outline edges; the dots denote silhouette vertices.

Define the conservative outline of an occluder A as consisting of the fol-
lowing silhouette edges:
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o Any three silhouette edges that overlap each other and form a cycle on
the actual outline, as shown in Figure 4.4.

e For every cycle on the actual outline, one subcycle of actual outline
edges in which no three consecutive edges all overlap each other.

In the definition, a list of edges form a cycle if any two consecutive edges
either meet at a silhouette vertex, or they overlap in the image plane. The
edges in the conservative outline are called conservative outline edges. For
brevity, in all subsequent discussions, we shall call these simply as
the outline edges of A.

4.5 Clipping the conservative outline edges

Consider Figure 4.9. The triangle was initially occluded. After the first visual
event, vertex V crossed edge e, moving onto its outside. Locally we believe
that the triangle is visible because part of it is now on the outside of the
outline edge e. However the segment of e that it is overlapping is not on the
conservative outline so it should still be occluded. After the second event,
the triangle overlaps both e and d. Although it is still occluded, we should
consider it as visible, since its emergence of the triangle from occlusion by
moving upwards can only be detected by an EEE event.

FIGURE 4.9 The small triangle is still occluded after vertex V moved to the
outside of outline edge e.

To handle this case, we note that outline edge e overlaps with its neigh-
boring outline edge d. To become partially visible, the triangle has to be
partially on the outside of both e and d. If we keep track of all such pairs of
consecutive outline edges which overlap each other, then we can essentially
“clip” away those segments of outline edges which are not on the conservative
outline. So we treat each pair of edges as a single primitive of the conserva-
tive outline, so that a triangle is partially visible with respect to the pair if
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and only if it is partially visible with respect to both edges. As a result, less
occluded triangles will be considered visible.

4.6 Maintaining silhouette overlappings

To be able to efficiently detect that three silhouette edges overlap each other,
for each silhouette edge e, we can keep track of all silhouette edges C(e) which
overlap e. When a silhouette edge e is to overlap another silhouette edge d,
go through C(e) and C(d) and determine whether there is a silhouette edge in
both C(e) and C(d). If there is, we have three edges overlapping each other.
This gives a worst-case run time of O(n), where n is the number of silhouette
edges, and a storage cost of O(n?). However, the number of silhouette edges
overlapping a particular silhouette edge is usually very small, so these are
acceptable computational costs.

A more serious slow-down may occur when the silhouette itself changes.
This can happen when either a silhouette plane or a saddle plane is crossed
by the viewpoint. Let us consider the former case. As shown in Figure 4.10,
the silhouette edge e disappears from the outline, and is replaced by two
silhouette edges ¢ and d. We term such an event a splitting event—one
silhouette edge splits into two.

For a convex object, the (outline) silhouette always form a convex polygon
on the image plane, so there is no self-overlapping. Also, on the image
plane, a new silhouette vertex can only occur in the triangle bounded by the
old silhouette edge and its two neighboring silhouette edges. So updating
the relevant information when a splitting event involving a convex occluder
occurs is quite simple.

FIGURE 4.10 A splitting event.

For non-convex occluders, a new silhouette vertex can appear just about
anywhere. Moreover, the new silhouette edges could overlap many other
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silhouette edges from the same occluder. To further complicate matters,
these new overlappings are caused by abrupt appearance of silhouette edges,
and they are practically undetectable without going through all the existing
silhouette edges.

It takes linear time to exhaustively go through the set of silhouette edges
and check whether the new silhouette edges overlap them. A speed-up can
be achieved by using a grid partitioning of the 3D space. We will describe
this in more details in Section 6.5.3.
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5 Relevant planes

5.1 Supporting/separating planes and touch planes

Let A and B be two convex objects. Suppose that initially, A and B do
not occlude each other. As the viewpoint moves, A may start to occlude B.
In other words, A becomes the occluder and B becomes the occludee. This
can happen only when the viewpoint has crossed a supporting or separating
plane of A and B in a certain way.

