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Abstract

The study of graph minors is an important area of topological graph theory and
graph embeddings. Central to the study of graph minors is Wagner’s conjecture, which
was proven by Robertson and Seymour [15]. We survey the ideas and results leading
up to the proof of Wagner’s conjecture and their implications.
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1 Introduction

A fundamental result by Kuratowski [11] states that a graph G is planar if and only if
has no subgraphs isomorphic to any subdivision of Ky or Ks3. Wagner [22] showed an
equivalent statement of Kuratowski’s theorem that G is planar if and only if G has no Kj
nor K3 s-minor.

Konig [9] then asked if a Kuratowski type characterization exists for graphs embeddable
in any surface®®) S. Little progress was made until Glover et al [6] showed that there are
103 topologically irreducible graphs not embeddable in the projective plane and Archdeacon
[1] showed that there are 35 minor-minimal graphs not embeddable in the projective plane.
The lists of such excluded graphs for all other surfaces are not known, and evidence indicates
that they might contain too many graphs to be of any practical use [20]. Archdeacon and
Huneke [2] then showed that for any non-orientable surface S there exists a finite family of
graphs Fg such that a graph G is embeddable in S if and only if G has no minor isomorphic
to a member of Fs. The members of Fg are called the excluded minors of embeddability in
S. In the same year Bodendiek and Wagner [4] showed a similar result for the orientable
surfaces.

Robertson and Seymour took a less direct but more fruitful approach to the problem. In
a long series of papers they proved Wagner’s conjecture [15] :

Theorem 1.1 (Wagner’s conjecture). If Gy, Gy, Gs, ... is a sequence of graphs there ex-
ists 1 <1 < j such that G; is isomorphic to a minor of G;.

Now consider the family F' of graphs not embeddable in some given surface S. Let
Fs C F be those members in F' that are minor-minimal with respect to not embeddable in
S. Then every graph not embeddable in S must have a minor isomorphic to a member of
Fs. By virtual of minor-minimality every graph in Fg is not a minor of any other graph
in Fs. By Wagner’s conjecture Fs cannot be infinite, else there would exist a sequence of
graphs from Fg any two of which are incomparable.

In this paper we shall survey results related to Wagner’s conjecture. In particular in
section 2 we describe the preliminary definitions and background ideas. In section 3 well-
quasi-orderings are introduced and Wagner’s conjecture is restated as saying that the family
of graphs is well-quasi-orders. Then a progression of increasingly complex objects are shown
to be well-quasi-ordered : finite sequences and subsets in section 3, finite trees in section 4,
graphs of bounded tree-width in section 5 and finally general graphs in section 6. We take
a detour in section 7 and describe implications of Robertson and Seymour’s polynomial
time algorithm to solve the disjoint paths problem. Hereditary properties are described in
section 8. Wagner’s conjecture and the disjoint paths problem are then used to show that
any hereditary property can be decided in polynomial time. Finally in section 9 we conclude
with a short discussion and closing remarks.

(*)A surface is a compact 2-manifold.
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2 Preliminaries, definitions and notations

We denote the sequence z;, x;41,... , 25 by (;L'Z)f:] where k£ can be oo in which case we meant
the infinite sequence z;, x;41,.... When there is no confusion we shall drop the indices and
use (z;). If (y;) is a subsequence of (z;) we denote (y;) C (x;). To denote that s; € S for all
i and some S, we write (s;) C S. Given a sequence s denote the i"* element of s by s; and
denote the set of elements of s by s.

Given two graphs (G and H we shall denote by G U H the graph with vertex set V(G) U
V(H) and edge set F(G)U E(H). Similarly for G H.

A rooted graph GG is a graph along with a sequence r(G) of distinct vertices from V(&)
called the roots of G. Let 7(() be the set of roots of G and r;(G) be the i root of G. In
this survey, graphs shall mean finite undirected rooted graphs with loops and multiple edges
unless otherwise specified. Although Wagner’s conjecture was stated for unrooted graphs,
we shall be proving rooted graphs versions of simplifications of Wagner’s conjecture. The
unrooted versions of the theorems clearly follow by having r(G) = ) for an unrooted graph
G.

However trees for us shall be directed and rooted i.e. there is a unique root from which
all edges radiate outwards. Let s(7') be the set of components of T'— r(T'). For v € V(T)
let T, be the maximal subtree of T' rooted at v. Sometimes we may also use T'(v) in place
of T, where the subscripts start to clutter up. For u,v € V(T') let [u,v]r be the undirected
path in T" from u to v. The subscript is dropped when there is no confusion.

The vertices or edges (or both) of a graph GG can be labeled. We shall denote the labels
by ¢a(z) for each z € V(G) U E(G). Again when there is no confusion the subscripts are
dropped.

