Hierarchical Bayesian Nonparametric Models of Language and Text

Yee Whye Teh Gatsby Computational Neuroscience Unit, UCL

Joint work with Frank Wood*, Jan Gasthaus*, Cedric Archambeau, Lancelot James

August 2010

Overview

- Probabilistic Models for Language and Text Sequences
- The Sequence Memoizer
 - Hierarchical Bayesian Modelling on Context Trees
 - Modelling Power Laws with Pitman-Yor Processes
 - Non-Markov Models
 - Efficient Inference and Computation
- Conclusions

Overview

- > Probabilistic Models for Language and Text Sequences
- The Sequence Memoizer
 - Hierarchical Bayesian Modelling on Context Trees
 - Modelling Power Laws with Pitman-Yor Processes
 - Non-Markov Models
 - Efficient Inference and Computation
- Conclusions

Sequence Models for Language and Text

Probabilistic models for sequences of words and characters, e.g.

Uses:

- Natural language processing: speech recognition, OCR, machine translation.
- Compression.
- Cognitive models of language acquisition.
- Sequence data arises in many other domains.

Markov Models for Language and Text

Probabilistic models for sequences of words and characters.

P(toad in a hole) =
P(toad)*
P(in | toad)*
P(a | toad in)*
P(hole | toad in a)

Andrey Markov

Usually makes a Markov assumption:

P(toad in a hole) ~
P(toad)*
P(in | toad)*
P(a | in)*
P(hole | a)

George E. P. Box

 \triangleright Order of Markov model typically ranges from ~2 to > 10.

Sparsity in Markov Models

Consider a high order Markov models:

$$P(\text{sentence}) = \prod_{i} P(\text{word}_{i}|\text{word}_{i-N+1}...\text{word}_{i-1})$$

Large vocabulary size means naïvely estimating parameters of this model from data counts is problematic for N>2.

$$P^{\mathrm{ML}}(\mathrm{word}_{i}|\mathrm{word}_{i-N+1}...\mathrm{word}_{i-1}) = \frac{C(\mathrm{word}_{i-N+1}...\mathrm{word}_{i})}{C(\mathrm{word}_{i-N+1}...\mathrm{word}_{i-1})}$$

- Naïve priors assuming independent parameters fail as well--most parameters will have no associated data.
 - Smoothing.
 - Hierarchical Bayesian models.

Smoothing in Language Models

Smoothing is a way of dealing with data sparsity by combining large and small models together.

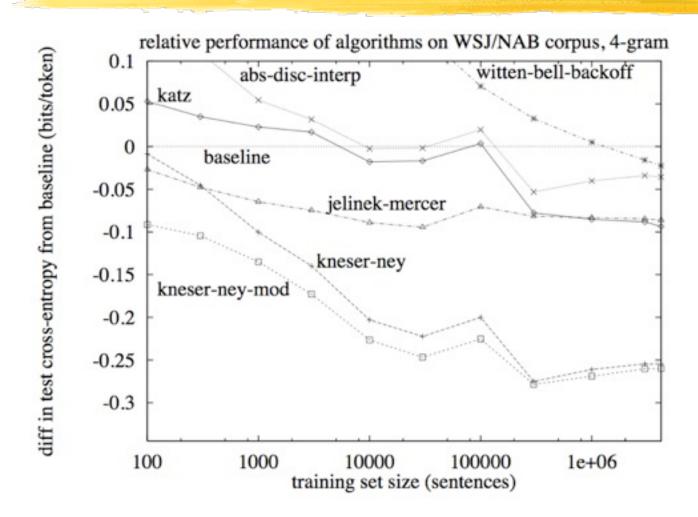
$$P^{\text{smooth}}(\text{word}_i|\text{word}_{i-N+1}^{i-1}) = \sum_{n=1}^{N} \lambda(n)Q_n(\text{word}_i|\text{word}_{i-n+1}^{i-1})$$

Combines expressive power of large models with better estimation of small models (cf bias-variance trade-off).

$$P^{\mathrm{smooth}}(\mathrm{hole}|\mathrm{toad\ in\ a})$$

$$= \lambda(4)Q_4(\mathrm{hole}|\mathrm{toad\ in\ a}) + \lambda(3)Q_3(\mathrm{hole}|\mathrm{in\ a}) + \lambda(2)Q_2(\mathrm{hole}|\mathrm{a}) + \lambda(1)Q_1(\mathrm{hole}|\emptyset)$$

Smoothing in Language Models



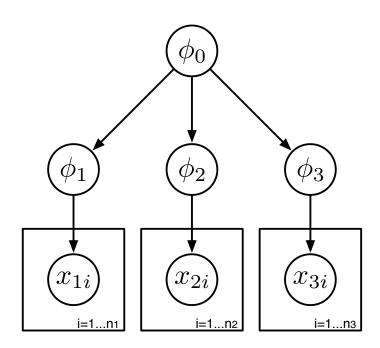
[Chen and Goodman 1998] found that Interpolated and modified Kneser-Ney are best under virtually all circumstances.