Between two objects, a supporting plane is formed by a vertex from one
object and an edge from the other object such that both objects lie on the
same side of the plane, as shown in Figure 5.1(b), where the vertex and the
edge forming the supporting plane are highlighted. Separating planes are sim-
ilar but with two objects lying on opposite sides, as shown in Figure 5.1(a).
With respect to a viewpoint, the supporting and separating planes must be
formed by vertices and edges both from the silhouettes of the two objects
involved.

ﬂ&

(b)

FIGURE 5.1 A separating and a supporting plane.

Supporting and separating planes are not sufficient to detect all the oc-
clusions when objects can be non-convex. We need a generalization to handle
“concavity” in both the occluder and the occludee. Let us call such gener-
alized supporting and separating planes touch planes. Due to concavity, we
have the following observations.

e The vertex and the edge forming a touch plane may come from the
same object.

e We can no longer require that an object corresponding to a touch plane
to lie entirely on one side of the plane; such requirement should at least
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be “localized”. For example, in Figure 5.2(a), both (U,e) and (V,d)
should be touch planes; while (V,¢) should not be, since it cuts the
“cone” rooted at V.

u
Vv
c v
? e
e
(b)

FIGURE 5.2 Touch planes for non-convex objects.

©
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Unfortunately, even locally, we cannot have the afore-mentioned re-
quirement. This is illustrated by the example shown in Figure 5.2(b).
The plane (V,e) should be a touch plane, since when the viewpoint
crosses this plane, there will be visibility changes, as shown in Fig-
ure 5.2(c). But the cone rooted at V is cut by (V,e).

e A plane (V,e) is a touch plane if and only if from certain viewpoint,
one of the two situations shown in Figure 5.3 occurs.

V

<

(b)
FIGURE 5.3 Two possible configurations of a touch plane.

DEFINITION 7 (Touch plane)

A touch plane between objects A and B, where A and B can be the same, is
formed by a vertex V' from A and an edge e from B, such that the two faces
of B incident to e lie on the same side of (V,e), and there exist lwo edges a
and b of A incident to V' satisfying the following.

e a and b can appear on the outline of A atl the same time with respect
to some viewpoint.

e a and b lie on one side of the plane (V,e).
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The plane (V,e) is a touch plane with respect to a viewpoint Q if a and b are
outline edges with respect to ().

With respect to a viewpoint, a touch plane must be formed by a vertex
and an edge both from the silhouettes of the objects involved. Clearly, all
supporting and separating planes are touch planes. When the viewpoint
crosses a touch plane (V) e), the faces incident to e and the faces incident to
V' will either start or stop an occluder-occludee relation. Touch planes are
essential in the maintenance of outline edges.

5.2 Classification of relevant planes

In Section 2.1, we introduced the concept of visual event. Besides the two
kinds of visual events illustrated in Figure 2.1 and 2.2, there are other kinds
of visual events that need to be maintained in order to incrementally update
visibility, e.g., saddle planes, silhouette planes, and touch planes. We call all
these planes the relevant planes.

In what follows, we further classify the relevant planes corresponding
to an occluder A and an occludee B (they may be the same object) with
respect to some viewpoint () depending on how they are formed and their
functionality, where either A or B or both can be non-convex. Note that the
terms “plane” and “event” are used interchangeably.

5.2.1 Relevant silhouette and saddle planes (splitting events)

These planes are extensions of silhouette and saddle faces of A and B. Note
here that we do mean silhouette planes, not outline silhouette planes. When
the viewpoint crosses one of these planes, the set of silhouette edges, the
set of silhouette overlappings, and the set of outline edges may need to be
updated.

All silhouette planes are critical visual events; the face that is crossed by
the viewpoint gets its visibility reversed. Note also that the set of relevant
silhouette planes is dependent on the viewpoint (), while the set of relevant
saddle planes is not.
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5.2.2 Relevant sliding events (SS-planes)

The silhouettes of two objects (or of one non-convex object) can interact
by overlapping each other at various points. When the viewpoint moves,
the silhouettes of the objects are seen to “slide” across each other. A slid-
ing event occurs when a silhouette edge “slides” across a silhouette vertex,
and the interactions between the silhouettes will change. We call the plane
corresponding to a sliding event an SS-plane, where “SS” is for “silhouette-
silhouette.” Sliding events can be critical although not necessarily.

