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Markov properties
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An probability distribution P of Xv , v ∈ V satisfies the local
Markov property w.r.t. a directed acyclic graph D if

(L) : ∀α ∈ V : α⊥⊥{nd(α) \ pa(α)} | pa(α).

It factorizes over D if its density or probability mass function f has
the form

(F) : f (x) =
∏
v∈V

f (xv | xpa(v)).

It satisfies the global Markov property w.r.t. D if

(G) : A⊥d B |S ⇒ A⊥⊥B | S .

These directed Markov properties are equivalent:

(G) ⇐⇒ (L) ⇐⇒ (F).
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Separation in DAGs

A node γ in a trail τ is a collider if edges meet head-to head at γ:s-� s- - s� - s� �

A trail τ from α to β in D is active relative to S if both conditions
below are satisfied:

I all its colliders are in S ∪ an(S)

I all its non-colliders are outside S

A trail that is not active is blocked. Two subsets A and B of
vertices are d-separated by S if all trails from A to B are blocked
by S . We write A⊥d B |S .
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Separation by example
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For S = {5}, the trail (4, 2, 5, 3, 6) is active, whereas the trails
(4, 2, 5, 6) and (4, 7, 6) are blocked. For S = {3, 5}, they are all
blocked.
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The moral graph Dm of a DAG D is obtained by adding undirected
edges between unmarried parents and subsequently dropping
directions, as in the example below:
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Alternative equivalent separation

To resolve query involving three sets A, B, S :

1. Reduce to subgraph induced by ancestral set DAn(A∪B∪S) of
A ∪ B ∪ S ;

2. Moralize to form (DAn(A∪B∪S))m ;

3. Say that S m-separates A from B and write A⊥m B | S if and
only if S separates A from B in this undirected graph.

It then holds that A⊥m B | S if and only if A⊥d B | S.
Proof in Lauritzen (1996) needs to allow self-intersecting paths to
be correct.
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Forming ancestral set
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The subgraph induced by all ancestors of nodes involved in the
query 4⊥m 6 | 3, 5?
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Adding links between unmarried parents
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Adding an undirected edge between 2 and 3 with common child 5
in the subgraph induced by all ancestors of nodes involved in the
query 4⊥m 6 | 3, 5?
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Dropping directions

3 6

1 5

2 4

u u
u u

u u
@
@@

�
��

@
@@

@
@@

�
��

Since {3, 5} separates 4 from 6 in this graph, we can conclude that
4⊥m 6 | 3, 5
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Intervention vs. observation
Causal interpretation

Standard causal interpretation of any probabilistic model (Spirtes
et al., 1993; Pearl, 2000) emphasizes distinction between
conditioning by observation and conditioning by intervention.

We use special notations for this

P(X = x |Y ← y) = P{X = x | do(Y = y)} = p(x || y), (1)

whereas

p(y | x) = p(Y = y |X = x) = P{Y = y | is(X = x)}.

Causal interpretation of a Bayesian network involves giving (1) a
simple form.
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Intervention vs. observation
Causal interpretation

We say that a BN is causal w.r.t. atomic interventions at B ⊆ V if
it holds for any A ⊆ B that

p(x || x∗A) =
∏

v∈V \A

p(xv | xpa(v))

∣∣∣∣∣∣
xA=x∗A

For A = ∅ we obtain standard factorisation.

Note that conditional distributions p(xv | xpa(v)) are stable under
interventions which do not involve xv . Such assumption must be
justified in any given context.
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Linear structural equation systems
Intervention by replacement
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A linear structural equation system for this network is

X1 ← α1 + U1

X2 ← α2 + β21x1 + U2

X3 ← α3 + β31x1 + U3

X4 ← α4 + β42x2 + U4

X5 ← α5 + β52x2 + β53x3 + U5

X6 ← α6 + β63x3 + β65x5 + U6

X7 ← α7 + β74x4 + β75x5 + β76x6 + U7.
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Linear structural equation systems
Intervention by replacement

After intervention by replacement, the system changes to

X1 ← α1 + U1

X2 ← α2 + β21x1 + U2

X3 ← α3 + β31x1 + U3

X4 ← x∗4

X5 ← α5 + β52x2 + β53x3 + U5

X6 ← α6 + β63x3 + β65x5 + U6

X7 ← α7 + β74x∗4 + β75x5 + β76x6 + U7.
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Justification of causal models by structural equations

Intervention by replacement in structural equation system implies
D causal for distribution of Xv , v ∈ V .

Occasionally used for justification of CBN.

Ambiguity in choice of gv and Uv makes this problematic.

May take stability of conditional distributions as a primitive rather
than structural equations.

Structural equations more expressive when choice of gv and Uv

can be externally justified.

Steffen Lauritzen, University of Oxford Causal Inference from Graphical Models — II



Recapitulating
Bayesian networks

Causal Bayesian networks
Structural equation systems

Computation of effects
Identifiability of causal effects

Chain graph models
References

Assessment of effects of actions
Intervention diagrams
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a - treatment with AZT; l - intermediate response (possible lung
disease); b - treatment with antibiotics; r - survival after a fixed
period.
Predict survival if Xa ← 1 and Xb ← 1, assuming stable
conditional distributions.
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G-computation
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p(1r || 1a, 1b) =
∑
xl

p(1r , xl || 1a, 1b)

=
∑
xl

p(1r | xl , 1a, 1b)p(xl | 1a).