Overview

- Probabilistic Models for Language and Text Sequences
- The Sequence Memoizer
 - Hierarchical Bayesian Modelling on Context Trees
 - Modelling Power Laws with Pitman-Yor Processes
 - Non-Markov Models
 - Efficient Inference and Computation
- Conclusions

Hierarchical Bayesian Models

- Hierarchical modelling an important overarching theme in modern statistics [Gelman et al, 1995, James & Stein 1961].
- In machine learning, have been used for multitask learning, transfer learning, learning-to-learn and domain adaptation.

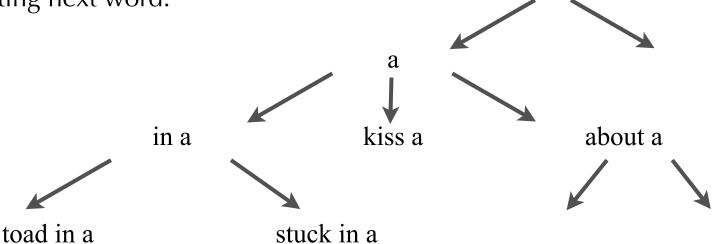


Context Tree

- Context of conditional probabilities naturally organized using a suffix tree.
- Smoothing makes conditional probabilities of neighbouring contexts more similar.

 $P(\operatorname{word}_{i}|\operatorname{word}_{i-N+1}^{i-1})$

Later words in context more important in predicting next word.

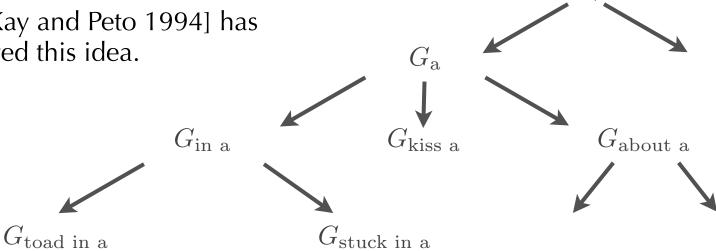


Hierarchical Bayesian Models on Context Tree

Parametrize the conditional probabilities of Markov model:

$$P(\text{word}_i = w | \text{word}_{i-N+1}^{i-1} = u) = G_u(w)$$
$$G_u = [G_u(w)]_{w \in \text{vocabulary}}$$

- G_u is a probability vector associated with context u.
- [MacKay and Peto 1994] has explored this idea.



Hierarchical Dirichlet Language Models

- \triangleright What is $P(G_u|G_{pa(u)})$?
- Standard Dirichlet distribution over probability vectors---bad idea...

${ m T}$	N-1	IKN	MKN	HDLM
2×10^6	2	148.8	144.1	191.2
4×10^6	2	137.1	132.7	172.7
6×10^6	2	130.6	126.7	162.3
8×10^{6}	2	125.9	122.3	154.7
10×10^6	2	122.0	118.6	148.7
12×10^6	2	119.0	115.8	144.0
14×10^6	2	116.7	113.6	140.5
14×10^6	1	169.9	169.2	180.6
14×10^6	3	106.1	102.4	136.6