Relevant to objects A and B, we have the following sliding events, as-
suming that A and B are different with A being the occluder:

e For each outline edge d = (U, V) of A and silhouette edge e = (W, X)) of
B overlapping each other, the planes (U, €), (V,e), (W,d), and (X, d).

For example, consider three silhouette edges (U, V), (W, X) and (X,Y),
as shown in Figure 5.4. In (a), (U, V) overlaps (W, X) but not (X,Y).
When the viewpoint crosses the plane (U, V, X), (U, V) “slides” across
X. Afterward, (U, V) no longer overlaps (W, X') and starts to overlap
(X,Y), as shown in (b).

U U

~dv ~
@ (b)

FIGURE 5.4 Example of a sliding event.

If A and B are the same occluder, then sliding events involving all sil-
houette edges, not just the outline edges, are relevant.
5.2.3 Relevant covering events (C-planes)

A covering event occurs when the viewpoint crosses a plane formed by an
outline edge from an occluder and an interior vertex on an occludee; we
call such a plane a covering event plane, or C-plane for short. We use the
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term “covering” since the corresponding event resembles the “covering” and
“uncovering” of a vertex by an outline, as shown in Figures 5.5(a) and (b).

i

© (d)

FIGURE 5.5 Covering plane, touch plane, and non-relevant plane.

A covering event may or may not be critical. When the viewpoint crosses
a C-plane, there may be visibility changes and the set of C-planes may need
to be updated.

Relevant to objects A and B, we have the following C-planes:

e For each outline edge e of A, for vertex V of each edge of B which
overlaps e, if V is not on B’s silhouette, then the plane (V/ e).

Note that if V' is on B’s silhouette, then (V, €) is either a sliding event,
a touch plane, as shown in Figure 5.5(c), or it is not relevant, as shown
in Figure 5.5(d), where plane (U, d) is relevant. In the situation shown
in (d), the plane (V, ) cannot be a touch plane since the two silhouette
edges incident to V lie on opposite sides of (V,e). So before (V,e) is
crossed by the viewpoint, (U, d) has to be crossed first.

5.2.4 Relevant piercing events (P-planes)

A piercing event plane, or P-plane for short, is formed by an outline silhouette
vertex from an occluder and an interior edge on an occludee. The term
“piercing” is adopted since the corresponding event resembles the “piercing”
of a face by a “tip” of the outline silhouette, as shown in Figures 5.6(a) and
(b).

When the viewpoint crosses a P-plane, the set of C-planes and/or P-
planes may need to be updated. A piercing event may be critical, as shown
in Figures 5.6(c) and (d).

Relevant to objects A and B, we have the following P-planes:
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e For each outline silhouette vertex V' of A, for each non-silhouette edge
e of B adjacent to a face f that contains V, the plane (V,e).

Note that if e is on B’s silhouette, then (V,e) is either a sliding event,
a touch plane, or it is not relevant.

V. V.
e e
@ (b) © d

FIGURE 5.6 Example of piercing events.

)

5.2.5 Relevant touch planes
The following touch planes of A and B are relevant, if A and B are different.

e A touch plane with respect to the viewpoint (), formed by an outline
silhouette vertex from A and a silhouette edge from B.

e A touch plane with respect to @), formed by an outline silhouette edge
from A and a silhouette vertex from B.

If A and B are the same occluder, then we have to add any touch plane
with respect to the viewpoint (), formed by a silhouette vertex and a silhou-
ette edge from A. These touch planes are used to maintain the outline of A.
For example, in Figure 5.7, the plane (V) e) is relevant.

/ s
v S_—

FIGURE 5.7 Touch event and outline change.
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When a relevant touch plane of two different objects is crossed by the
viewpoint, the two objects involved will either start or stop an occluder-
occludee relation; so there will be relevant SS-planes, C-planes, and/or P-
planes added or removed. If a relevant touch plane of one object is crossed by
the viewpoint, the set of outline edges of the object may need to be updated.

