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E:
xpert Systems Some early expert systems

Bayesian networks

An expert system attempts to crystallise and codify knowledge of
experts into a tool, usable by non-specialist.

The knowledge base encodes the knowledge of the domain.

The inference engine consists of algorithms for processing
knowledge base and specific information to obtain conclusions.

Classical expert systems make model of expert.

Probabilistic expert systems model the domain and use Bayesian
reasoning.
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Bayesian networks

Classification trees
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Not necessarily computerized. Can be constructed using e.g.
CART.
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Bayesian networks

Production systems

Uses rules: |IF (A1 & Az & ... & Ax) THEN B; for example

» |IF the animal has hair THEN it is a mammal.

v

IF the animal gives milk THEN it is a mammal.
IF the animal has feathers THEN it is a bird.
IF the animal flies AND it lays eggs THEN it is a bird.

Inference “chaining” (forwards and backwards)

v

v
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Bayesian networks

Certainty factors
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Production rules with “certainty factor”. Need calculus to combine
certainty factors.
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Bayesian networks

Naive Bayes

Disease probabilities D used. F; are findings and P(F; | D) are
specified.
P(D|Fi,...,Fm) is calculated by Bayes' formula.
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Expert Systems Some early expert systems

Bayesian networks

Directed graphical model, to be used for reasoning.

“Bayesian” because it reasons “reversely”, from symptoms to
causes, in contrast to feedforward neural networks which were
common when BNs were introduced.

e
Fl6]=1s) s icteloiniml 2] +-]

Visitto Asia?

v o_ ~ s Y .
g Has bronchitis
. s

/

Steffen Lauritzen, University of Oxford Expert Systems and Local Computation



Expert Systems

Some early expert systems
Bayesian networks
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Bayesian networks

Formal definition

A Bayesian network represents the knowledge base as a directed
graphical model:
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Bayesian networks

Formal definition

A Bayesian network represents the knowledge base as a directed
graphical model:

» A Directed Acyclic Graph D = (V, E);
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Expert Systems Some early expert systems

Bayesian networks

Formal definition

A Bayesian network represents the knowledge base as a directed
graphical model:

» A Directed Acyclic Graph D = (V, E);

» Nodes V represent (random) variables X,,v € V;
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Bayesian networks

Formal definition

A Bayesian network represents the knowledge base as a directed
graphical model:

» A Directed Acyclic Graph D = (V, E);
» Nodes V represent (random) variables X,,v € V;

» Specify for all v € V: p(x | Xpa(v)):
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Bayesian networks

Formal definition

A Bayesian network represents the knowledge base as a directed
graphical model:

A Directed Acyclic Graph D = (V, E);

Nodes V represent (random) variables X,,v € V;

v

v

v

Specify for all v € V: p(x, | Xpa(v));

v

Joint distribution is then p(x) = [],cy P(xv | Xpa(v))-

Steffen Lauritzen, University of Oxford Expert Systems and Local Computation
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Bayesian networks

Formal definition

A Bayesian network represents the knowledge base as a directed
graphical model:

A Directed Acyclic Graph D = (V, E);

Nodes V represent (random) variables X,,v € V;

v

v

v

Specify for all v € V: p(x, | Xpa(v));

v

Joint distribution is then p(x) = [],cy P(xv | Xpa(v))-

v

Inference engine uses probability propagation to calculate
p(x, | xg) for E C V since p(xg) = Zy:yE:x;ﬁ p(y) has too
many terms.
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Basic problem and structure of algorithm
Moralization

- . tion and decomposition
Probability propagation

The general problem

Factorizing density on X = X,y X, with V and X, finite:
p(x) =[] ).
ceC

The potentials ¢c(x) depend on x¢c = (x,,v € C) only.
Basic task to calculate marginal probability

p(xg) = > p(xE. y\E)
YV\E

for E C V and fixed x£, but sum has too many terms.
A second purpose is to get the prediction

p(x, | Xg) = P(xv, xE)/p(xg) for v € V.
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Basic problem and structure of algorithm
Moralization

- . Triangulation and decomposition
Probability propagation 8 F

Basic computations
Message passing
Message scheduling

The moral graph D™ of a DAG D is obtained by adding undirected
edges between unmarried parents and subsequently dropping
directions, as in the example below:

2 4 2
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Basic problem and structure of algorithm
Moralization

Triangulation and decomposition

Basic computations

Message passing

Message scheduling

Probability propagation

Undirected factorizations

If P factorizes w.r.t. D, it factorizes w.r.t. the moralised graph D™.