Let GG, H be two unrooted graphs. We say H is a minor of G or (G has an H-minor if
we can obtain (an isomorphic copy of) H from (' via a sequence of edge/vertex deletions
and edge contractions. We say (¢ is an expansion of H if we obtain (an isomorphic copy of)
GG from H by replacing each vertex v of H by a connected subgraph (, and replacing each
edge uv originally incident on v in H by an edge uw for some w € V(G,). We say GG is a
subdivision of H if we can obtain (an isomorphic copy of) G from H by a sequence of edge
subdivisions. We say H is topologically contained in (7 if there is a subgraph of G that is (an
isomophic to) a subdivision of H. If H is a tree then a subdivision of H is a tree (G obtained
from H by replacing each edge u—v € E(H) by a directed path in the same direction as
u—wv. If G, H are rooted graphs, we say H is a minor of G if H is a minor of G as unrooted
graphs, H and G has the same number of roots and the :** root of (i is contracted to or
corresponds with the i"* root of H for each i.

Our motivation for using the above definition of minor containment for rooted graphs is
the following. Suppose GG, Gy, Gy are rooted graphs with Gy <,, GG5. Let X be a sequence of
|r(Gh)] = |r(G2)| distinct vertices in G. For ¢ = 1,2, let G be the graph obtained from G,
and G when we identify r(G;) with X. Then it is easy to see from the definition of minor
containment that G is still a minor of GY,.
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3 Well-quasi-orderings

One way of expressing Wagner’s conjecture is using well-quasi-orderings.

Definition 3.1 (Quasi-orderings). A relation < on a set S is a quasi-order if < is re-
flexive and transitive.

Definition 3.2 (Well-quasi-orderings). A quasi-order < on a sel S is a well-quasi-order
if for any sequence (s;)32, C S there exist 1 < i < j with s; < s;.

If < is a partial-order on S then < is a well-quasi-order if and only if there is no infinite
decreasing sequence in S and there is no infinite set of incomparable elements of 5.

We can define three quasi-orderings on the family of graphs. Let G and H be graphs.
The first is the subgraph ordering, H C G if H is a subgraph of G (up to isomorphism).
The second is the topological ordering, H <; GG if H is topologically contained in G. The
third ordering is the minor ordering, H <,, G’ if H is a minor of G. The subgraph ordering
is not a well-quasi-order for graphs. Consider the sequence (C;) where C), is the n-cycle.
The topological ordering is not a well-quasi-order for graphs either. For n > 1 consider
two n-cycles with vertices vy, vq,... ,v, and wuy,... ,u, respectively. Join v;, u; by an edge
for each 1 < ¢ < n and let C/, be the resulting graph. Then the set {C} : n > 1} is not
well-quasi-ordered by topological containment. Wagner’s conjecture states that the minor
ordering is a well-quasi-ordering for graphs.

The next observation shows that given any sequence from a well-quasi-ordered set, not
only can we find two comparable elements we can find an infinite increasing subsequence.

Lemma 3.3. [f < is a well-quasi-order on S then given any sequence (s;)52, C S there
exists a subsequence (si, )72, C (s;)2, such that sy, = sy, for alli > 1.

Proof. Consider a complete countably infinite undirected graph with vertices {1,2,...}. Let
1 <1 < j. Color the edge 15 red if s; < s5;. Otherwise color it blue. By Ramsey’s theorem
for infinite graphs there either exists &y < ky < --- with 53, < s4,,, forall ¢ > 1 (all edges
are red) or Iy < Iy < --- with s, A s, for all © < j (all edges are blue). But =< is a
well-quasi-order, so the former holds. O

Let < be a well-quasi-ordering on a set S. We can extend a well-quasi-order over a set S to
the family of finite sequences from S and the family of finite subsets of S. Fors = (s;)"., C S
and t = (¢;)7, C S wesay s < tif thereis an o : {1,2,... ;n} — {1,2,... ,m} such that
afl) <a(l+1) and s; = s, for each [ = 1,... ,n. For s,t C S finite subsets, we say 5 <t
if there is an injective map « : 5 — t such that s < a(s) for each s € s.

Proposition 3.4 (Higman [7]). Let < be a well-quasi-ordering on a set S. The family of
finite sequences of S is well-quasi-ordered by <.

Proposition 3.5 (Higman [7]). Let < be a well-quasi-ordering on S. The family of finite
subsets of S is well-quasi-ordered by <.