5.3 Compare to relevant planes of Coorg and Teller

Comparing our definition of relevant planes to that of Coorg and Teller [1],
we find three differences:

1. Coorg and Teller do not consider saddle planes since all occluders are
assumed to be convex.

2. Coorg and Teller do not take care of all the sliding events, which we
think is an overlook on their part. Without the inclusion of all slid-
ing events, the set of relevant planes cannot possibly be maintained
correctly.

3. Coorg and Teller do not consider all the touch planes since supporting
and separating planes are sufficient.

Coorg and Teller [1] use the following theorem (Theorem 2 in their paper)
to demonstrate that the set of relevant planes, by their definition, from a
given viewpoint is sufficient to capture all visual events that occur when the
viewpoint changes. However, we believe the absence of certain sliding events
makes the result incorrect.

Coorg and Teller’s Theorem on Relevant Planes:

Let A (occluder) and B (occludee) be two convex polyhedra and RP be the
set of relevant planes from a viewpoint Py. Let Py be a different viewpoint
corresponding to a visual event. Then, either the visual event at Py is in RP
or there exisls a viewpoint in the segment [Py, P3| that corresponds to a visual
event in RP.

It is unclear what a visual event really refers to in the statement. If all
relevant planes are considered visual events, then the example in Figure 5.8
gives a counterexample. It is possible that neither (U,e) nor (V,d) is a
supporting plane, where (U, e) cuts B and (V,d) cuts A. The only plane
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crossed by the viewpoint from (a) to (b) is (V,d), which is not relevant by
Coorg and Teller’s definition. So without any visual event occurring, (U, €)
becomes a new visual event. It is worth noting that the plane (V,d) is a
sliding event by our definition.

U U U,\ .
\
& @ ¥
M = ﬁd
d d
@ (b) ©
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FIGURE 5.8 Error with Coorg and Teller’s Theorem.

If only critical visual events are considered visual events, then Figures 5.9
provides a counterexample. From (a) to (d), (V,e) becomes a new critical
visual event without any intermediate critical visual event occurring.

vV e Y, v v
U U
d
@ (o) (© (d

FIGURE 5.9 Error with Coorg and Teller’s Theorem.

A third possibility is that all but the piercing events are visual events.
But then from Figure 5.9(a) to (b), (U, d) becomes a new visual event without
any intermediate visual event occurring.

5.4 The Relevant Plane Theorem

The following theorem is related to the maintenance of all the relevant planes.
It generalizes the theorem of Coorg and Teller. In the theorem, we denote
the set of relevant planes with respect to a viewing position by R(Q).

35



THEOREM 2 Let )y be the initial viewing position and suppose that the view-
point moves from Q1 continuously to Qq. If R(Q1) # R(Q2), then at least
one plane in R(Q1) has been crossed by the viewpoint.
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6 The incremental visibility algorithm

6.1 Selection of occluders

Naturally, the significant occluders should appear large as seen from the
viewpoint. So we can use the obvious size and distance criteria to select
occluders dynamically. An occluder can be a combination of a set of small,
disjoint, overlapping objects.

We do not want the outline structure of a single occluder to be too com-
plex. This is because when an occluder is added to or deleted from our
selections, there will be necessary updates to the set of relevant planes; these
updates should not take too much time.

Both Coorg and Teller [2] and Zhang et al. [7] suggest techniques for
dynamic selection of occluders. All these techniques can be applied to our
algorithm.

Recall that in Section 2, we made the assumption that any occluder and
any occludee should be separable by a plane. We can enforce this assumption
at the stage of occluder selection, by “merging” any object which intersects
the convex hull of an already selected occluder with that occluder. If the
computation of convex hull is deemed to be too expensive, we can simply use
a bounding volume instead.

6.2 Initialization

¢ Initialize the set S of silhouette edges:

Given an object A, find the silhouette edges by trying all edges of A
: if the one face incident on the edge is front facing while the other is
back facing, then the edge is a silhouette edge.

e Initialize the set O of outline edges:

Given the silhouette edges of A, we use a variant of the line-sweep
algorithm to determine both the outline and the silhouette overlappings
C(e) for each silhouette edge e.