Steffen Lauritzen, University of Oxford Causal Inference from Graphical Models — II



Recapitulating
Bayesian networks

Causal Bayesian networks
Structural equation systems

Computation of effects
Identifiability of causal effects

Chain graph models
References

Assessment of effects of actions
Intervention diagrams

Augment each node v ∈ A where intervention is contemplated
with additional parent variable Fv .
Fv has state space Xv ∪ {φ} and conditional distributions in the
intervention diagram are

p′(xv | xpa(v), fv ) =

{
p(xv | xpa(v)) if fv = φ

δxv ,x∗v if fv = x∗v ,

where δxy is Kronecker’s symbol

δxy =

{
1 if x = y
0 otherwise.

Fv is forcing the value of Xv when Fv 6= φ.
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Intervention diagrams

It now holds in the extended DAG, i.e. the intervention diagram
that

p(x) = p′(x |Fv = φ, v ∈ A),

but also

p(x || x∗B) = P(X = x |XB ← x∗B)

= P ′(x |Fv = x∗v , v ∈ B,Fv = φ, v ∈ B \ A),

In particular it holds that if pa(v) = ∅, then p(x | x∗v ) = p(xv || x∗v ).
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Assessment of effects of actions
Intervention diagrams

More generally we can explicitly join decision nodes δ ∈ ∆ to the
DAG as parents of nodes which they affect.

Further, each of these can have parents in D or in ∆ to indicate
that intervention at δ may depend on states of pa(δ). A strategy σ
yields a conditional distribution of decisions, given their parents to
yield

f (x ||σ) =
∏
v∈V

f (xv | xpa(v))
∏
δ∈∆

σ(xδ | xpa(δ))

where now pa(v) refer to parents in the extended diagram, which
must be a DAG to make sense.

This formally corresponds to the notion of LIMIDs (Lauritzen and
Nilsson, 2001).
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Assessment of effects of actions
Intervention diagrams

A C

B D

E

FA

FB

FD

FC

LIMID for a causal interpretation of a DAG. Red nodes represent
(external) forces or interventions that affect the conditional
distributions of their children. Note that interventions can be
allowed to depend on other variables (treatment strategies).
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Back-door criterion and formula
Classic cases
Front-door formula
Instrumental variable

Treatment variable t, response r , set of observed covariates C ,
unobserved variables U.

When and how can p(Xr || xt) be calculated from p(xt , xr , xC ), the
latter in principle being observable from data?

In this case we could say that C is a identifier for assessing the
effect of T on R.

Answer can be found by analysing intervention diagram.

Simplest cases known as back-door and front-door criteria and
formulae.
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Back-door criterion and formula
Classic cases
Front-door formula
Instrumental variable

D′ denotes D augmented with Ft .
Assume C ⊇ C0, where C0 satisfies

(BD1) Covariates in C0 are unaffected by an intervention:
C0⊥D′ Ft ;

(BD2) Intervention only affects response through chosen
treatment: R ⊥D′ Ft |C0 ∪ {t}.

Then C identifies the effect of the treatment t on R as

p(xr || x∗t ) =
∑
xC0

p(xr | xC0 , x
∗
t )p(xC0).
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Back-door criterion and formula
Classic cases
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Confounding
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The unobserved confounder Xu is affecting both treatment and
response.
BD2 is violated; graph to the right reveals that Ft is not
d-separated from r by t, so treatment effect is not identifiable.
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Back-door criterion and formula
Classic cases
Front-door formula
Instrumental variable

Randomisation
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When Xt is randomised, possibly depending on observed covariate
c , confounding is resolved.
Now Ft ⊥D′ r | {c , t} and c is an identifier.
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Back-door criterion and formula
Classic cases
Front-door formula
Instrumental variable

Sufficient covariate
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Alternatively, an observed covariate c can ‘screen away’ the
confounding effect on the treatment.
Also here, Ft ⊥D′ r | {c , t} and c is an identifier.
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Back-door criterion and formula
Classic cases
Front-door formula
Instrumental variable
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In this case c is the agent through which the treatment effects the
response. Then one can show

p(xr || x∗t ) =
∑
xc

p(xc | x∗t )
∑
xt

p(xr | xc , xt)p(xt).
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Classic cases
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I is an instrument (Durbin, 1954; Bowden and Turkington, 1984;
Angrist et al., 1996) if

Fi i t r
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i is treatment assigned, t is treatment taken.

The graph to the right reveals that r ⊥D′ Fi | {i} so the effect of
the treatment assignment is identified.

However, r is not d-separated from Ft by t so the effect of the
treatment itself cannot.
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Back-door criterion and formula
Classic cases
Front-door formula
Instrumental variable

In the linear case, the effect of t on r can be found as the ratio of
effects of i on r and the effect of i on t, both of which are
identified.

But linearity and additivity of errors are very strong assumptions.