This is seen directly from the factorization:

f(X) = H f(XV ’Xpa(v)) = H w{v}Upa(v)(X)7
veVv vev
since {v} U pa(v) are all complete in D™.
Hence if P satisfies any of the directed Markov properties w.r.t. D,
it satisfies all Markov properties for D™.
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Basic problem and structure of algorithm
Moralization

Triangulation and decomposition

Basic computations

Message passing

Message scheduling

Probability propagation

Graph decomposition

Consider an undirected graph G = (V/, E). A partitioning of V into
a triple (A, B, S) of subsets of V forms a decomposition of G if

AlgB|S and S is complete.

The decomposition is proper if A# () and B # ().
The components of G are the induced subgraphs Gaus and Ggus.

A graph is prime if no proper decomposition exists.
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Basic problem and structure of algorithm
Moralization

Triangulation and decomposition

Basic computations

Message pa g

Message scheduling

Probability propagation

Examples

The graph to the left is prime

3 6
Decomposition with A = {1,3}, B={4,6,7} and S = {2,5}
2 4 2 2 4

Steffen Lauritzen, University of Oxford Expert Systems and Local Computation



Basic problem and structure of algorithm
Moralization

Triangulation and decomposition

Basic computations

Message pz

Message scheduling

Probability propagation

Junction tree

Let A be a collection of finite subsets of a set V. A junction tree
T of sets in A is an undirected tree with A as a vertex set,
satisfying the junction tree property:
IfA,B € A and C is on the unique path in T between A
and B it holds that AN B C C.

If the sets in A are pairwise incomparable, they can be arranged in
a junction tree if and only if A = C where C are the cliques of a
chordal graph.
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Basic problem and structure of algorithm
Moralization

Triangulation and decomposition

Basic computations

Message passing

Message scheduling

Probability propagation

Chordal graphs and junction trees

The following are equivalent for any undirected graph G.
(i) G is chordal ie all cycles of length > 4 have chords;
(i) All prime components of G are cliques;

(iii) Cliques of G can be arranged in a junction tree.
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Basic problem and structure of algorithm
Moralization

Triangulation and decomposition

Basic computations

Message passing

Message scheduling

Probability propagation
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Basic problem and structure of algorithm
Moralization

Triangulation and decomposition

Basic com tions

o

Probability propagation

Message scheduling

Junction tree

Cliques of graph arranged into a tree with ¢; N G, C D for all
cliques D on path between C; and G;.
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Basic problem and structure of algorithm
Moralization

- . Triangulation and decomposition
Probability propagation g F

Basic computations
Message passing
Message scheduling

The computational structure is set up in several steps:

1.

4.

Moralisation: Constructing D™, exploiting that if P factorizes
over D, it factorizes over D™

Triangulation: Adding edges to find chordal graph G with
G C G. This step is non-trivial (NP-complete) to optimize;

Constructing junction tree: The cliques of G are found and
arranged in a junction tree.

Initialization: Assigning potential functions ¢¢ to cliques.

The complete process above is known as compilation.

Computation is then performed by message passing after
observations have been incorporated.
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Basic problem and structure of algorithm
M ization

Probability propagation g

Messag

Initialization

1. For every vertex v € V we find a clique C(v) in the
triangulated graph G which contains pa(v). Such a clique
exists because v U pa(v) are complete in D™ by construction,
and hence in G:
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Basic problem and structure of algorithm
Moralization

Triangulation and decomposition

Basic computations

Message passing

Message scheduling

Probability propagation

Initialization

1. For every vertex v € V we find a clique C(v) in the
triangulated graph G which contains pa(v). Such a clique
exists because v U pa(v) are complete in D™ by construction,
and hence in G:

2. Define potential functions ¢¢ for all cliques C in G as

pc(x) = H p(xv ’Xpa(v))
v:C(v)=C
where the product over an empty index set is set to 1, i.e.
¢c = 1 if no vertex is assigned to C.
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Basic problem and structure of algorithm
Moralization
Triangulation and decomposition

Probabilit; opagatiol 5
robability propagation Basi

Initialization

1. For every vertex v € V we find a clique C(v) in the
triangulated graph G which contains pa(v). Such a clique
exists because v U pa(v) are complete in D™ by construction,
and hence in G:

2. Define potential functions ¢¢ for all cliques C in G as

¢C(X) = H p(Xv ’Xpa(v))
v:C(v)=C
where the product over an empty index set is set to 1, i.e.