The above two propositions are quite useful. However their proofs are very similar to the
proof of theorem 4.1 below and we leave it to the reader as an exercise to adapt the proof
to proposition 3.4 and proposition 3.5.
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4 Trees

We can view finite sequences in S as directed paths with the vertices labeled by elementsin S.
Given labeled directed paths P and ) where P <; () as unlabeled paths, and for each vertex
v € V(P) and the corresponding vertex u € V(Q) we have ¢p(v) =< do(u)P), we say P < Q.
Note that this definition of < on labeled directed paths coincides with the definition of < on
finite sequences in proposition 3.4. Then proposition 3.4 says that if S is well-quasi-ordered
the family of directed paths labeled with elements of S is well-quasi-ordered.

We can generalize proposition 3.4 to the class of trees labeled by elements of S. Given
labeled trees R and T" where R <; T" and for each vertex v € V(R) and the corresponding
vertex u € V(T') we have ¢r(v) < ér(u), we say R < T. Theorem 4.1 below shows that <
is a well-quasi-order over trees labeled with elements of 5.

Theorem 4.1. [f S is well-quasi-ordered then so is the class of trees labeled by elements of
S.

Proof. Suppose the class of labeled trees is not well-quasi-ordered. Pick a minimal sequence
of trees that is a counterexample inductively as follows. Forz =1,2,... pick a labeled tree T;
such that there is a counterexample starting with TY,... ,T; but there is no counterexample
starting with T4, ..., Ti—1,T! where T! € s(T;).

Consider the sequence (¢(r(7;)))52,. As S is well-quasi-ordered there is a subsequence
(o(r(Tk,)))2, such that ¢(r(Ty,)) = ¢(r(Th,,,)) for each 7 > 1.

Let € = U{s(T},) : @ > 1}. Suppose there is a sequence of trees (7} )2, C T where
T}, € s(1y,) such that T A T] for each s < j. As N={1,2...} is well-quasi-ordered, < is
reflexive and each s(T},) is finite, we may assume that [; < [;4; for each 1.

Consider the sequence Th,... Ty, 1,1 ,T}],.... Foreach 1 <: </ —1and j > 1 we
have T/ X T;, and T; A T3, hence T; 217 by tran81t1V1ty AlsoT; ATjforl <i<jy<li—1
and T’ il T’ for 1 < 3. So the sequence Ty, ..., Ty, T, T, . . is a counterexample too,
contradlctmg the minimality of (7;)32,. Therefore T is well-quasi-ordered. By proposition 3.5
the sequence of sets of trees (s(T%,))2, is well-quasi-ordered as well. So there exists ¢ < j such
that s(7},) = s(Tk,). But ¢(r(Ty,)) = ¢(r(1}k,)) too and a little thought demonstrates that
Ty, = Tk;, a contradiction and so the class of trees labeled with S is well-quasi-ordered. [

The above proof method is a useful method. The essential idea to proving that a certain
set S is well-quasi-ordered is to assume it is not and pick a counterexample sequence that is
minimal in some sense. Then we find another sequence based on the first that is even smaller
than the first, causing a contradiction so S must be well-quasi-ordered. This “minimal bad
sequence” idea was attributed by Robertson and Seymour to Nash-Williams [13].

Theorem 4.1 is a labeled version of a classical theorem by Kruskal.

Theorem 4.2 (Kruskal [10]). The collection of finite rooted trees is well-quasi-ordered by
topological containment.

(M Of course there might be many ways of subdividing the edges of P to obtain ). What we mean is that
there is some way of subdividing the edges of P such that we obtain @) and ¢p(v) < ¢g(u) for each pair of
corresponding vertices v and w.
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5 Tree decompositions

Definition 5.1 (Tree decomposition). A tree decomposition of a rooted graph G is a
vertex and edge labeled tree T' such that

1. for each t € T, ¢(t) C G is a rooted graph;

2. for each ty,ty € T, E(¢(t1) N P(ls)) = 0;

3. for each e € F(G) there is at € T such that e € E(¢(t));

4. fortits € V(T) and ty € V([t1,ts]7), ¢(t1) N P(ts) C é(t2);
5. r(g(r(T))) = r(G);

6. for each u—v € E(T), ¢(u—v) =r(p(v)) = V(e(v) N p(u)).

r( (b)) r(¢(c))

r((f)
r((€)

A tree decomposition T of a rooted graph G essentially breaks (G down into smaller pieces
(the ¢(t)’s for t € V(T')) which we can patch together (along r(¢(1))) in a tree-like fashion
to get back . The figure above depicts a tree decomposition T' (on the right) and how the
pieces (1) are patched together to form G (on the left).

For each u—v € E(T), define the order of v to be o(v) = |r(é(v))| and the order of
u—v to be o(u—v) = o(v). For a subtree S C T define ¢(S5) = U{o(v) : v € V(5)} to
be the underlying rooted graph which S is a tree decomposition of. The root of ¢(S5) is
H(B(5)) = r(6((5)).

