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Graph terminology

A graphical model is a set of distributions, satisfying a set of
conditional independence relations encoded by a graph. This
encoding is known as a Markov property.

In many graphical models, the Markov property is matched by a
corresponding factorization property of the associated densities or
probability mass functions.

This lecture is mostly concerned with graphical models based on
directed acyclic graphs as these allow particularly simple causal
interpretations.

Such models are also known as Bayesian networks, a term coined
by Pearl (1986). There is nothing Bayesian about them.
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Definition and example
Local directed Markov property
Factorization
The global Markov property

A directed acyclic graph D over a finite set V is a simple graph
with all edges directed and no directed cycles. We use DAG for
brevity.

Absence of directed cycles means that, following arrows in the
graph, it is impossible to return to any point.

Bayesian networks have proved fundamental and useful in a wealth
of interesting applications, including expert systems, genetics,
complex biomedical statistics, causal analysis, and machine
learning.
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Example of a directed graphical model
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An probability distribution P of random variables Xv , v ∈ V
satisfies the local Markov property (L) w.r.t. a directed acyclic
graph D if

∀α ∈ V : α⊥⊥{nd(α) \ pa(α)} | pa(α).

Here nd(α) are the non-descendants of α.
A well-known example is a Markov chain:

X1 X2 X3 X4 X5

s s ss s- - - - - s
Xn

with Xi+1⊥⊥ (X1, . . . ,Xi−1) |Xi for i = 3, . . . , n.
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For example, the local Markov property says
4⊥⊥{1, 3, 5, 6} | 2,
5⊥⊥{1, 4} | {2, 3}
3⊥⊥{2, 4} | 1.
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A probability distribution P over X = XV factorizes over a DAG D
if its density or probability mass function f has the form

(F) : f (x) =
∏
v∈V

f (xv | xpa(v)).
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Example of DAG factorization
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The above graph corresponds to the factorization

f (x) = f (x1)f (x2 | x1)f (x3 | x1)f (x4 | x2)

× f (x5 | x2, x3)f (x6 | x3, x5)f (x7 | x4, x5, x6).
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Separation in DAGs

A node γ in a trail τ is a collider if edges meet head-to head at γ:s-� s- - s� - s� �

A trail τ from α to β in D is active relative to S if both conditions
below are satisfied:

I all its colliders are in S ∪ an(S)

I all its non-colliders are outside S

A trail that is not active is blocked. Two subsets A and B of
vertices are d-separated by S if all trails from A to B are blocked
by S . We write A⊥d B |S .
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Separation by example
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For S = {5}, the trail (4, 2, 5, 3, 6) is active, whereas the trails
(4, 2, 5, 6) and (4, 7, 6) are blocked.
For S = {3, 5}, they are all blocked.
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Returning to example
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Hence 4⊥d 6 | 3, 5, but it is not true that 4⊥d 6 | 5 nor that 4⊥d 6.
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Equivalence of Markov properties

A probability distribution P satisfies the global Markov property
(G) w.r.t. D if

A⊥d B |S ⇒ A⊥⊥B | S .

It holds for any DAG D and any distribution P that these three
directed Markov properties are equivalent:

(G) ⇐⇒ (L) ⇐⇒ (F).
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Example is compelling for causal reasons
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The now rather standard causal interpretation of a DAG (Spirtes
et al., 1993; Pearl, 2000) emphasizes the distinction between
conditioning by observation and conditioning by intervention.

We use special notations for this

P(X = x |Y ← y) = P{X = x | do(Y = y)} = p(x || y), (1)

whereas

p(y | x) = p(Y = y |X = x) = P{Y = y | is(X = x)}.

[Also distinguish p(x | y) from P{X = x | see(Y = y)}.
Observation/sampling bias.]

A causal interpretation of a Bayesian network involves giving (1) a
simple form.
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We say that a BN is causal w.r.t. atomic interventions at B ⊆ V if
it holds for any A ⊆ B that

p(x || x∗A) =
∏

v∈V \A

p(xv | xpa(v))

∣∣∣∣∣∣
xA=x∗A

For A = ∅ we obtain standard factorisation.