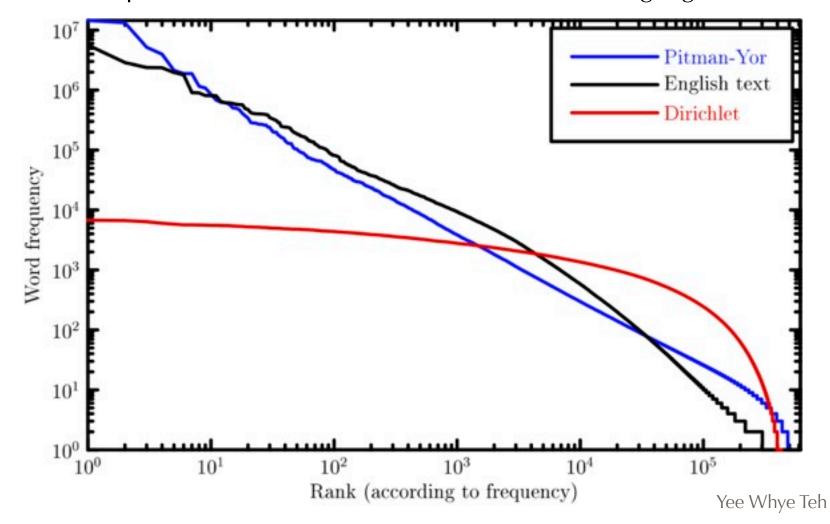
We will use Pitman-Yor processes instead [Perman, Pitman and Yor 1992], [Pitman and Yor 1997], [Ishwaran and James 2001].

Overview

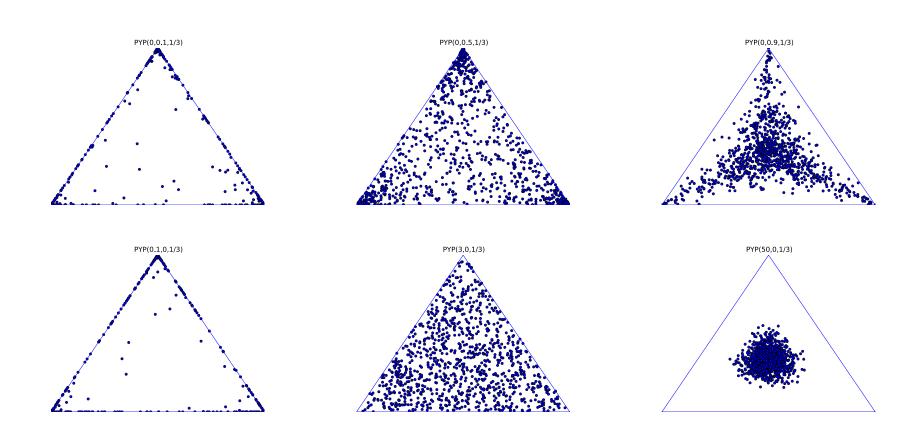
- Probabilistic Models for Language and Text Sequences
- The Sequence Memoizer
 - Hierarchical Bayesian Modelling on Context Trees
 - Modelling Power Laws with Pitman-Yor Processes
 - Non-Markov Models
 - Efficient Inference and Computation
- Conclusions

Pitman-Yor Processes

Produce power-law distributions more suitable for languages.

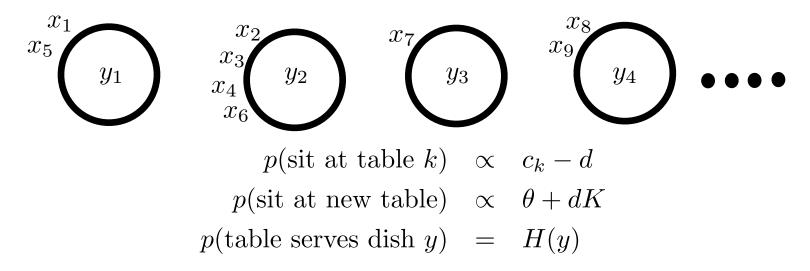


Pitman-Yor Processes



Chinese Restaurant Processes

Easiest to understand them using Chinese restaurant processes.



- \triangleright Defines an exchangeable stochastic process over sequences x_1, x_2, \ldots
- The de Finetti measure is the Pitman-Yor process,

$$G \sim \text{PY}(\theta, d, H)$$

 $x_i \sim G \quad i = 1, 2, \dots$

[Perman, Pitman & Yor 1992, Pitman & Yor 1997]

Power Law Properties of Pitman-Yor Processes

Chinese restaurant process:

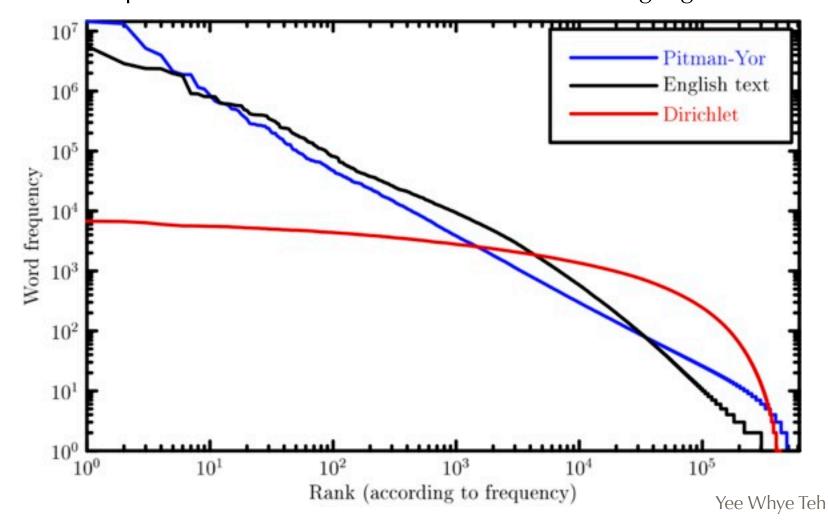
$$p(\text{sit at table } k) \propto c_k - d$$

 $p(\text{sit at new table}) \propto \theta + dK$

- Pitman-Yor processes produce distributions over words given by a power-law distribution with index 1+d.
 - Customers = word instances, tables = dictionary look-up;
 - Small number of common word types;
 - Large number of rare word types.
- > This is more suitable for languages than Dirichlet distributions.
- [Goldwater, Griffiths and Johnson 2005] investigated the Pitman-Yor process from this perspective.

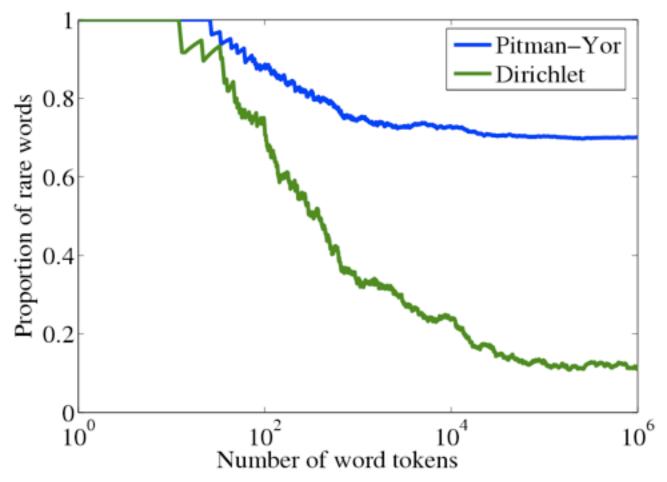
Power Law Properties of Pitman-Yor Processes

Produce power-law distributions more suitable for languages.



Power Law Properties of Pitman-Yor Processes

Produce power-law distributions more suitable for languages.

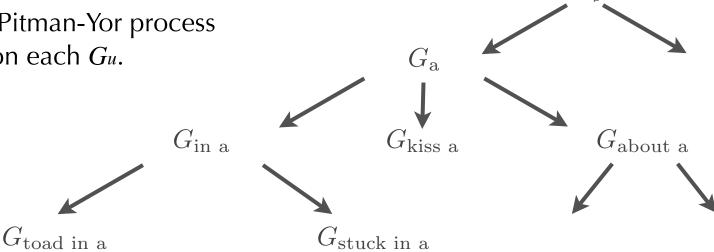


Hierarchical Pitman-Yor Language Models

Parametrize the conditional probabilities of Markov model:

$$P(\text{word}_i = w | \text{word}_{i-N+1}^{i-1} = u) = G_u(w)$$
$$G_u = [G_u(w)]_{w \in \text{vocabulary}}$$

- G_u is a probability vector associated with context u.
- Place Pitman-Yor process prior on each Gu.



Hierarchical Pitman-Yor Language Models

- Significantly improved on the hierarchical Dirichlet language model.
- > Results better Kneser-Ney smoothing, state-of-the-art language models.

T	N-1	IKN	MKN	HDLM	HPYLM
2×10^{6}	2	148.8	144.1	191.2	144.3
4×10^6	2	137.1	132.7	172.7	132.7
6×10^6	2	130.6	126.7	162.3	126.4
8×10^6	2	125.9	122.3	154.7	121.9
10×10^6	2	122.0	118.6	148.7	118.2
12×10^6	2	119.0	115.8	144.0	115.4
14×10^6	2	116.7	113.6	140.5	113.2
14×10^6	1	169.9	169.2	180.6	169.3
14×10^6	3	106.1	102.4	136.6	101.9

Similarity of perplexities not a surprise---Kneser-Ney can be derived as a particular approximate inference method.