The widlh of a tree decomposition 7" is max,cy(r) |V (¢(1))| — 1. The tree-width of a graph
G is the minimum width of any tree decomposition of G. A graph has tree-width 1 if and
only if it is a tree, while a graph has tree-width < 2 if and only if it is a series-parallel graph.
Let w > 1. In many respects graphs with tree-width < w show many characteristics of trees
and can be viewed as “fat” trees whose “branches” all have width < w.

Let P be a path of GG connecting some vertex in ¢(u) to some vertex in ¢(v) where
u,v € V(T). Intuitively it is clear that for each e € E([u,v]r), P must meet some vertex in
¢r(e). We call this the separation property of tree decompositions.

Suppose that S C T are trees. Then clearly S <; T. The following variation of this
property for tree decompositions turns out to be very useful. Under certain conditions we
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want ¢(S5) =<, ¢(T) if S C T are tree decompositions. Clearly ¢(S) C ¢(T) so the only
tricky part is to perform edge contractions such that r(¢(7")) is contracted to r(¢(5)). A
necessary and sufficient condition for this is that |r(¢(S))| = |r(¢(T))| = k and there are k
disjoint paths connecting r;(¢(7T)) to r;(¢(S)) for each 1 <7 < k. Consider the subgraph
G" = ¢(5) U { the k disjoint paths } C ¢(T') with r(G') = r(T'). Contracting the k disjoint
paths of G’ to r(¢4(9)), we see that ¢(S5) =<, G' =, &(T). As a result of the separation
property and Menger’s theorem a necessary condition is that for each edge e on the path
from r(7T') to r(S) we have o(e) > k. Lemma 5.2 below, due in part to Thomas [21] and
in part to Robertson and Seymour [18] shows that there are always tree decompositions in
which the necessary condition is also sufficient. We call such tree decompositions linked.

Lemma 5.2. If G has tree-width < w there exists a tree decomposition T' of G with width
< w such that for every directed path P from u to v in T with o(u) = o(v) < o(e) for all
e € E(P), ¢(T,) is a minor of ¢(T,).

Idea of proof. Start with a tree decomposition 7' of G with width < w. If 7" is linked we
are done. Otherwise there is a directed path P from u to v with o(u) = o(v) < o(e) for all
e € E(P) but ¢(T,) is not a minor of ¢(7,). Suppose there are k = o(u) disjoint paths from
7(¢(u)) to 7(p(v)). Then we can reorder the vertices in r(¢(u)) such that the & paths match
ri(p(u)) to ri(p(v)) for all 1 <o < k. If there are < k disjoint paths, by Menger’s theorem
there is a separation S with |S| < k separating r(¢(u)) from r(¢p(v)).

The intuitive idea now is to transform the tree decomposition such that there is an edge
e € E(P) with ¢(e) = S. This way the antecedent becomes false and the lemma is trivially
satisfied for the path P. To do this we essentially “pinch” the tree decomposition at S.

The figure below illustrates the idea for a simple case. On the left we have a path
P = u—a—v. for each t € V(P), o(t) = 4 but there is a separation S with |S| = 3. So
we “pinch” the tree decomposition at S, separating ¢(a) into two parts : ¢(a’) on the left
of S and ¢(a”) on the right, with r(¢(a’)) = r(¢(a)) and 7(¢(a”)) = S. This is shown
on the right. The situation is more complicated when S spans a few pieces of the tree
decomposition, but the idea is generally the same. We repeat this procedure until we obtain
a linked tree decomposition.

Eae

r(® (u)) (¢ (a)) r( (v)) r(¢ (W) (¢ (@)) r(¢ @) r(¢d )

pinch
O
A lemma by Robertson and Seymour [18] illustrates why linked tree decompositions are

important. They allow us to find “minimal bad sequences” if graphs of bounded tree-widths
are not well-quasi-ordered.
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Lemma 5.3. Let w > 1 and (T3)2, be a sequence of linked tree decompositions each with
width < w. Suppose that H(T;) Zm ¢(T;) for each 1 <1 < j. Then there exists ky < ky < ---
and t; € V(Ty,) such that ¢(Ty,(1;)) Zm &(Tk,(1;)) but U{H(T") : T" € (T}, (t:)),2 > 1} is

well-quasi-ordered with respect to <,,.

Theorem 5.4 (Robertson and Seymour [18]). For each w > 0 the collection of graphs
of tree-width < w is well-quasi-ordered by minor containment.

