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Assumptions

Model inference, prediction, selection etc. usually rely on certain
assumptions.

When the assumptions are violated the results can be seriously flawed.

Understanding, and checking, the model assumptions is vital for any
valid analysis.

For example, you have learned that in the normal linear model we assume
that the errors are i.i.d. N(0, σ2) and that the model is correct i.e. all
the necessary variables have been included.
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Clearly state any assumptions you make



Will the assumptions hold exactly?

Probably not. Many distributional results rely on asymptotics which
means they hold for large sample sizes.

Even if the asymptotics hold, real data will not be exactly how the
assumptions state.

How much violation is acceptable?

3

“We do not like to ask:
“Is the model true or false?” since probability models in most
data analyses will not be perfectly true....

The more relevant question is:
“Do the model’s deficiencies have a noticeable effect on the
substantive inferences?”. Gelman et al. chapter 6



Diagnostics

How do we check if the assumptions of the model hold?

We perform diagnostic checks.
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“We may divide diagnostic methods into two types.

• Some methods are designed to detect single case or
small groups of cases that do not fit the pattern of the
rest of the data. Outlier detection is an example of this.

• Other methods are designed to check the assumptions of
the model, such as the choice and transformation of the
predictors, and those that check the stochastic part of
the model, such as the nature of the variance about the
mean response”.

Faraway (2) section 6.4.



Goodness-of-fit

Does the model fit well? This can be difficult to assess.

Comparing the observed to the fitted values should give an indication.

For certain data types, eg. contingency tables or binomial data, there
exist goodness-of-fit tests, such as the residual deviance.

However, using these tests can only tell you if the model fits well or not
and cannot suggest ways to improve the fit, something which is possible
using, less formal but often more revealing, diagnostic figures.
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“If the model fits, then replicated data generated under
the model should look similar to observed data.”
Gelman et al. chapter 6



Influential observations

Are there observations which control/influence the fit more than we
would like to?

This could lead to erroneous results which are driven by one or a small
group of observations.

How much do our conclusions change if these observations are removed?
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Influential points/outliers can mask other influential points/outliers,
which is why leave-one-out methods do not always spot the prob-
lems.
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Added variable plots

Added variable plots reduce the higher-dimensional regression problem
to a series of two-dimensional plots and show leverage and influence of
the observations on each coefficient of the model.

They can also indicate whether a variable should be added to the model,
after the other variables have been added.

However, they can prove misleading when diagnosing other sorts of
problems, such as nonlinearity.
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Outliers

Are there observations that are not fitted by the model well?

An observation can be outlying for one model but not for another.
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“There are two ways to deal with excessively influential observations:

• one is to use procedures that are robust/resistant to these
observations

• the other is to examine them closely to see whether they are
indeed influential, why they are influential and whether they
provide some interesting extra information about the process
under study.”

Ramsey and Schafer chapter 11.



Cycles of model-fitting

Detailed model-fitting should be performed after the model assumptions
and influential/outlying observations have been considered.
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“Often unexpected discrepancies between a fitted model and
data will lead to further thought, and then to more cycles
of model-fitting, checking and interpretation, iterated until a
broadly satisfactory model has been found”.
Davison section 8.7.



Transformations

Would variations of the model improve the fit?

There are cases where transforming the variables leads to a better fitting
model which complies with the assumptions.

Examples include the log, square root, square transformations etc.

If several transformations result in a similar fit, then the transformation
which makes interpretation of the results more straightforward should be
preferred.
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Example
The hills data set in library(MASS) in R.

The response variable is the time it took to complete the race, in
minutes, and the two potential explanatory variables are the total height
gained during the route, in feet, and the distance on the map, in miles.

Does a linear model make sense?
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Added variable plots
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The slopes of these two simple linear regressions
are equal to the coefficients in the multiple linear
regression for the corresponding predictor variables.



The observations with hi > 2 · (3/35) are:

Bens of Jura Lairig Ghru Two Breweries Moffat Chase

0.42 0.69 0.17 0.19

The observations with studentised residuals> 3 are:

Bens of Jura Knock Hill

3.17 7.61

0 5 10 15 20 25 30 35

0.
0

0.
5

1.
0

1.
5

2.
0

Obs. number

C
oo

k'
s 

di
st

an
ce

lm(time ~ dist + climb)

Cook's distance

Bens of Jura

Knock Hill

Lairig Ghru

14

Bens of Jura is highly influential, much
more than Knock Hill although the latter
was further from the fitted line. Therefore,
although Knock Hill is an outlier, it does
not have the ability of Bens of Jura to pull
the line towards itself.

Both these observations are removed and
the model is refitted. However, this is done
for demonstration purposes only and great
care should be taken when data points are
removed from the analysis.



Testing model assumptions
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Two Breweries has appeared now as a possible outlier!
Is this observation influential? Check it on your own.