Overview

- Probabilistic Models for Language and Text Sequences
- The Sequence Memoizer
 - Hierarchical Bayesian Modelling on Context Trees
 - Modelling Power Laws with Pitman-Yor Processes
 - Non-Markov Models
 - Efficient Inference and Computation
- Conclusions

Markov Models for Language and Text

Usually makes a Markov assumption to simplify model:

```
P(toad in a hole) ~

P(toad)*

P(in | toad)*

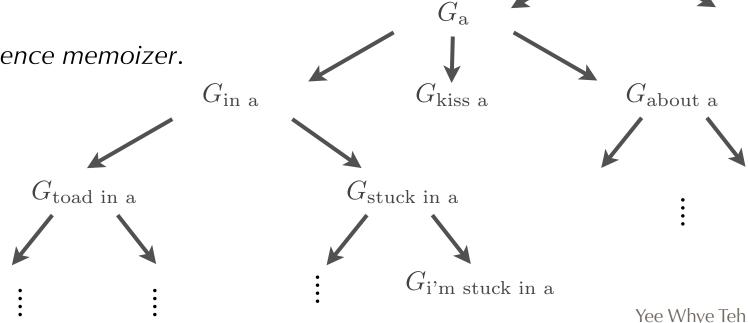
P(a | in)*

P(hole | a)
```

- Language models: usually Markov models of order 2-4 (3-5-grams).
- > How do we determine the order of our Markov models?
- Is the Markov assumption a reasonable assumption?
 - Be nonparametric about Markov order...

Non-Markov Models for Language and Text

- Model the conditional probabilities of each possible word occurring after each possible context.
- Use hierarchical Pitman-Yor process prior to share information across all contexts.
- Hierarchy is infinitely deep.
- Sequence memoizer.



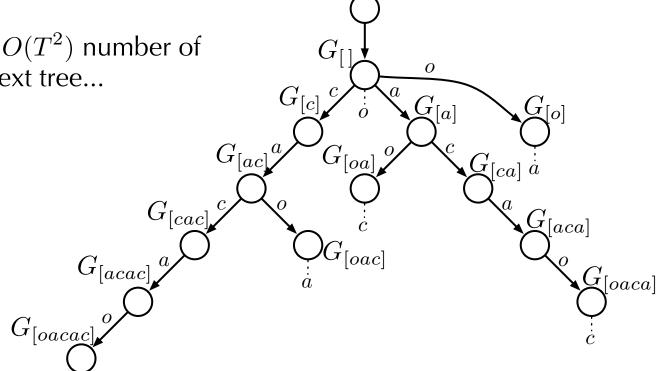
Overview

- Probabilistic Models for Language and Text Sequences
- The Sequence Memoizer
 - Hierarchical Bayesian Modelling on Context Trees
 - Modelling Power Laws with Pitman-Yor Processes
 - Non-Markov Models
 - Efficient Inference and Computation
- Conclusions

Model Size: Infinite -> O(T^2)

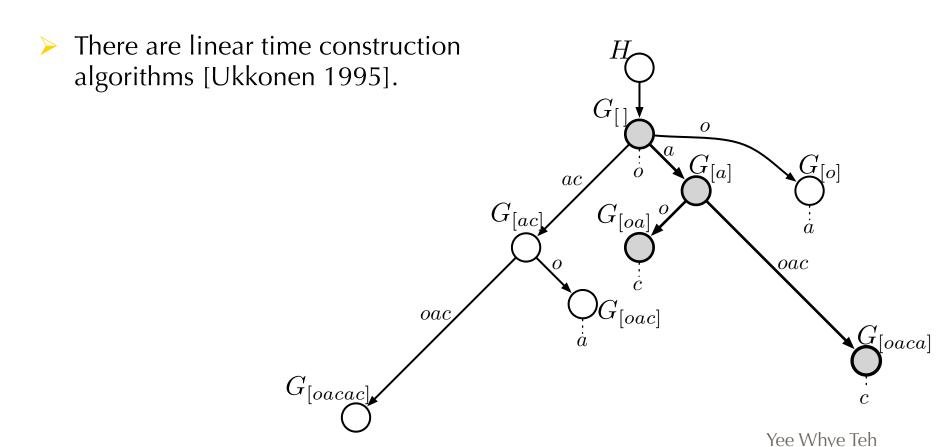
- The sequence memoizer model is very large (actually, infinite).
- Given a training sequence (e.g.: o,a,c,a,c), most of the model can be integrated out, leaving a finite number of nodes in context tree.