Proof. Suppose the collection is not well-quasi-ordered. Let (G;):2, be a sequence of graphs
with tree-width < w such that G; A, G; for every 1 < 5. By lemma 5.2 (G; has a linked tree

o0

decomposition T; with width < w for each 7. By lemma 5.3 there exists a sequence (Ti(l))izl

of subtrees of some 7}’s such that gﬁ(Ti(l)) Am qb(Tj(l)) for each 1 < j but & = U{(T") : T" €
s(TZ»(l)),z' > 1} is well-quasi-ordered with respect to <,,.

Now |V(¢(T(TZ»(1))))| < w + 1 for all 7 so there are only finitely many possible choices for
qb(r(TZ»(l))) up to isomorphism. Pick a subsequence (TZ»(Q)) C (Ti(l)) such that gb(r(Ti(Z))) is
isomorphic to gﬁ(r(T]@))) and r(qb(r(Ti(Z)))) is mapped to r(gﬁ(r(T]@)))) under the isomorphism
for all 7,7 > 1. For simplicity we shall assume that (ﬁ(T(TZ»(Q))) = (G for all + > 1.

Let r be a finite sequence of distinct vertices in V(Go) and ST = {o(T") : T' € S(TZ»(Q))
and r(¢(T")) = r} for each 1 > 1. Since & is well-quasi-ordered, by proposition 3.5 and
lemma 3.3 there is a subsequence (57 )2, C (S7):Z, such that for each : < j there is an
injective map a : Sp — Sp with G' 2 a(G") for each G' € S7.. Apply this for each r
(there are only finitely many of them), and we obtain a subsequence (TZ»(S)) C (TZ»(Q)) such
that for each ¢ < j there is an injective map « : S(TZ»(S)) — S(T]-(S)) with ¢(T") =, a(o(T"))
and r($(T")) = r(a($(T"))) for each T' € s(T). But ¢(r(T)) = ¢(r(T1V)) too and it is
not hard to see that ¢(T¢(3)) =m ¢(Tj(3)). This is a contradiction, so the collection of graphs
of tree-width < w is well-quasi-ordered. O

An application of theorem 5.4 is another simplification of Wagner’s conjecture.

Theorem 5.5. If H is a planar graph the sel of graphs with no H-minor is well-quasi-
ordered by minor conltainment.

Corollary 5.6. If (G,)2, is a sequence of graphs with Gy planar then there are 1 <1 < j
such thalt G; is a minor of G;.

Proof. If there is an ¢ > 2 such that 4 is a minor of GG; we are done. Otherwise {G; : 1 > 2}
is well-quasi-ordered by theorem 5.5 so there are 2 <1 < j such that G; is a minor of G;. O

Theorem 5.5 easily follows from theorem 5.4 and the following due to Robertson and
Seymour [17].

Theorem 5.7. If H is a planar graph then the set of graphs with no H-minor has bounded
tree-width.
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Sketch proof. For n > 1 let the n-grid be a graph with vertex set {(7,7) : 1 < 1,5 <n} and
two vertices (¢, 7) and (i', ') are connected by an edge if and only if [¢ —¢'| + |7 — 5| = 1. Tt
can be shown that the n-grid has tree-width n [16]. The tree-width theorem [17] shows that
for each n there exists an m(n) > 1 such that every graph with tree-width > m(n) has an
n-grid-minor. Hence a graph has large tree-width if and only if it has a large grid-minor.
Let H be a planar graph. There is a planar graph H' with maximum degree 3 such that
H is a minor of H' (consider expanding every vertex of H of degree > 3 into a connected
subgraph with each vertex having degree 1 or 2 while preserving planarity). Now embed H’
on the plane such that each edge is a line segment and transform each line segment into a
polygonal arc consisting of vertical and horizontal segments. Now it is easy to see that H' is
a subdivision of some large n-grid, hence H is a minor of the n-grid. Now every graph with
tree-width > m(n) has an H-minor. O

Note that theorem 5.7 is best possible in the sense that if H is not a planar graph there
are graphs of arbitrarily large tree-width with no H-minor (consider the n-grids).

Because of their tree-like structure, many NP-complete problems can be efficiently solved
for graphs of bounded tree-widths. For example Arnborg and Proskurowski [3] have shown
that determining whether a graph can be k-colored and whether a graph has a Hamiltonian
cycle can be done in linear time for graphs of bounded tree-widths. Coupled with Bodlaen-
der’s linear time algorithm to determine whether a graph has tree-width < w [5], we obtain
algorithms running in linear time that either returns that a graph has tree-width > w, or
is k-colorable (respectively has a Hamiltonian cycle), or not k-colorable (respectively has no
Hamiltonian cycle) for each fixed w and k.