Note that conditional distributions p(xv | xpa(v)) are stable under
interventions which do not involve xv . Such assumption must be
justified in any given context.
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Contrast the formula for intervention conditioning with that for
observation conditioning:

p(x || x∗A) =
∏

v∈V \A

p(xv | xpa(v))

∣∣∣∣∣∣
xA=x∗A

=

∏
v∈V p(xv | xpa(v))∏
v∈A p(xv | xpa(v))

∣∣∣∣
xA=x∗A

.

whereas

p(x | x∗A) =

∏
v∈V p(xv | xpa(v))

p(xA)

∣∣∣∣
xA=x∗A

.
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An example
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p(x || x∗5 ) = p(x1)p(x2 | x1)p(x3 | x1)p(x4 | x2)

× p(x6 | x3, x
∗
5 )p(x7 | x4, x

∗
5 , x6)

whereas

p(x | x∗5 ) ∝ p(x1)p(x2 | x1)p(x3 | x1)p(x4 | x2)

× p(x∗5 | x2, x3)p(x6 | x3, x
∗
5 )p(x7 | x4, x

∗
5 , x6)
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Intervention by replacement

DAG D can also represent structural equation system:

Xv ← gv (xpa(v),Uv ), v ∈ V , (2)

where gv are fixed functions and Uv are independent random
disturbances.

Intervention in structural equation system can be made by
replacement, i.e. so that Xv ← x∗v is replacing the corresponding
line in ‘program’ (2).

Corresponds to gv and Uv being unaffected by the intervention if
intervention is not made on node v . Hence the equation is
structural.
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A linear structural equation system for this network is

X1 ← α1 + U1

X2 ← α2 + β21x1 + U2

X3 ← α3 + β31x1 + U3

X4 ← α4 + β42x2 + U4

X5 ← α5 + β52x2 + β53x3 + U5

X6 ← α6 + β63x3 + β65x5 + U6

X7 ← α7 + β74x4 + β75x5 + β76x6 + U7.
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General equation systems
Intervention by replacement

After intervention by replacement, the system changes to

X1 ← α1 + U1

X2 ← α2 + β21x1 + U2

X3 ← α3 + β31x1 + U3

X4 ← x∗4

X5 ← α5 + β52x2 + β53x3 + U5

X6 ← α6 + β63x3 + β65x5 + U6

X7 ← α7 + β74x∗4 + β75x5 + β76x6 + U7.
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General equation systems
Intervention by replacement

Justification of causal models by structural equations

Intervention by replacement in structural equation system implies
D causal for distribution of Xv , v ∈ V .

Occasionally used for justification of CBN.

Ambiguity in choice of gv and Uv makes this problematic.

May take stability of conditional distributions as a primitive rather
than structural equations.

Structural equations more expressive when choice of gv and Uv

can be externally justified.
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LIMIDs
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a - treatment with AZT; l - intermediate response (possible lung
disease); b - treatment with antibiotics; r - survival after a fixed
period.
Predict survival if Xa ← 1 and Xb ← 1, assuming stable
conditional distributions.
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G-computation
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p(1r || 1a, 1b) =
∑
xl

p(1r , xl || 1a, 1b)

=
∑
xl

p(1r | xl , 1a, 1b)p(xl | 1a).
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Assessment of effects of actions
Intervention diagrams
LIMIDs

Augment each node v ∈ A where intervention is contemplated
with additional parent variable Fv .
Fv has state space Xv ∪ {φ} and conditional distributions in the
intervention diagram are

p′(xv | xpa(v), fv ) =

{
p(xv | xpa(v)) if fv = φ

δxv ,x∗v if fv = x∗v ,

where δxy is Kronecker’s symbol

δxy =

{
1 if x = y
0 otherwise.

Fv is forcing the value of Xv when Fv 6= φ.
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It now holds in the extended intervention diagram that

p(x) = p′(x |Fv = φ, v ∈ A),

but also

p(x || x∗B) = P(X = x |XB ← x∗B)

= P ′(x |Fv = x∗v , v ∈ B,Fv = φ, v ∈ B \ A),

In particular it holds that if pa(v) = ∅, then p(x | x∗v ) = p(xv || x∗v ).
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More generally we can explicitly join decision nodes δ ∈ ∆ to the
DAG as parents of nodes which they affect.

Further, each of these can have parents in D or in ∆ to indicate
that intervention at δ may depend on states of pa(δ). A strategy σ
yields a conditional distribution of decisions, given their parents to
yield

f (x ||σ) =
∏
v∈V

f (xv | xpa(v))
∏
δ∈∆

σ(xδ | xpa(δ))

where now pa(v) refer to parents in the extended diagram, which
must be a DAG to make sense.

This formally corresponds to the notion of LIMIDs (Lauritzen and
Nilsson, 2001).
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A C

B D

E

FA

FB

FD

FC

LIMID for a causal interpretation of a DAG. Red nodes represent
(external) forces or interventions that affect the conditional
distributions of their children. Note that interventions can be
allowed to depend on other variables (treatment strategies).
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