¢c = 1 if no vertex is assigned to C.
3. It now holds that

p(x) = [] 6c(x).

ceC
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Basic problem and structure of algorithm
Moralization

- . Triangulation and decomposition
Probability propagation g F

Basic computations
Message passing
Message scheduling

Next we perform the following steps

1. Incorporating observations: If Xg = x¢ is observed, we modify
potentials as

dc(xc) « dc(x) [ 0(x, %),
ecENC
with 0(u,v) =1 if u= v and else §(u, v) = 0. Then:

HCeC pc(xc) '

(X | XE = XE) P(XE)

2. Marginals p(xg) and p(xc | xg) are then calculated by a local
message passing algorithm.
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Basic problem and structure of algorithm
Moralization
Triangulation and decomposition

Probabilit; opagatiol 5
robability propagation Basi

Separators

Between any two cliques C and D which are neighbours in the
junction tree their intersection S = C N D is called a separator.

We assign potentials to separators, initially ¢s =1 for all S € S,
where § is the set of separators.

Finally let . x0)

_ e Pclxc

K(x) = oo bs(xs)” (1)
and now it holds that p(x | xt) = k(x)/p(xg).

The expression (1) will be invariant under the message passing.
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Basic problem and structure of algorithm
Moralization

Triangulation and decomposition

Basic computations

Message passing

Message scheduling

Probability propagation

Marginalization

The A-marginal of a potential ¢g for AC V is

() =05 (xa)= Y. o5y

YANBYANB=XANB

Since ¢ depends on x through xg only it is true that if B C V' is
‘small’, marginal can be computed easily.

Note that the marginal ¢** depends on x4 only.
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Basic problem and structure of algorithm
Moralization

- . Triangulation and decomposition
Probability propagation g F

Basic computations
Message passing
Message scheduling

Marginalization satisfies
Consonance For subsets A and B: ¢+ (ANB) — ((;5“3)
Distributivity If ¢¢ depends on x¢ only and C C B:

(60c)*® = (¢*F) ¢c.

Essentially the distributivity ensures that we can move factors in a
sum outside of the summation sign.
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Basic problem and structure of algorithm
Mo tion

Triang n and decomposition

Basic computations

Message passing

Message scheduling

Probability propagation

Messages

When C sends message to D, the following happens:

Before After

Computation is local, involving only variables within cliques.
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Basic problem and structure of algorithm
Moralization

- . Triangulation and decomposition
Probability propagation 8 F

Basic computations
Message passing
Message scheduling

The expression

K(x) = IICec<ﬁC(XC)
[[ses #s(xs)

is invariant under the message passing since ¢cop/ds is:

1S
¢C ¢D% _ ¢C¢D
or bs

After the message has been sent, D contains the D-marginal of

bcop/Ps.
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Basic problem and structure of algorithm
ization
ulation and decomposition

Basic computations

Message passing

Message scheduling

Probability propagation

Second message

If D returns message to C, the following happens:

First message

Second message
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Basic problem and structure of algorithm
Moralization

- . Triangulation and decomposition
Probability propagation 8 F

Basic computations
Message passing
Message scheduling

Now all sets contain the relevant marginal of ¢ = ¢cdp/ds:
The separator contains

Is
55 = <¢C¢D)¢S  (¢'D)S = (fboqics _ ¢¢qu%5.

¢s ¢s ¢s

C contains

¢ _ dc
s

oe  9s

Further messages between C and D are neutral! Nothing will

change if a message is repeated.

bc o5 = ¢*¢
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Basic problem and structure of algorithm
Moralization

- . Triangulation and decomposition
Probability propagation F

Basic computations
Message passing
Message scheduling

Two phases:
» COLLINFO: messages are sent from leaves towards arbitrarily

chosen root R.
After COLLINFO, the root potential satisfies

or(xg) = KR (xr) = p(xr, X£).
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Basic problem and structure of algorithm
Moralization

Triangulation and decomposition

Basic computations

Message passing

Message scheduling

Probability propagation

Two phases:

» COLLINFO: messages are sent from leaves towards arbitrarily
chosen root R.
After COLLINFO, the root potential satisfies
PR(XR) = KR (xr) = p(xR, XE).