Bounds are available in the general case using linear programming
methods (Balke and Pearl, 1997; Dawid, 2003).
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Mendelian randomization

Same as instrumental variable
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g is gene assigned, x could be exposure or expression.

Bounds for exposure effects are available.
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Back-door criterion and formula
Classic cases
Front-door formula
Instrumental variable

It holds
max
xt

∑
xr

max
xi

p(xr , xt | xi )p(xr ) ≤ 1, (2)

This instrumental inequality was first derived by Pearl (1995). Can
be used to falsify that something is an instrument (Ramsahai and
Lauritzen, 2011).
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Definition
Factorization and Markov property
Causal interpretation in undirected graphs
Causal chain graphs

A standard chain graph is a mixed graph with no multiple edges,
no bi-directed edges, and no directed or semi-directed cycles i.e. no
cycles with all arrows on the cycle pointing in the same direction.

A C

B D

E

A C

B D

E

The graph to the left is a chain graph, with chain components
(connected components after removing arrows)
{A}, {B}, {C ,D}, {E}. The graph to the right is not a chain
graph, due to the semi-directed cycle 〈A→ C — D → B — A〉.
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Definition
Factorization and Markov property
Causal interpretation in undirected graphs
Causal chain graphs

A chain graph with no undirected edges is a directed acyclic graph
or DAG.

A chain graph with no directed edges is an undirected graph or
UG.

The chain components T of a chain graph are connected
components of subgraph induced by undirected edges.

In a DAG, all chain components are singletons and in an undirected
graph, the chain components are the connected components.
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Definition
Factorization and Markov property
Causal interpretation in undirected graphs
Causal chain graphs

The chain graph Markov has an outer factorization

f (x) =
∏
τ∈T

f
(
xτ | xpa(τ)

)
, (3)

where each factor further factorizes w.r.t. the graph G∗(τ) as

f
(
xτ | xpa(τ)

)
= Z−1

(
xpa(τ)

) ∏
A∈A(τ)

φA(xA), (4)

where A(τ) are the complete sets in G∗(τ) and

Z
(
xpa(τ)

)
=
∑
xτ

∏
A∈A(τ)

φA(xA).

The graph G∗(τ) is obtained from Gτ∪pa(τ) by dropping directions
on edges and adding edges between any pair of members of pa(τ).
Matched by a global Markov property as for DAGs and UGs.
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Definition
Factorization and Markov property
Causal interpretation in undirected graphs
Causal chain graphs

A C

B D

E

A C

B D

G∗({C ,D})

Chain components {A}, {B}, {C ,D}, {E}.
Outer factorization:

f (x) = f (xA)f (xB)f (xCD | xAB)f (xE | xCD)

Inner factorization:

f (xCD | xAB) = Z−1(xAB)φ(xAC )φ(xBD)φ(xCD).
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Definition
Factorization and Markov property
Causal interpretation in undirected graphs
Causal chain graphs

A C

B D

E

A C

B D

A

B

A C

B D

E

Gm
AB Gm

ABCD Gm

Chain components {A}, {B}, {C ,D}, {E}.
Conditional independence read from sequence of moral graphs

A⊥⊥B, C ⊥⊥B | {A,D}, D ⊥⊥A | {B,C}, E ⊥⊥{A,B} | {C ,D}
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Definition
Factorization and Markov property
Causal interpretation in undirected graphs
Causal chain graphs

Intervention conditioning in an undirected graph, corresponding to
ferromagnetism, is made by

f (xV \B || x∗B) = (Z ∗)−1
∏
A∈A

φA(xA)

∣∣∣∣∣
xB=x∗B

= f (xV \B | x∗B).

Hence this corresponds to standard conditioning.

More generally, the system can be affected by new potentials

f (xV ||σ) = (Z ∗)−1
∏
a∈A

φA(xA)
∏
B∈B

σB(xB)

where the atomic interventions above correspond to some of the
new potentials being Dirac delta functions, known as quenching in
Physics.
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Definition
Factorization and Markov property
Causal interpretation in undirected graphs
Causal chain graphs

There is a similar intervention calculus for chain graphs

f (x) =
∏
τ∈T

f
(
xτ | xpa(τ)

) ∏
δ∈∆

σ(xδ | xpa(δ))

where each factor in the left product further factorizes according to
the graph G∗(τ) as before. Also pa refer to parents in the extended
graph, hence may include intervention nodes.

To make sense, the extended diagram must be a chain graph.

This form of LIMIDs was discussed in Cowell et al. (1999).
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Definition
Factorization and Markov property
Causal interpretation in undirected graphs
Causal chain graphs

LIMID for a chain graph

A C

B D

E

FA

FB

FD

FC

The exact same interpretation can be given to a chain graph.
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Definition
Factorization and Markov property
Causal interpretation in undirected graphs
Causal chain graphs

Atomic intervention conditioning in a chain graph now leads to

f (xV \A || x∗A) =
f (x)∏

τ∈T f (xτ∩A | xpa(τ))

∣∣∣∣
xA=x∗A

.

This specializes to standard conditioning in undirected graphs and
intervention conditioning in DAGs (Lauritzen and Richardson,
2002).
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