 \triangleright But there are still $O(T^2)$ number of nodes in the context tree...



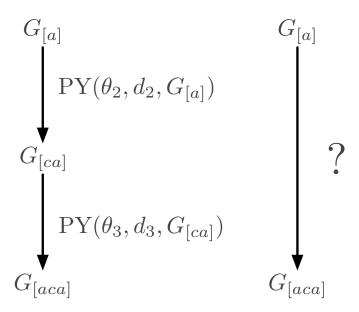
Model Size: Infinite -> O(T^2) -> 2T

- Idea: integrate out non-branching, non-leaf nodes of the context tree.
- Resulting tree has at most 2T nodes.



Closure under Marginalization

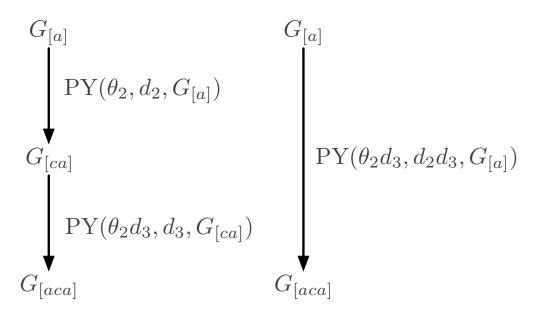
In marginalizing out non-branching interior nodes, need to ensure that resulting conditional distributions are still tractable.



E.g.: If each conditional is Dirichlet, resulting conditional is not of known analytic form.

Closure under Marginalization

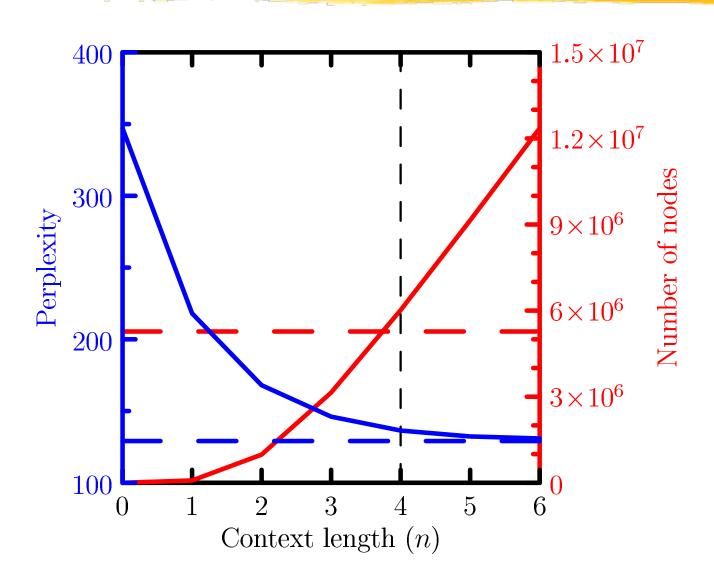
In marginalizing out non-branching interior nodes, need to ensure that resulting conditional distributions are still tractable.



For certain parameter settings, Pitman-Yor processes are closed under marginalization!

[Pitman 1999, Ho, James and Lau 2006]

Comparison to Finite Order HPYLM

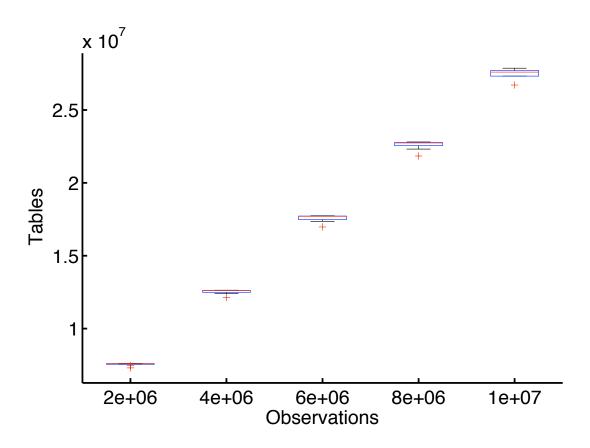


Overview

- Probabilistic Models for Language and Text Sequences
- The Sequence Memoizer
 - Hierarchical Bayesian Modelling on Context Trees
 - Modelling Power Laws with Pitman-Yor Processes
 - Non-Markov Models
 - Efficient Inference and Computation
- Conclusions