» DISTINFO: messages are sent from root R towards leaves.
After COLLINFO and subsequent DISTINFO, it holds for all
B € CUS that ¢g(xg) == k*B(xg) = p(xs, x¢).

Steffen Lauritzen, University of Oxford Expert Systems and Local Computation



Basic problem and structure of algorithm
Moralization

- . Triangulation and decomposition
Probability propagation 8 F

Basic computations
Message passing
Message scheduling

Two phases:

» COLLINFO: messages are sent from leaves towards arbitrarily
chosen root R.
After COLLINFO, the root potential satisfies
PR(XR) = KR (xr) = p(xR, XE).

» DISTINFO: messages are sent from root R towards leaves.
After COLLINFO and subsequent DISTINFO, it holds for all
B € CUS that ¢g(xg) == k*B(xg) = p(xs, x¢).

> Hence p(xg) = >_,_ ¢s(xs) for any S € S and p(xy | xg) can
readily be computed from any ¢s with v € S.
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Basic problem and structure of algorithm
Moralization

Triangulation and decomposition

Basic computations

Message passing

Message scheduling

Probability propagation

CoLLINFO

Messages are sent from leaves towards root.
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Basic problem and structure of algorithm
ization
- . ulation and decomposition
Probability propagation
Message passing
Message scheduling

DiIsTINFO

After COLLINFO, messages are sent from root towards leaves.
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Basic problem and structure of algorithm
Moralization

Triangulation and decomposition

Basic computations

Message passing

Message scheduling

Probability propagation

Alternative scheduling of messages

Local control:
Allow clique to send message if and only if it has already received
message from all other neighbours. Such messages are /ive.

Using this protocol, there will be one clique who first receives
messages from all its neighbours. This is effectively the root R in
COLLINFO and DiISTINFO.

Additional messages never do any harm (ignoring efficiency issues)
as k is invariant under message passing.
Exactly two live messages along every branch is needed.
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Maximization
Random sampling

Alternative computations Efficient proportional scaling

Replace sum-marginal with A—maxmarginal:

5 (x) = max ¢a(y)
YBYA=XA
Satisfies consonance: ¢HANB) = (gzﬁw) and distributivity:
(ppc)*E = (¢*B) ¢c., if ¢ depends on xc only and C C B.
COLLINFO yields maximal value of density f.
DiSTINFO yields configuration with maximum probability.

Viterbi decoding for HMMs is special case.
Since (1) remains invariant, one can switch freely between max-
and sum-propagation.
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Maximization
Random sampling

Alternative computations Efficient proportional scaling

After COLLINFO, the root potential is ¢r(x) x p(xr | Xg)
Modify DISTINFO as follows:

1. Pick random configuration Xz from ¢g.

2. Send message to neighbours C as Xgnc = Xs where
S = CN R is the separator.

3. Continue by picking Xc according to ¢c(xc\s, Xs) and send
message further away from root.

When the sampling stops at leaves of junction tree, a configuration
X has been generated from p(x | xg).
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Maximization
Random sampling

Alternative computations Efficient proportional scaling

The scaling operation on p:
”ia(xa)
np3(x,)’

is potentially very complex, as it cycles through all x € X', which is
huge if V is large.

(Tap)(x) < p(x) xeX

If we exploit a factorization of p w.r.t. a junction tree T for a
decomposable C O A

_ HCGC bc(xc)
[Ises @s(xs) ’

we can avoid scaling p and only scale the corresponding factor ¢ ¢+
with a C C*.

p(x)
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Maximization
Random sampling

Alternative computations Efficient proportional scaling

Scaling the factor ¢¢« involves

”ia(xa)

(Tatpc)(xcx) < b (XC*)in(Xa)’

Xcx € X

where p*? is calculated by probability propagation.

The scaling can now be made by changing the ¢'s:

(Z)B — (bB for B ;é C*, ¢C* < T3¢C*.

This can reduce the complexity considerably.
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