6 Wagner’s conjecture

In this section we describe Robertson and Seymour’s proof of Wagner’s conjecture [15]. The
material presented here is based largely upon a survey by Thomas [20], because Robertson
and Seymour’s paper [15] has not been published yet(¥),

The proof is similar to theorem 5.5 and corollary 5.6. Given a graph G let G — G =
{G" : G is not a minor of G'}. Take a sequence of graphs (G;)2,. If there is an ¢ > 1 such
that Gy <,, G; we are done. Otherwise G; € G — G for each 7 > 1 so if we can show that
G — Gy is well-quasi-ordered for each Gy then we can find 1 < ¢ < j with G; <,, GG; and
we are done. Theorem 5.7 showed that if (; is planar then graphs in G — G; has bounded
tree-width (i.e. each piece in the decomposition has a bounded number of vertices) hence is
well-quasi-ordered. Robertson and Seymour [14] showed that for a general graph G, each
graph in G — (& also has a certain tree decomposition in which each piece is bounded in
some sense and this can be exploited to show that G — 1 is well-quasi-ordered along the
same lines as theorem 5.4. We shall describe Robertson and Seymour’s theorem concerning
the structure of graphs in G — Gy.

(1)1 suspect that the paper has been submitted by this time, since the manuscript was already written as
early as 1996 and the result was widely accepted. Unfortunately it has not been published yet. I am appalled
to see the time 1t took for papers to get published in academic journals. Judging from the papers I used for
this survey it seems the average time required is at least three to five years!
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Definition 6.1 (Vortex decomposition). Let G be a graph and U be a cyclic ordering of
a subset of V(G). For eachu € U let X, C V(G). We say (Xu)uev is a vortex decomposition
of (G,U) if

1. for eachu e U, ue X,;

2. UuEUXu = V(G),

3. for each vw € FE(G) there is a w € U with v,w € X,,;

4. if uy,ug, us, uq occur in U in that order then X, N X, C X, U X,,.

The last condition means that if v € V(G) then {u € U : v € X, } is either empty, a
contiguous segment of U or U itself. The width of a vortex decomposition is max,ers | X, |.

Given a surface S and & > 0 let S — k£ be the topological space obtained by removing
k disjoint disks from S. Note that each connected component of the boundary of S is
homeomorphic to the circle.

Definition 6.2 ((5, k)-nearly drawable). Given a surface S, k > 0 and Cy,...,Cy the
components of the boundaries of S — k, and a graph G we say G is (S, k)-nearly drawable if
there exists X C V(G) with |X| < k such that G — X can be written as Go U Gy U --- U G,
where

1. Gy is embeddable in S — k;

2. G; for1 > 1 are mutually disjoint;

3. for each 1, U; = V(Go) N V(G;) = V(Go) N Cy;

4. for each i, (G;,U;) has a vortex decomposilion with width < k where we order U;
according to the cyclic order of elements of U; on C;.

Note that G is (.5, k)-nearly drawable means that (G can mostly be embedded on S except
for the k& “small” regions Gy,... , Gy and X.

Definition 6.3 (®-tree decomposition). Let T be a tree decomposition and & a family
of graphs. For each e € F(G) let K. be the clique with vertices V(¢(e)). Fort € V(T) let
P(t) = (U{K. : e is incident on t})U ¢(t). We say T is a B-lree decomposition if (1) € &
for each t € V(T).

This generalizes the notion of tree-widths. If &,, is the set of graphs with at most w + 1
vertices, then tree decompositions of width < w are exactly &,,-tree decompositions.

Theorem 6.4 (Robertson and Seymour [14]). Given a graph G there exists k > 0 such
that every graph in G — G has a &-tree decomposition, where & is the set of graphs that can
be (S, k)-nearly drawn where S is a surface on which G is not embeddable.

Note that the set of surfaces on which G cannot be embedded is finite. Hence & as
in theorem 6.4 is bounded in the sense that they must all be almost embeddable on some
surface from a finite set of surfaces, that there can be at most k regions in them that cannot
be embedded, and that these obstructions must be vortex decompositions with width < k.
Robertson and Seymour then showed that graphs with structures as described in theorem 6.4
are well-quasi-ordered, completing the proof of Wagner’s conjecture.
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7 The disjoint paths problem

The discussion preceding the definition of a linked tree decomposition in section 5 hints at
the usefulness of determining whether there are disjoint paths joining correspond vertices
from two sequences. The disjoint paths problem is as follows : given a graph G and vertices
Sty...,8k and ty,...,t; are there disjoint paths joining s; to ¢; for each 1 <1 < k7 This
is not the same as the network flow problem, which imposes no ordering on the way the
vertices can be connected up. In fact the disjoint paths problem is NP-complete if we allow
k to vary [8]. A result of Robertson and Seymour shows that the disjoint paths problem can
be solved in polynomial time if k is fixed [19]. This is an important result because it implies
polynomial time algorithms for deciding any hereditary property (section 8).