Note that the silhouette of A is not necessarily separated from the view
point by a plane, so there is no image plane that we can project onto.
Instead, we project the silhouettes onto the image sphere, changing
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the coordinate system into an angular one. The projections of the
silhouettes partition the image sphere into regions. In each region there
is a unique number of layers of the object!.

The algorithm sweeps a longitudinal line across the image sphere, de-
termining the number of layers for each region. At the same time, it
adds the edges which separate regions of layer 0 from regions of layer 1
to the actual outline. The algorithm is depicted in Figure 6.1. To avoid
problems, we first make sure that both the north pole and the south
pole do not intersect any silhouette edges and the initial longitude (at
¢ = 0) do not pass through any silhouette vertices or the intersections
of two silhouette edges. If they do, we can rotate the silhouette around.

FIGURE 6.1 The line sweep variant to determine the actual outline.

Note that the silhouette itself does not provide enough information
about the actual number of layers present at every point—consider
a hollow spherical object with the view point in the center, this has
no silhouettes nor outlines. However given the number of layers at a
certain point, the silhouettes convey enough information to propagate
this information to the whole image sphere. Hence to initialize the line-
sweep, a ray is shot in a direction with ¢ = 0 to determine the actual
number of layers there. Then this information is propagated along the
sweep line—e.g. if we pass from the inside to the outside of a convex
silhouette edge, the number of layers is decremented by 1 (note that
the reverse is true for concave edges).

1Given a point on the image sphere, if we shoot a ray from the viewpoint through
that point, the ray is going to penetrate A a number of times. We call the number of
penetrations the number of layers of A at that point.
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At every point in time the sweep line stores the silhouette edges which
currently overlap it and the number of layers at each region that the
sweep line intersects.

As the line sweep proceeds it will cross silhouette vertices. This is
depicted in Figure 6.2. The small arrows of each edge denotes the side
of the edge that has one more layer (i.e. the inside of a convex edge
and the outside of a concave edge). In (a), before crossing the vertex
the sweep line keeps track of the number of layers at each region to the
left of the vertex. After crossing, in (b), the silhouette edges incident
on the vertex is visited in a clockwise manner. Consider visiting edge
e. The region A before f has 0 layer and is on the side of f having
less layers (the small arrow). Hence the next region, B, has 04+ 1 =1
layers. Now notice e is a silhouette edge separating a region of 0 layers
from a region of 1 layer, so e is on the outline. The algorithm then
proceeds to edge f.

(@) (b)

FIGURE 6.2 The sweep line encounters a silhouette vertex.

The sweep line will also encounter silhouette overlaps as in Figure 6.3.
In this case we can determine the number of layers at the region to
the right either from the region at the top, with 1 layer, and from the
orientation of the silhouette edge e, which indicates that the region at
the right has one more layer than the region at the top, i.e. 2.

After the algorithm, we would have determined both the actual outline
of the object, and the silhouette overlappings. To get the conservative
outline, we just remove appropriate edges from the actual outline until
the property described in subsection 4.4 is satisfied, and then add in
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those edges in the interior which can potentially create holes in the
actual outline after EEE events.

(@ (b)

FIGURE 6.3 The sweep line encounters a silhouette overlap.

e Initialize the set 7 of touch planes:

Given a plane (V) e), determining whether it is a touch plane is not so
easy. We propose a conservative test which could overestimate the set
of touch planes; however, no true touch plane will be missed by the
test.

For (V,e) to be a touch plane, the two faces incident to e must lie on
the same side of (V, €). Now let ey, ..., e be the edges incident to V, in
that order. If all these edges lie on the same side of (V,e), then (V,e)
is surely a touch plane; this corresponds to the configuration shown
in Figure 6.4(a). Otherwise, we traverse the edges e;,..., e, in order,
recording on which side of (V,e) each edge e; lies. If there are more
than two “switching of sides”, then we identify (V,e) as a candidate
for touch planes. It is not hard to see that if (V,e) is indeed a touch
plane of the type shown in Figure 6.4(b), then there should be at least
two “switching of sides” in our traverse of the edges ey,...,e;. The
converse is not necessarily true.