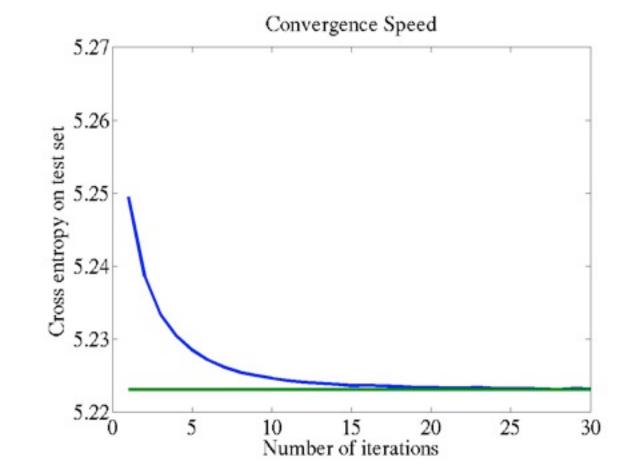
Inference using Gibbs Sampling

Gibbs sampling in Chinese restaurant process representation of Pitman-Yor processes.



Inference

Very efficient: posterior is unimodal and variables are weakly coupled.



Online Algorithms for Compression

- Possible to construct context tree in online fashion as sequence of training symbols observed one at a time.
- Use particle filtering or interpolated Kneser-Ney approximation for inference.
- Linear sized storage and average computation time, but quadratic computation time in worse case.
- Online construction, inference and prediction of next symbol necessary for use in text compression using entropic coding.

Compression

Model	Average bits / byte		
gzip	2.61		
bzip2	2.11		
CTW	1.99		
PPM	1.93		
Sequence Memoizer	1.89		

Calgary corpus

SM inference: particle filter

PPM: Prediction by Partial Matching

CTW: Context Tree Weigting

Online inference, entropic coding.

Conclusions

- Probabilistic models of sequence models without making Markov assumptions with efficient construction and inference algorithms.
- State-of-the-art text compression and language modelling results.
- Hierarchical Bayesian modelling leads to improved performance.
- Pitman-Yor processes allow us to encode prior knowledge about power-law properties, leading to improved performance.
- > Extensions to the probabilisitic models straightforward.

Related Works

- Text compression: Prediction by Partial Matching [Cleary & Witten 1984], Context Tree Weighting [Willems et al 1995]...
- Language model smoothing algorithms [Chen & Goodman 1998, Kneser & Ney 1995].
- Variable length/order/memory Markov models [Ron et al 1996, Buhlmann & Wyner 1999, Begleiter et al 2004...].
- > Hierarchical Bayesian nonparametric models [Teh & Jordan 2010].

Publications

- A Hierarchical Bayesian Language Model based on Pitman-Yor Processes. Y.W. Teh. Coling/ACL 2006.
- A Bayesian Interpretation of Interpolated Kneser-Ney.

 Y.W. Teh. Technical Report TRA2/06, School of Computing, NUS, revised 2006.
- A Hierarchical Nonparametric Bayesian Approach to Statistical Language Model Domain Adaptation.
 - F. Wood and Y.W. Teh. AISTATS 2009.
- A Stochastic Memoizer for Sequence Data.
 F. Wood, C. Archambeau, J. Gasthaus, L. F. James and Y.W. Teh. ICML 2009.
- Text Compression Using a Hierarchical Pitman-Yor Process Prior.
 J. Gasthaus, F. Wood and Y.W. Teh. DCC 2010.
- Forgetting Counts: Constant Memory Inference for a Dependent Hierarchical Pitman-Yor Process.
 - N. Bartlett, D. Pfau and F. Wood. ICML 2010.
- Some Improvements to the Sequence Memoizer.
 J. Gasthaus and Y.W. Teh. NIPS 2010.
- Hierarchical Bayesian Nonparametric Models with Applications.
 Y.W. Teh and M.I. Jordan, in Bayesian Nonparametrics. Cambridge University
 Press, 2010.
 Yee Whye Teh

Thank You!

Acknowledgements:

Frank Wood, Jan Gasthaus, Cedric Archambeau, Lancelot James