Algorithm 7.1 (Disjoint paths). For all k > 1 there exists a polynomial time algorithm
which solves the disjoint paths problem for k fized.

The polynomial time algorithm for the disjoint paths problem implies a polynomial time
algorithm for whether a given graph contains a fixed graph as a minor. We first show that
there is a polynomial time algorithm for topological containment.

Algorithm 7.2 (Topological containment). For any graph H there exists a polynomial
time algorithm which when given a graph G determines whether G topologically contains H.

Proof. et v = |V(H)| and ¢ = |E(H)|. Consider a graph G with n vertices. Note
H =; G if and only if there are injective maps f : V(H) — V(G) and g : E(H) —
{P: P isapathin G } such that for uv € E(H), g(uv) is a path in G connecting f(u) to
f(v) and the paths g(£(H)) are mutually vertex-disjoint except possibly at the endpoints.

To determine whether H <; (G, we first iterate over all possibilities for f. There are only
(:) € O(n®) possible f’s. For each v € V(H) we replace f(v) € V(G) with a clique K, of
size degy v. Replace each uf(v) € E(G) with degy v edges uw for each w € V(K,). Now
for each e = wv € E(H) we assign s. € V(K,) and t. € V(K,) such that if e, f € F(H)
and e # f, we have s, # sy and {. # t;. Invoking algorithm 7.1, if there are disjoint paths
joining s, to t. for each e € K(H) then we can construct g as in the previous paragraph and

so H <, G. ]

Lemma 7.3. For all graphs H there exists graphs Hy, ..., H; such that any graph G has a
H-minor if and only G topologically contains H; for some 1 <1 < k.

Proof. Note that G has a H-minor if and only if we can obtain a subgraph of G from H
by a sequence of vertex expansions into an edge (along with its endpoints). If each vertex
of H has degree at most 3, then every G with a H-minor topologically contains H. This is
because every vertex expansion of H into an edge is an elementary subdivision, and every
vertex of the resulting graph still has degree at most 3.

Let C(H) =}, ey sy max{0,degv — 3} and consider expanding a vertex v € V(H) with
degv > 3 into an edge vyvy such that both v; and vy has degree at least 3. Such an expansion
always decrease C'(H) by at least 1, hence we can perform at most C'(H) such expansions
before the resulting graph H' has C'(H') = 0, i.e. every vertex of H' has degree at most 3.

11
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At each point we have a choice from among at most |V(H)| 4+ C(H) vertices to expand and
a choice from among 2!VHI+CMH) possible partitions of the neighbors of the vertex. Hence
there are at most ((|V(H)| + C(H))2VIFCHNCH) graphs H such that G has a H-minor
if and only if (G topologically contains some H’' € ‘H. This is because every graph obtained
from H using such expansion has to be a subdivision of some H' € H. 0

Algorithm 7.4 (Minor containment). For all graphs H there exists a polynomial time
algorithm which when given a graph G determines whether there exists a H-minor in GG.

Proof. By lemma 7.3 there are graphs Hy,..., Hy such that G has a H-minor if and only
if G has a subgraph that is a subdivision of some H;, 1 <1 < k. So to determine whether

GG has a subgraph with H as a minor we only need to apply algorithm 7.2 to G and each
H;. O

Robertson and Seymour [19] actually showed that algorithm 7.1 and algorithm 7.4 can
be implemented in O(|V(G)]?) time. They described an algorithm that generalized both
algorithm 7.1 and algorithm 7.4. Let 6 > 0 and G be a rooted graph. Define the d-folio of
(i to be the set of all minors H of G such that |V(H) —r(H)| < §and |E(H)| < 4.

Algorithm 7.5 (Folio). For each (,8 > 0 there is an algorithm with run time O(|V(G)]?)
which when given a rooted graph G with |r(G)| < ( determines the §-folio of G.

Algorithm 7.1 can be solved by computing the 0-folio of G with r(G) = {s;,t; : 1 <
i < k} and determining whether the relevant disjoint paths are present in the folio; while
algorithm 7.4 can be solved by determining the max{|V(H)|, |E(H)|}-folio of G with r(G) =
0.