V

<

@ (b)
FIGURE 6.4 Two possible configurations of a touch plane.
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All touch planes are predetermined in the initialization. A table look-
up is used to locate the set of touch planes involving an outline (or
silhouette) vertex or edge.

Initialize the set R of relevant planes:

The initial set of silhouette faces is the set of faces with an edge in
the silhouette. This can be computed along with the initial silhouette
computation.

The saddle faces are computer by iterating over all faces of all the
objects. If a face as a convex edge and a concave edge, it is a saddle
face.

The relevant touch faces between an occluder and occludee is simply
the set of touch faces (V, e) with both V and e either in the silhouette of
the occludee or the conservative outline of the occluder. The relevant
touch faces on an occluder used to maintain the outline are the touch
faces (V,e) with both V and e on the silhouette of the occluder.

The relevant sliding events as well as the silhouette overlappings on a
occluder can be performed along with the conservative outline compu-
tation. the relevant sliding events and silhouette overlappings between
an occluder and occludee can be computed using a similar sphere-sweep
algorithm as that used for initializing the outlines - we simply have to
detect the silhouette overlappings involving an edge on the occluder
and an edge on the occludee.

As for the covering and piercing events, a brute force approach is re-
quired. We iterate over all edges and faces on the occludees and all
outline edges and vertices on the occluders. If an outline vertex is in
a face of an occludee, we add the relevant piercing events; if an out-
line edge crosses an edge of an occludee, we add the relevant covering
events.

A similar problem occurs when a hole suddenly appears on the outline,
for example the first problem above. Figure 4.4. As the hole does not
exist on the outline before, we cannot use an incremental approach to
update the relevant planes (eg, covering and piercing planes). Hence we
will have to use a brute force method to ‘initialize’ the relevant planes
correctly.
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6.3 Detection of plane crossings

After each incremental change of the viewpoint, we have to detect whether
the viewpoint crossed a relevant plane. If the viewpoint crosses a plane then
a number of planes are inserted or deleted from the relevant plane set. The
relevant plane set can be quite large so maintain it simply as an unstructured
set is unacceptable, since for every viewpoint change we need to check the
new viewpoint against all relevant planes individually. On the other hand we
can construct an arrangement of the relevant planes. Then detecting plane
crossings will be efficient but insertions and deletions will incur large costs.
Further, the arrangement requires storage space of the order of p* where p is
the number of relevant planes.

Coorg and Teller [1] described two methods to maintain the relevant plane
set :

e Near planes

In addition to storing all the relevant planes, store a set of em near
planes which intersect a sphere of radius r containing the viewpoint.
Then while the viewpoint is still in the sphere, we only need to check
whether the viewpoint crossed the near planes. On the other hand in-
sertions and deletions will only take constant time. If the viewpoint
goes out of the sphere, then a new set of near planes intersecting a
sphere of radius r centered at the new viewpoint is generated from
the set of all relevant planes and the viewpoint is checked against the
new near planes. Assuming that the viewpoint moves at most a con-
stant distance and the number of near planes is proportional to r, the
algorithm takes O(,/p) expected time.

e Hierarchical space partitioning

A generalization of the previous algorithm is to maintain the planes in
a hierarchy. Suppose we have a hierarchical space partitioning. Fach
node of the hierarchy corresponds to a portion of space and stores the
set of planes intersecting that portion of space. When the viewpoint
moves from V to W, it is checked against the set of planes stored at
the lowest node in the hierarchy which contains both V' and W. The
expected runtime for checking for plane crossings is O(logp), while
insertions and deletions are O(1).
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Unfortunately, both these algorithms have worst case runtime of O(p).
Furthermore, while the algorithms are fast most of the time, once in a while
the algorithms will take O(p) time to complete (when reconstructing the
near planes, or when the lowest node is the root itself). This means that in
an interactive walk-through, once in a while the computer will seem to be
especially slow. This is more distracting to the user than an algorithm that
performs moderately fast all the time.

6.4 Updating visibility and relevant planes

After we detect a relevant plane crossed by the viewpoint, a number of up-
dates need to be performed depending on the type of the plane, as shown
in section 2.6. In this section we shall only describe the algorithm when a
piercing event occurs. The rest will be standard but technical.

FIGURE 6.5 A Piercing event occurs with silhouette vertex V' crossing edge
€.

Suppose a piercing event occurs between edge e on the occludee and outline
silhouette vertex V on the occluder €| as shown in figure 6.5. Since V has
moved from face f; to face f;, both outline edges s; and sy cross face f;
before the event, and cross face f, after the event. The following changes
occur :
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e If ¢; is not on the silhouette of the occludee then remove (e1, V) from
the set of piercing events.

e If ¢4 is not on the silhouette of the occludee then remove (e4, V') from
the set of piercing events.

e If €3 is not on the silhouette of the occludee then add (ez, V') to the set
of piercing events.

e If e5 is not on the silhouette of the occludee then add (es, V') to the set
of piercing events.

o for s € {51,529},

— Decrement N(f1,C) by 1 and increment N( fz,C') by 1.

— if s does not intersect f; after the event, then decrement N(f;,C)
by 1 and remove (s, a) from the covering events.

— if s did not intersect f, before the event, then increment N ( fz, C)
by 1 and add (s, ¢) to the covering events.

o if after the event N(f1,C) = 0 and f; is on the inside of sy, then
increment the number of occluders totally occluding f; by 1. If f; was
not occluded before then remove f; from the visible triangles.

e if before the event N(fy,C') = 0 and f; was on the inside of s, then
decrement the number of occluders totally occluding f; by 1. If there
are no more occluders occluding f; then add f; to V.

6.5 Efficiency heuristics

We offer some efficiency heuristics which can speed up our visibility algo-
rithm. Some of these heuristics are fairly standard.

6.5.1 Occludees as bounding volumes

When a group of small and close-by objects are far away from the view point,
it makes sense to form a tight bounding volume, e.g., a cube, around them,
and simply perform visibility computations on the bounding volume, instead
of on the individual objects. This is because that such a group of objects is

44



more likely to be either completely occluded by occluders close to the view
point or completely visible. If the volume is deemed visible, all objects in
the group are rendered; otherwise, all objects are culled away. This can be
especially beneficial computationally when we are dealing with a dense scene
consisting of many small objects.

There are several criteria for grouping the objects. First of all, objects
to be grouped should be small. Secondly, we do not want a group to con-
tain too many objects, since when the viewpoint moves closer to the group,
the bounding volume should be “taken oft”, and the set of relevant planes
corresponding to the objects in the group need to be computed; we do not
want this computation to take too much time. And finally, the objects to be
grouped should be close-by.

6.5.2 Hierarchy of bounding volumes

To further speed up our algorithm, we can extend the idea of using bounding
volumes to constructing a hierarchy of bounding volumes. This is similar to
the use of an kd-tree structure in Coorg and Teller [2], and to the approach
used by Zhang et al. [7] in their visibility culling algorithm.

6.5.3 Grid partitioning of 3D space for overlapping tests

Quite often, our algorithm will need to perform overlapping tests between
edges in the scene. For example, when a new occluder is added, or when new
silhouette or outline edges emerge, we need to test for overlappings between
the new silhouette or outline edges against the existing set of silhouette edges.

An exhaustive search may be too much of a slow-down. What we can do
is to partition the 3D space into uniform grids. At each grid, we store the set
of silhouette edges which intersect the grid. Knowing the grid containing the
current viewpoint, and the set of adjacent grids containing a new silhouette
edge e, we can locate those grids which can contain an edge overlapping
e quickly. Then we need to test overlappings involving e against only the
silhouette edges intersecting those grids.
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7 Conclusion and future work

We have developed an incremental conservative visibility algorithm which
works in an environment consisting of complex occluders. We take advantage
of the spatial and temporal coherence between successive frames to achieve
interactive update of visibility changes.

7.1 Compare to hierarchical occlusion map

Zhang et al. [7] develop a visibility culling algorithm combining the use of
an object space bounding volume hierarchy and an image space hierarchical
occlusion maps. An occlusion map is the combined image of a set of selected
occluders. The hierarchical occlusion map is built by recursively filtering
from the highest-resolution map down to some basic map. The filtering
process is an averaging of the opacity values in adjacent rectangular blocks
of pixels.