Algorithm 7.5 is very complicated and beyond the scope of this survey. The reader is
referred to [19] for the actual algorithm. We shall only give a very rough outline. The
branch-width of a graph is a notion related to the tree-width. In fact it is within a constant
multiplicative factor of the tree-width. Given a graph G and w > 1 we can determine whether
(¢ has branch-width < 3w or G has branch-width > w. If GG has bounded branch-width (i.e.
< 3w) then there is a simple algorithm to determine the required folio. This is not surprising
given that branch-width is closely related to tree-width, and many NP-complete problems
are solvable in polynomial time for graphs of bounded tree-width. Otherwise if G has large
branch-width (i.e. > w) then due to the high connectivity of G we can find a vertex that
is irrelevant to the required folio (i.e. the folio is the same whether the vertex is present or
removed). We remove the irrelevant vertex and repeat. As each repetition takes O(|V(G)|*)
time the algorithm has a run-time of O(|V(G)]?).

12
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8 Hereditary properties

Definition 8.1 (Hereditary property). A property P is hereditary if for all G with prop-
erty P and all minors H <,, G, H has property P.

Examples of hereditary properties are “embeddable in a given surface S” and “has tree-
width < w”. The following is a direct consequence of the proof of Wagner’s conjecture.

Theorem 8.2. For any hereditary property P there exists a finite set ‘H of graphs such that
a graph G has property P if and only if G has no H-minor for all H € H.

Proof. Let H be the set of all graphs H such that H does not have property P yet for every
non-trivial minor H' of H, H' has property P. Then every graph G without property P
must have a minor in H. Suppose H is infinite. Pick a sequence (H;)2, of distinct graphs
from H. As each H; is minor minimal H; A, H; for each ¢ < j. This contradicts Wagner’s
conjecture so ‘H must be finite. O

Theorem 8.2 is one of the most important results in recent graph theory. A powerful
consequence of theorem 8.2 is a Kuratowski type characterization for graphs embeddable in
any surface.

Theorem 8.3. For any surface S there exists graphs Hy, Hy, ... , Hy such that a graph G s
embeddable in S if and only if G has no H;-minor for all 1 <1 < k.

As a consequence of the O(|V(G)]?) time complexity of the disjoint paths problem, given
any hereditary property P we can determine whether a graph G has property P in O(|V(G)|?)
time too.

Algorithm 8.4 (Hereditary). For all hereditary property P there exists an O(|V(G)|?)
time algorithm which when given a graph G determines whether G has property P.

Proof. By Wagner’s conjecture there are graphs Hy,... , H; such that G has property P if
and only if G does not have any subgraph with H; as a minor for all 1 < < k. To determine
whether G has any subgraph with H; as a minor apply algorithm 7.4. U

A disadvantage of the approach is that because theorem 8.2 uses a non-constructive proof
we do not know how to construct the excluded minors or the polynomial time algorithm given
any hereditary property.

As corollary to algorithm 8.4 and theorem 8.3 we have the following

Algorithm 8.5 (Embeddability). For all surfaces S there exists a polynomial lime algo-
rithm which when given a graph G determines whether G can be embedded in S.

Note that if H is a minor of some subgraph of (G, and G has tree-width < w then H has
tree-width < w. So applying algorithm 8.4

Algorithm 8.6 (Tree-width). For all w > 1 there exists a polynomial time algorithm
which when given a graph G determines if G has tree-width < w.
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It is interesting to note that both algorithm 8.5 and algorithm 8.6 can actually be solved
in linear time. Bodlaender [5] constructed an algorithm that determines whether a graph
has tree-width < w and if so returns a tree decomposition of the graph, all in linear time.
Mohar [12] constructed an algorithm that determines whether a graph can be embedded in
a given surface S in linear time as well. If it can, the algorithm returns an embedding of
the graph in S and if it cannot, it returns a smallest subgraph not embeddable in S. The
method used by Mohar directly tries to find an embedding of the graph and is independent
of Robertson and Seymour’s approach. In fact it leads to a constructive proof of theorem 8.2
and gives an upper bound on the number of edges that the excluded minors can have.

9 Discussion and closing remarks

In this survey we have described material surrounding Wagner’s conjecture. Besides the
important direct implications of Wagner’s conjecture like theorem 8.2 and theorem 8.3, the
ideas useful in understanding and proving Wagner’s conjecture have found uses in other
areas of graph theory. For example, tree-widths and related notions of path-widths and
branch-widths as well as the disjoint paths algorithm have many algorithmic applications.
The enormous theoretical impact and the many useful algorithmic applications of this line
of research shows that this has been a very important area of graph theory in recent years.

Many things have been omitted from this survey, the most glaring of which is an in depth
discussion on the proof of Wagner’s conjecture. I felt that a more detailed description of the
disjoint paths algorithm is also justified but the algorithm is very complicated and beyond
the scope (and length) of this survey. The reader is referred to [19]. Completely missing
are many other excluded minor theorems out there which make up much of graph structure
theory. For a survey of these theorems the reader is referred to Thomas [20].
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