The visibility status of an occludee is determined by first doing an “over-
lapping” test of the occludee against the hierarchy of occlusion maps, and
then a depth test against a depth estimation buffer. Their algorithm is also of
a conservative nature. The efficiency of their algorithm is mainly attributed
to the hierarchical representation of the occlusion map, which facilitates con-
servative and early termination of the overlapping tests.

It is worth noting that their algorithm does not exploit the temporal
coherence between successive frames, except in the selection of occluders. At
each frame, the occlusion map and its hierarchy are reconstructed, and the
overlapping and depth tests are performed again for each occludee. So the
number of primitives processed at each step is still large.

7.2 Multi-layered silhouette representation

Recall that we only consider visual events corresponding to vertices or edges
on the outlines of the occluders. We made this choice solely out of efficiency
concerns. Those silhouette edges not on the outline do cause occlusion, as
shown in Figure 4.2. Even concave silhouette edges, which can never be
visible, play an important role if we are to distinguish among various ways
an occluder can occlude an occludee.
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Consider the situation illustrated in Figure 7.1. Suppose that the view-
point has just crossed the plane (V,e) from left to right. Before this occurs,
the face f was occluded by just one layer of object A, meaning that any ray
shot from the viewpoint into f intersects A exactly once. After the crossing
however, part of f is occluded by two layers of A, since a ray shot from the
viewpoint to vertex V' intersects A twice.

FIGURE 7.1 Occlusion by multiple layers.

For our algorithm to work, we made an assumption in section 4.1 that
give any occluder and any occludee, there is a plane that separated the two.
this is required because otherwise, the outline of the occluder is not sufficient
in determining the occlusion information of the occludee. This is depicted in
Figure 4.2, where the occludee (G is occluded, although it lies in front of the
outline edges on K.

A multi-layered approach which uses the silhouette directly to compute
visibility can obviate the need for this assumption. Consider Figure 7.2.
We can determine that G is totally occluded by a layer of the object whose
silhouette is K, i.e. L. We can also determine that L partially occluded K
since its silhouette K is in front of K.

FIGURE 7.2 Multi-layered occlusion. Thick edges are silhouette edges.

An incremental visibility algorithm using multi-layered silhouettes will be
very similar to the algorithm we presented. In fact we can view the outline
approach as replacing each occluder by a potentially much simpler object—
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one which has only one layer, and whose silhouette coincides with the outline
of the original occluder. In the multi-layered approach, we can view each
occluder as being decomposed into a number of distinct layers each of which
functions as a distinct occluder which occludes objects individually. The
question is how to perform this decomposition correctly. This is a question
for future research.

7.3 Future work

Implementation.
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8 Appendix

8.1 Proof of Theorem 1

Proof: Let f be the first face crossed by the view point. Let e, €3, and
e3 be the three edges of f. Suppose that f is neither a silhouette face nor a
saddle face. Then none of ey, ey, and e3 is a silhouette edge.

1. f is forward-facing with respect to Q:

Then €1, €3, and e3 are all forward-facing with respect to Q). If e, ey,
and e are all convex edges, then we must have something like what is
shown in Figure 8.1(a), where f;, f;, and f5 are the planes containing
the face, other than f, incident to e, ez, and e3, respectively. Position
() must be inside the region bounded by planes fi, f;, and f3, as
shown. Clearly, the view point cannot cross f before crossing fi, f3, or
f3, contradicting our assumption that f is the first face crossed.

If €1, e, and e3 are all concave edges, then we must have something
like what is shown in Figure 8.1(b), with relevant planes labelled as
before. Again, we see that () must be inside the region bounded by
planes fi, f2, f3, and f, as shown. Now for the view point to cross f
before crossing any of fi, fi, or f3, it must have penetrated face f,
which is not allowed.

Q

@ (b)

FIGURE 8.1 All faces forward-facing, all edges convex or concave.

2. The case where f is back-facing with respect to ) is symmetric. O
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